

Goal: Learn the function "PlayTennis?" from example data											
		Input	Attrib	utes	Output						
Ι	Day <mark>O</mark>	utlook	Humid	l Wind	PlayTennis?	"yes" (y) or "no" (n)					
Ċ	11	S	h	W	n						
Ċ	12	S	h	S	n						
Ċ	13	0	h	W	У	• Outlook =					
Ċ	14	r	h	W	У	sunny,					
Ċ	15	r	n	W	У	overcast, or					
Ċ	16	r	n	S	У	rain					
Ċ	17	0	n	S	У						
Ċ	18	S	h	W	n	• Humidity =					
Ċ	19	S	n	W	У	high or					
Ċ	110	r	n	W	У	normal					
Ċ	111	S	n	S	У	normar					
Ċ	112	0	h	S	У						
Ċ	113	0	n	W	У	 Wind = weak 					
Ċ	114	r	h	S	n	or strong					
						2					

Learning Decision Trees

Example: When should I wait for a table at a restaurant?

• Attributes (features) relevant to *Wait?* decision:

- 1. Alternate: is there an alternative restaurant nearby?
- 2. Bar: is there a comfortable bar area to wait in?
- 3. Fri/Sat: is today Friday or Saturday?
- 4. Hungry: are we hungry?
- 5. Patrons: number of people in the restaurant (None, Some, Full)
- 6. Price: price range (\$, \$\$, \$\$\$)
- 7. Raining: is it raining outside?
- 8. Reservation: have we made a reservation?
- 9. Type: kind of restaurant (French, Italian, Thai, Burger)
- 10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Input Data for Learning												
Past examples when I did/did not wait for a table												
Example	Attributes											
Lincinpro	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait	
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т	
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F	
X_3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т	
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т	
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F	
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т	
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F	
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т	
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F	
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F	
X_{11}^{10}	F	F	F	F	None	\$	F	F	Thai	0-10	F	
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т	

Using information theory

- Suppose we have p examples with Wait = True (positive) and n examples with Wait = false (negative).
- Our best estimate of the probabilities of Wait = true or false is given by:

 $P(true) \approx p / p + n$ $p(false) \approx n / p + n$

Hence the entropy (in bits) is given by:

$$I(\frac{p}{p+n},\frac{n}{p+n}) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

16

Cross-validation

- K-fold cross-validation:
 - Divide data into K subsets of equal size
 - Train learning algorithm K times, leaving out one of the subsets. Compute error on left-out subset
 - Report average error over all subsets
- Leave-1-out cross-validation:
 - Train on all but 1 data point, test on that data point; repeat for each point
 - Report average error over all points

28

27