CSE 473: Artificial Intelligence

Spring 2013

A* Search

Luke Zettlemoyer

Based on slides from Dan Klein

Multiple slides from Stuart Russell or Andrew Moore

Announcements

Projects:

- Project 1 (Search) is out, due Friday Apr 19th
- Can talk to each other, but must write own solutions
- Do the basic search algorithms ASAP!

Today

- A* Search
- Heuristic Design
- Graph search

Search problem:

- States (configurations of the world)
- Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
- Start state and goal test

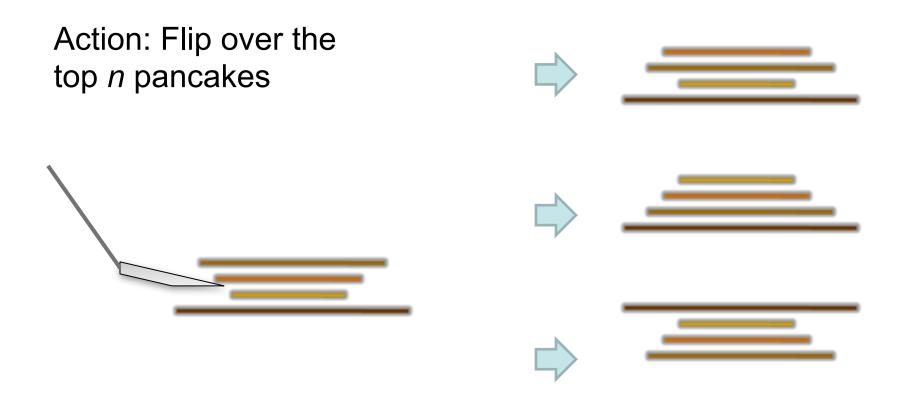
Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

• Search Algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)

Example: Pancake Problem



Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

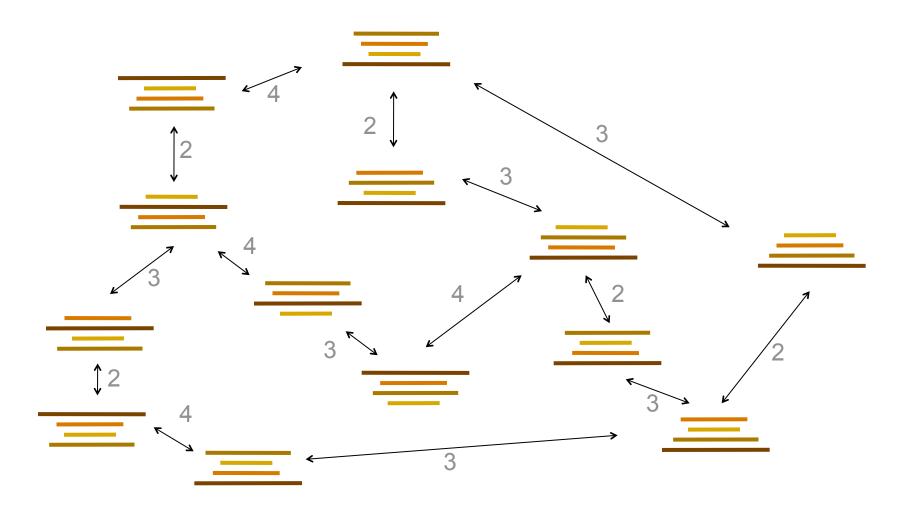
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

