CSE 473

Lecture 22

(Chapters 14 \& 15)
Probabilistic Inference and Hidden Markov Models

Recall: Probabilistic Inference

- Full joint distribution allows inference of all types of probabilities
- E.g. Given random variables A, B, E, J, M, if you want $P(B \mid J, M)$:
$P(B \mid J, M)=\alpha P(B, J, M)=\alpha \Sigma_{E, A} P(B, J, M, E, A)$
- Problem: Full joint requires you to specify $2^{*} 2^{*} 2^{*} 2^{*} 2=32$ values

Solution: Bayesian networks

- Simple graphical notation for conditional independence assertions
- In many cases, allows compact specification of full joint distributions
- Example BN for A, B, E, J, M

$$
\begin{aligned}
& P(J, M, A, B, E)= \\
& \Pi_{i} P\left(X_{i} \mid P \text { arents }\left(X_{i}\right)\right)= \\
& P(J \mid A) P(M \mid A) P(A \mid B, E) P(B) P(E) \\
& \text { Only requires } 2+2+4+1+1=10 \text { values }
\end{aligned}
$$

Why is joint $=\Pi_{i} P\left(X_{i} \mid P \operatorname{arents}\left(X_{i}\right)\right) ?$
Keep applying definition of

conditional probability:
$P(J, M, A, B, E)=$
$=P(J \mid M, A, B, E) P(M, A, B, E)$
$=P(J \mid A) P(M, A, B, E)$
$=P(J \mid A) P(M \mid A, B, E) P(A, B, E)$
$=P(J \mid A) P(M \mid A) P(A, B, E)$
$=P(J \mid A) P(M \mid A) P(A \mid B, E) P(B, E)$
$=P(J \mid A) P(M \mid A) P(A \mid B, E) P(B) P(E)$

Bayesian Network for Burglars and Earthquakes

What is the probability of Burglary given that John and Mary called?

Compute $\mathrm{P}(\mathrm{B}=$ true | $\mathrm{J}=$ true, $\mathrm{M}=$ =true $)$
$P(b \mid j, m)=\alpha P(b, j, m)$
$=\alpha \Sigma_{e, a} P(b, j, m, e, a)$

$=\alpha \Sigma_{e, a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a)$
$=\alpha P(b) \Sigma_{e} P(e) \Sigma_{a} P(a \mid b, e) P(j \mid a) P(m \mid a)$

- Join all factors containing a
- Sum out a to get new function of b,e,j,m only

Variable Elimination (VE) Algorithm

- Eliminate variables one-by-one until there is a factor with only the query variables:

1. join all factors containing that variable, multiplying probabilities
2. sum out the influence of the variable

Remaining factor is a function of b, j, m

Function of b,j,m

Example of VE: P(J)

$$
\begin{aligned}
& P(J) \\
& =\Sigma_{M, A, B, E} P(J, M, A, B, E) \\
& =\Sigma_{M, A, B, E} P(J \mid A) P(M \mid A) P(A \mid B, E) P(B) P(E) \\
& =\Sigma_{A} P(J \mid A) \Sigma_{M} P(M \mid A) \Sigma_{B} P(B) \Sigma_{E} P(A \mid B, E) P(E) \\
& =\Sigma_{A} P(J \mid A) \Sigma_{M} P(M \mid A) \Sigma_{B} P(B) f 1(A, B) \\
& =\Sigma_{A} P(J \mid A) \Sigma_{M} P(M \mid A) f 2(A) \\
& =\Sigma_{A} P(J \mid A) f 3(A) \\
& =f 4(J)
\end{aligned}
$$

Other Inference Algorithms

- Direct Sampling:
- Repeat N times:
- Use random number generator to generate sample values for each node
- Start with nodes with no parents
- Condition on sampled parent values for other nodes
- Count frequencies of samples to get an approximation to desired distribution
- Other variants: Rejection sampling, likelihood weighting, Gibbs sampling and other MCMC methods (see text)
- Belief Propagation: A "message passing" algorithm for approximating $P(X \mid e v i d e n c e)$ for each node variable X
- Variational Methods: Approximate inference using distributions that are more tractable than original ones (see text for details)

Must infer probability distribution over true ghost position

Example of Ghost Tracking (movie)

Bayesian Network for Tracking

This "Dynamic" Bayesian network is also called a Hidden Markov Model (HMM)

