CSE 473
 Lecture 8

Adversarial Search: Expectimax and Expectiminimax

Where we have been and where we are headed

- Blind Search
- DFS, BFS, IDS
- Informed Search
- Systematic: Uniform cost, greedy best first, A*, IDA*
- Stochastic: Hill climbing, simulated annealing, GAs
- Adversarial Search
- Mini-max
- Alpha-beta pruning
- Evaluation functions for cut off search
- Expectimax \& Expectiminimax

Modeling the Opponent

- So far assumed

Opponent = rational, optimal (always picks MIN values)

- What if

Opponent = random?
2 player w/ random opponent = 1 player stochastic

Stochastic Single-Player

- Don’t know what the result of an action will be. E.g.,
- In solitaire, card shuffle is unknown; in minesweeper, mine locations are unknown
- In Pac-Man, suppose the ghosts behave randomly

Example

- Game tree has
- MAX nodes as before
- Chance nodes: Environment selects an action

Minimax Search?

- Suppose you pick MIN value move at each chance node
- Which move (action) would MAX choose?
- MAX would always choose A_{2}
- Average utility = 5

- If MAX had chosen A_{1}
- Average utility = 11

Expectimax Search

- Expectimax search:

Chance nodes take average (expectation) of value of children

- MAX picks move with maximum expected value

Maximizing Expected Utility

- Principle of maximum expected utility: An agent should chose the action which maximizes its expected utility, given its knowledge
- General principle for decision making
- Often taken as the definition of rationality
- We will see this idea over and over in this course!
- Let's decompress this definition...

Review of Probability

- A random variable represents an event whose outcome is unknown
- Example:
- Random variable T = Traffic on freeway?
- Outcomes (or values) for T: \{none, light, heavy\}
- A probability distribution is an assignment of weights to outcomes
- Example: $\mathrm{P}(\mathrm{T}=$ none $)=0.25, \mathrm{P}(\mathrm{T}=$ light $)=0.55$, $\mathrm{P}(\mathrm{T}=$ heavy $)=0.20$

Review of Probability

- Laws of probability (more later):
- Probabilities are always in [0, 1]
- Probabilities (over all possible outcomes) sum to one
- As we get more evidence, probabilities may change:
- $\mathrm{P}(\mathrm{T}=$ heavy $)=0.20$
- $\mathrm{P}(\mathrm{T}=$ heavy \mid Hour=8am $)=0.60$
- We'll talk about conditional probabilities, methods for reasoning, and updating probabilities later

What are Probabilities?

- Objectivist / frequentist answer:

Probability = average over repeated experiments

- Examples:
- Flip a coin 100 times; if 55 heads, 45 tails, P (heads) $=0.55$ and P (tails) $=0.45$
- P (rain) for Seattle from historical observation
- PacMan's estimate of what the ghost will do, given what it has done in the past
- $P(10 \%$ of class will get an $A)$ based on past classes
- $P(100 \%$ of class will get an $A)$ based on past classes

What are Probabilities?

- Subjectivist / Bayesian answer:

Degrees of belief about unobserved variables

- E.g. An agent's belief that it's raining based on what it has observed
- E.g. PacMan's belief that the ghost will turn left, given the state
- Your belief that a politician is lying
- Often agents can learn probabilities from past experiences (more later)
- New evidence updates beliefs (more later)

Uncertainty Everywhere

- Not just for games of chance!
- Robot rotated wheel three times, how far did it advance?
- Tooth hurts: have cavity?
- At $45^{\text {th }}$ and the Ave: Safe to cross street?
- Got up late: Will you make it to class?
- Didn't get coffee: Will you stay awake in class?
- Email subject line says "I have a crush on you": Is it spam?

Where does uncertainty come from?

- Sources of uncertainty in random variables:
- Inherently random processes (dice, coin, etc.)
- Incomplete knowledge of the world
- Ignorance of underlying processes
- Unmodeled variables
- Insufficient or ambiguous evidence, e.g., 3D to 2D image in vision

Expectations

- We can define a function $f(X)$ of a random variable X
- The expected value of a function is its average value under the probability distribution over the function's inputs
$E(f(X))=\sum_{x} f(X=x) P(X=x)$

