CSE 473

Lecture 21

(Chapter 14)

Bayesian Networks

(Courtesy Mike West)

Joint Probability
$p\left(X=x_{i}, Y=y_{j}\right)=\frac{n_{i j}}{N}$

Total
number of events $=N$

Marginal Probability
$P\left(X=x_{i}\right)=\sum_{j} P\left(x_{i}, y_{j}\right)=\frac{c_{i}}{N}$
$P\left(Y=y_{j}\right)=\sum_{i} P\left(x_{i}, y_{i}\right)=\frac{r_{j}}{N}$

Summing out a variable is called marginalization
Conditional Probability
$p\left(Y=y_{j} \mid X=x_{i}\right)=\frac{n_{i j}}{c_{i}}$

Recall: Bayes' Rule

$$
\begin{gathered}
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x) \\
\text { i.e. } \\
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
\end{gathered}
$$

Normalization in Bayes' Rule

$$
\begin{aligned}
P(x \mid y) & =\frac{P(y \mid x) P(x)}{P(y)}=\alpha P(y \mid x) P(x) \\
\alpha & =\frac{1}{P(y)}=\frac{1}{\sum_{x} P(y, x)}=\frac{1}{\sum_{x} P(y \mid x) P(x)}
\end{aligned}
$$

α is called the normalization constant
(can be calculated by summing over numerator values)

Why is Bayes rule useful?

Allows diagnostic reasoning from causal information:

$$
P(\text { Cause } \mid E f f e c t)=\frac{P(E f f e c t \mid \text { Cause }) P(\text { Cause })}{P(E f f e c t)}
$$

Example 1: State Estimation

- Suppose a robot obtains measurement z
- What is $P($ doorOpen/z)?

Causal vs. Diagnostic Reasoning

- $P($ open $/ z)$ is diagnostic.
- $P(z / o p e n)$ is causal.
- Often causal knowledge is easier to obtain. count frequencies!
- Bayes rule allows us to use causal knowledge to diagnose a situation:

$$
P(\text { open } \mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z)}
$$

State Estimation Example

- Suppose: $P(z \mid$ open $)=0.6 \quad P(z \mid \neg$ open $)=0.3$
- $P($ open $)=P(\neg$ open $)=0.5$
$P($ open $\mid z)=\frac{P(z \mid \text { open }) P(\text { open })}{P(z \mid \text { open }) p(\text { open })+P(z \mid \neg \text { open }) p(\neg \text { open })}$
$P($ open $\mid z)=\frac{0.6 \cdot 0.5}{0.6 \cdot 0.5+0.3 \cdot 0.5}=\frac{0.30}{0.45}=0.67$
Measurement z raises the probability that the door is open from 0.5 to 0.67

Is there a general representation scheme for efficient probabilistic inference?

Enter...Bayesian networks

What are Bayesian networks?

- Simple, graphical notation for conditional independence assertions
- Allows compact specification of full joint distributions

Example: Back at the Dentist's

- Topology of network encodes conditional independence assertions:

- Weather is independent of the other variables
- Toothache and Catch are conditionally independent of each other given Cavity

Conditional Independence and the "Naïve Bayes Model"

```
P(Cavity|toothache }\wedge\mathrm{ catch)
    = \alpha\mathbf{P}(\mathrm{ toothache }\wedge catch |Cavity )}\mathbf{P}(\mathrm{ Cavity )
    = \alpha\mathbf{P}(\mathrm{ toothache |Cavity )P(catch }|\mathrm{ Cavity )}\mathbf{P}(\mathrm{ Cavity })
```

This is an example of a naive Bayes model:
$\mathbf{P}\left(\right.$ Cause,E ffect $_{1}, \ldots$, Effect $\left._{n}\right)=\mathbf{P}($ Cause $) \Pi_{i} \mathbf{P}\left(\right.$ Effect $_{i} \mid$ Cause $)$

Total number of parameters is linear in n

Bayesian networks

- Syntax:
- set of nodes, one per random variable
- directed, acyclic graph (link \approx "directly influences")

- conditional distribution for each node given its parents:
$\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid\right.$ Parents $\left.\left(\mathrm{X}_{\mathrm{i}}\right)\right)$
- For discrete variables, conditional distribution = conditional probability table $(\mathrm{CPT})=$ distribution over X_{i} for each combination of parent values

Example 2: Burglars and Earthquakes

- You are at a "Done with the AI class" party.
- Neighbor John calls to say your home alarm has gone off (but neighbor Mary doesn't).
- Sometimes your alarm is set off by minor earthquakes.
- Question: Is your home being burglarized?

Example 2: Burglars and Earthquakes

- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Bayesian Network for Burglars and Earthquakes

Compact Representation of Probabilities in Bayesian Networks

- A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values
- Each row requires one number p for $X_{i}=$ true (the other number for $X_{i}=$ false is just 1-p)

- If each variable has no more than k parents, an n-variable network requires $O\left(n \cdot 2^{k}\right)$ numbers
- This grows linearly with n vs. $O\left(2^{n}\right)$ for full joint distribution
- For burglar network, $1+1+4+2+2$ = 10 numbers (vs. $2^{5-1}=31$ numbers) for full joint distribution

Bayesian Network Semantics

- Full joint distribution is defined as product of local conditional distributions:

$$
P\left(X_{1}, \ldots, X_{n}\right)=\pi_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

- e.g., Joint probability of all variables being true = ?

$$
\begin{aligned}
& P(j \wedge m \wedge a \wedge b \wedge e) \\
& =P(j \mid a) P(m \mid a) P(a \mid b, e) P(b) P(e)
\end{aligned}
$$

- Similarly, $P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)$

$$
=P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)
$$

Probabilistic Inference in BNs

- The graphical independence representation yields efficient inference schemes
- We generally want to compute
- $P(X \mid E)$ where E is evidence from sensory measurements etc. (known values for variables)
- Sometimes, may want to compute just $P(X)$
- One simple inference algorithm:
- variable elimination (VE)

What is the probability of burglary given that John and Mary called?
 Compute $P(B=$ true $\mid J=$ true, $M=$ true $)$

 $$
P(b \mid j, m)=\alpha P(b, j, m)=\alpha \Sigma_{e, a} P(b, j, m, e, a)
$$

Computing $\mathrm{P}(\mathrm{B}=$ true $\mid \mathrm{J}=$ true, $\mathrm{M}=$ true $)$

$$
\begin{aligned}
P(b \mid j, m) & =\alpha \Sigma_{e, a} P(b, j, m, e, a) \\
& =\alpha \Sigma_{e, a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a) \\
& =\alpha P(b) \Sigma_{e} P(e) \Sigma_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)
\end{aligned}
$$

Next Time

- Inference Algorithms
- Variable Elimination (VE)
- Hidden Markov Models
- To Do:
- Project 3 due Sunday before midnight