- Dynamic = time-dependent
- Hidden = state (ghost position) is hidden
- Markov = current state only depends on previous state Similar to MDP (Markov decision process) but no actions

Hidden Markov Model (HMM)

HMM is defined by 2 conditional probabilities:
$P\left(X_{t} \mid X_{t-1}\right)$ Transition model $=P\left(X^{\prime} \mid X\right)$
$P\left(E_{t} \mid X_{t}\right) \quad$ Emission model $=P(E \mid X)$
plus initial state distribution $P\left(X_{1}\right)$

Project 4: Ghostbusters

- Plot: Pacman's grandfather, Grandpac, learned to hunt ghosts for sport.
- Blinded by his power, but can hear the ghosts' banging and clanging sounds.
- Transition Model: Ghosts move randomly, but are sometimes biased.
- Emission Model: Pacman gets a "noisy" distance to each ghost.

Ghostbusters HMM

-

$P\left(X_{1}\right)=$ uniform
$P\left(X_{1}\right)$
$\begin{array}{llll}1 / 9 & 1 / 9 & 1 / 9\end{array}$
$\begin{array}{lll}1 / 9 & 1 / 9 & 1 / 9\end{array}$

- $P\left(X^{\prime} \mid X\right)=$ ghost usually moves clockwise, but sometimes moves in a random direction
$\begin{array}{lll}1 / 9 & 1 / 9 & 1 / 9\end{array}$ or stays in place
$\mathrm{P}\left(\mathrm{X}^{\prime} \mid \mathrm{X}=<1,2>\right)$

$1 / 6$	$1 / 6$	$1 / 2$
0	$1 / 6$	0
0	0	0

- $P(E \mid X)=$ compute Manhattan distance to ghost from Pac-Man and emit a noisy distance given this true distance (see example for true distance $=8$)

HMM Inference Problem

Where is the ghost now?
Compute posterior probability over X_{t}

- Given evidence (all measurements made so far) $E_{1: t}=e_{1: t}$
- Main inference problem:
- Filtering: Find posterior $P\left(X_{t} \mid e_{1: t}\right)$ for current t

The "Forward" Algorithm for Filtering

- Want to compute the "belief" $B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)$
- Derive belief update rule from probability definitions, Bayes' rule and Markov assumption:
$P\left(X_{t} \mid e_{1}, \ldots, e_{t}\right)=\alpha P\left(e_{t} \mid X_{t}, e_{1}, \ldots, e_{t-1}\right) P\left(X_{t} \mid e_{1}, \ldots, e_{t-1}\right) \quad$ Bayes
$=\alpha P\left(e_{t} \mid X_{t}\right) \sum_{X_{t-1}} P\left(X_{t}, X_{t-1} \mid e_{1}, \ldots, e_{t-1}\right) \quad$ Markov $+\begin{aligned} & \text { Marginalize }\end{aligned}$
$=\alpha P\left(e_{t} \mid X_{t}\right) \sum_{X_{t-1}} P\left(X_{t} \mid X_{t-1}, e_{1}, \ldots, e_{t-1}\right) P\left(X_{t-1} \mid e_{1}, \ldots, e_{t-1}\right)$
$=\alpha P\left(e_{t} \mid X_{t}\right) \sum_{X_{t-1}} P\left(X_{t} \mid X_{t-1}\right) P\left(X_{t-1} \mid e_{1}, \ldots, e_{t-1}\right)$

New Normaliestimate
zation constant

Emission model

Transition model

Previous estimate

Example of Filtering (Tracking) using the Forward Algorithm (movie)

Particle Filtering Motivation

- Sometimes $|\mathrm{X}|$ is too big for exact inference
- $|\mathrm{X}|$ may be too big to even store $\mathrm{B}_{\mathrm{t}}(\mathrm{X})$
E.g. when X is continuous
- $|\mathrm{X}|^{2}$ may be too big to do updates
- Solution: Approximate inference
- Track a set of samples of X
- Samples are called particles
- Number of samples for $\mathrm{X}=\mathrm{x}$ is proportional to probability of x

0.0	0.1	0.0	
0.0	0.0	0.2	
0.0	0.2	0.5	
	0		
		0	
		00	

Next Time

- Particle Filtering and its Applications
- Guest lecture by Prof. Dieter Fox
- To Do:
- Project 4 (last project! Assigned today)

