
1

CSE 473

Lecture 4

Informed Search

© CSE AI Faculty

2

Last Time

Blind Search
 BFS

 UC-BFS

 DFS

 DLS

 Iterative Deepening

2

3

Forwards vs. Backwards Search

S

G

d

b

p q

c

e

h

a

f

r

4

3

Bidirectional Search

Motivation: Search time bd/2 + bd/2 << bd

(E.g., 108+108 =2108<< 1016)

Can use breadth-first search or uniform-cost search

Hard for implicit goals e.g., goal = “checkmate” in chess

5

Can we do better?

Can we use problem-specific
knowledge to speed up search

and maintain optimality?

6

4

7

Informed Search
• General search problem: Actions have different costs

• Want to minimize total cost from start to goal
 Not just minimizing path cost like Uniform-cost search

• Idea: Use problem-specific knowledge to guide search
by using “heuristic function”

S

G

8

Best-first Search

• Generalization of breadth first search

• Priority queue of nodes to be explored

• Evaluation function f (n) used for each node

Insert initial state into priority queue

While queue not empty

 Node = head(queue)

 If goal(node) then return node

 Insert children of node into pr. queue

5

9

Who’s on (best) first?

Examples of best-first search:

• Breadth-first search is best-first

With f(n) = depth(n)

• Uniform-cost search is best-first

With f(n) = g(n)

where g(n) = path cost (sum of edge costs from start to n)

10

Greedy best-first search

• Use a heuristic evaluation function f(n) = h(n) = estimate

of cost from n to goal

• E.g., hSLD(n) = straight-line distance from n to destination

• Greedy best-first search expands the node that appears to

be closest to goal

SLD

6

11

Example: Lost in Romania

end

sta
rt

h(n)= SLD to
Bucharest

366

0

160

242

161

176

77

151

226

244

241

234

380

100

193

253

329

80

199

374

12

Example: Greedily Searching for Bucharest

hSLD(Arad)

7

13

Example: Greedily Searching for Bucharest

14

Example: Greedily Searching for Bucharest

8

15

Example: Greedily Searching for Bucharest

Greed

doesn’t

pay!
Not optimal!
Yellow = greedy SLD-based search
Blue = optimal (418 versus 450)

9

17

Properties of Greedy Best-First Search

• Complete? No – can get stuck in loops (unless

we keep an “explored” set)

• Time? O(bm), but a good heuristic can give

dramatic improvement

• Space? O(bm) (nodes in priority queue +

explored set)

• Optimal? No, as our example illustrated

18

A* Search
(Hart, Nilsson & Rafael 1968)

 Best first search with f(n) = g(n) + h(n)

 g(n) = sum of edge costs from start to n

 + heuristic function h(n) = estimate of lowest cost path

 from n to goal

 If h(n) is “admissible” then tree-search will be optimal

{

10

19

Back in Romania Again

end

sta
rt

Aici vom
merge
din nou!

h(n)= SLD to
Bucharest

366

0

160

242

161

176

77

151

226

244

241

234

380

100

193

253

329

80

199

374

20

A* Example

f(n)=g(n)+h(n)

11

21

A* Example

22

A* Example

12

23

A* Example

24

A* Example

13

25

A* Example

26

Admissible Heuristics

• A heuristic h(n) is admissible if

 for every node n,

 h(n) ≤ h*(n)

 where h*(n) is the true cost to reach the goal

state from n.

• An admissible heuristic never overestimates

the cost to reach the goal, i.e., it is optimistic

14

Admissible Heuristics

• Is the Straight Line Distance heuristic hSLD(n)
admissible?

• Yes, it never overestimates the actual road distance

• Theorem: If h(n) is admissible, A* using TREE-

SEARCH is optimal.

27

Optimality of A* (proof)

Suppose some suboptimal goal G2 has been generated and
is in the frontier. Let n be an unexpanded node in the
frontier such that n is on a shortest path to an optimal
goal G.

f(G2) = g(G2) since h(G2) = 0
 > g(G) since G2 is suboptimal
f(G) = g(G) since h(G) = 0
f(G2) > f(G) from above

28

15

Optimality of A* (cont.)

f(G) < f(G2) from prev slide
h(n) ≤ h*(n) since h is admissible
g(n) + h(n) ≤ g(n) + h*(n) = f(G)
f(n) ≤ f(G) < f(G2)

Hence f(n) < f(G2) A* will never select G2 for expansion.

29

30

Optimality of A* for Graph Search

• A heuristic h(n) is consistent if

 for every node n and every successor n’ generated

by an action a,

 h(n) ≤ c(n,a,n’) + h(n’)

 (general triangle inequality)

• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH

is optimal.

 (see text for proof)

• Most admissible heuristics turn out to be consistent too
 E.g. SLD is a consistent heuristic for the route problem (prove it!)

h(n)
c(n,a,n’)

h(n’)

n

n’
Gn

16

31

Properties of A*

• Complete? Yes (unless there are infinitely
many nodes with f ≤ f(G))

• Time? Exponential worst case but may be
faster in many cases

• Space? Exponential: Keeps all generated
nodes in memory (exponential # of nodes)

• Optimal? Yes

32

Okay, enough theory…
time to wake up!

17

33

Next Time

• How to climb hills
• How to reach the top by annealing
• How to simulate and profit from evolution
• How to oppan Gangnam style