Expectations

- Example: How long to drive to the airport?
- Driving time (in mins) as a function of traffic T:
$\mathrm{D}(\mathrm{T}=$ none $)=20, \mathrm{D}(\mathrm{T}=$ light $)=30, \mathrm{D}(\mathrm{T}=$ heavy $)=60$
- What is your expected driving time?
- Recall: $P(T)=\{$ none: 0.25 , light: 0.5, heavy: 0.25$\}$
- $E[D(T)]=D($ none $) * P($ none $)+D($ light $) * P($ light $)+$ D (heavy) * P (heavy)
- $E[D(T)]=(20$ * 0.25$)+(30$ * 0.5$)+(60$ * 0.25$)=35 \mathrm{mins}$

Expectations II

- Real valued functions of random variables:

$$
f: X \rightarrow R
$$

- Expectation of a function of a random variable

$$
E_{P(X)}[f(X)]=\sum_{x} f(x) P(x)
$$

- Example: Expected value of a fair die roll

X	P	f
1	$1 / 6$	1
2	$1 / 6$	2
3	$1 / 6$	3
4	$1 / 6$	4
5	$1 / 6$	5
6	$1 / 6$	6

$$
\begin{aligned}
& 1 \times \frac{1}{6}+2 \times \frac{1}{6}+3 \times \frac{1}{6}+4 \times \frac{1}{6}+5 \times \frac{1}{6}+6 \times \frac{1}{6} \\
& \quad=3.5
\end{aligned}
$$

Utilities

- Utilities are functions from states of the world to real numbers that describe an agent's preferences
- Where do utilities come from?
- In a game, may be simple (+1/-1 for win/loss)
- Utilities summarize the agent's goals
- In general, we hard-wire utilities and let actions emerge

Back to Expectimax

Expectimax search

- Chance nodes have uncertain outcomes
- Take average (expectation) of value of children to get expected utility or value
- Max nodes as in minimax search but choose action with max expected utility

Later, we'll formalize the underlying problem as a

Markov Decision Process

Expectimax Search

- In expectimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
- Node for every outcome out of our control: opponent or environment
- Model can be a simple uniform distribution (e.g., roll a die: 1/6)
- Model can be sophisticated and require a great deal of computation
- The model might even say that adversarial actions are more likely! E.g., Ghosts in PacMan

Expectimax Pseudocode

def value(s)
if s is a max node return maxValue(s)
if s is an exp node return expValue(s)
if s is a terminal node return evaluation(s)
def maxValue(s)
values = [value(s') for s' in successors(s)] return max(values)

def expValue(s)
values = [value(s') for s' in successors(s)]
weights = [probability(s, s') for s' in successors(s)]
return expectation(values, weights)

Minimax versus Expectimax

PacMan with ghosts moving randomly
3 ply look ahead
Minimax: Video
Forgettaboutit...

Minimax versus Expectimax

PacMan with ghosts moving randomly

3 ply look ahead

Expectimax: Video

Wins some of the time

Expectimax for Pacman

- Ghosts not trying to minimize PacMan's score but moving at random
- They are a part of the environment
- Pacman has a belief (distribution) over how they will act

Expectimax Pruning?

- Not easy like alpha-beta pruning
- exact: need bounds on possible values
- approximate: sample high-probability branches

Expectimax Evaluation Functions

- Evaluation functions quickly return an estimate for a node's true value
- For minimax, evaluation function scale doesn't matter
- We just want better states to have higher evaluations (using MIN/MAX, so just get the relative value right)
- We call this insensitivity to monotonic transformations
- For expectimax, we need magnitudes to be meaningful

Stochastic Two Player Games

White has just rolled 6-5 and has 4 legal moves.

Expectiminimax Search

- In addition to MIN- and MAX nodes, we have chance nodes (e.g., for rolling dice)
- Chance nodes take expectations, otherwise like minimax

MAX

DICE

Expectiminimax Search

if state is a Max node then
return the highest ExpectiMinimax-Value of Successors(state)
if state is a Min node then
return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
return average of ExpectiMinimax-Value of Successors(state)

Search costs increase: Instead of $O\left(b^{d}\right)$, we get $O\left((b n)^{c}\right)$, where n is the number of chance outcomes

TDGammon program

TDGammon uses depth-2 search + very good eval function + reinforcement learning (playing against itself!)
\rightarrow world-champion level play

Summary of Game Tree Search

- Basic idea: Minimax
- Too slow for most games
- Alpha-Beta pruning can increase max depth by factor up to 2
- Limited depth search may be necessary
- Static evaluation functions necessary for limited depth search; opening game and end game databases can help
- Computers can beat humans in some games (checkers, chess, othello) but not yet in others (Go)
- Expectimax and Expectiminimax allow search in stochastic games

To Do

- Finish Project \#1: Due Thursday before midnight
- Finish Chapter 5; Read Chapter 7