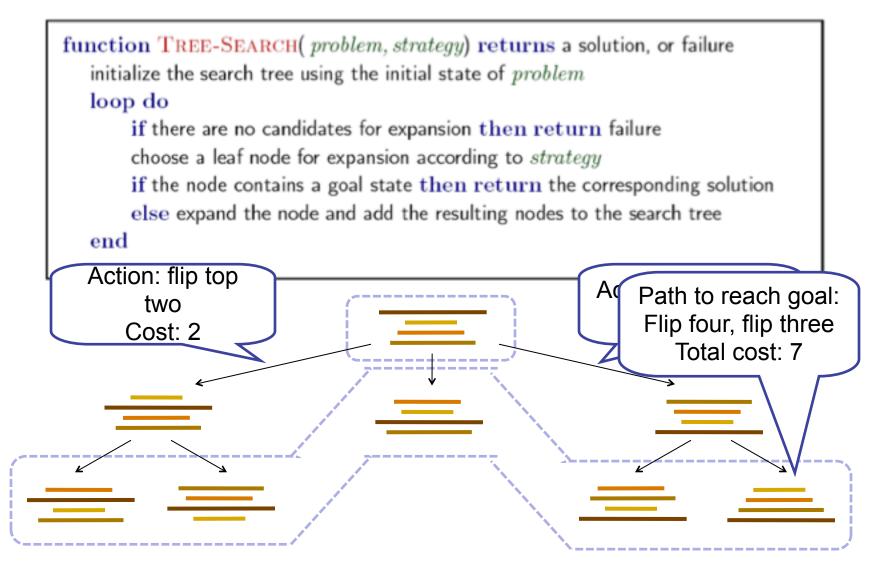
For a permutation σ of the integers from 1 to *n*, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \leq (5n+5)/3$, and that $f(n) \geq 17n/16$ for *n* a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2 - 1 \leq g(n) \leq 2n + 3$.

Example: Pancake Problem

State space graph with costs as weights

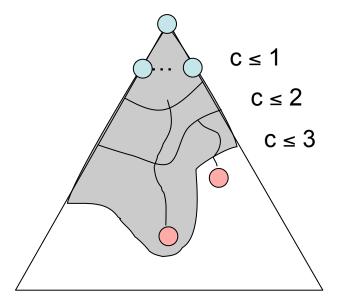


General Tree Search

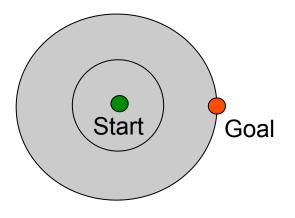


Uniform Cost Search

- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!

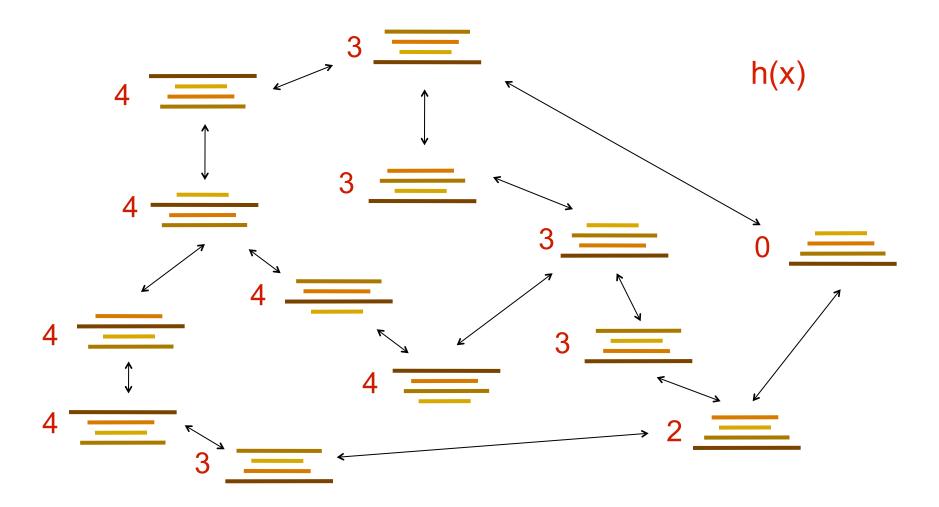


- The bad:
 - Explores options in every "direction"
 - No information about goal location



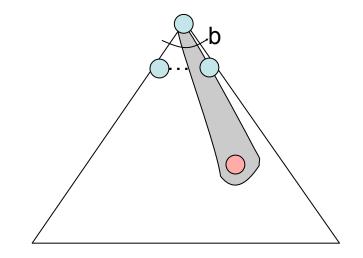
Example: Heuristic Function

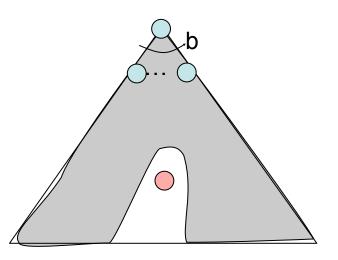
Heuristic: the largest pancake that is still out of place



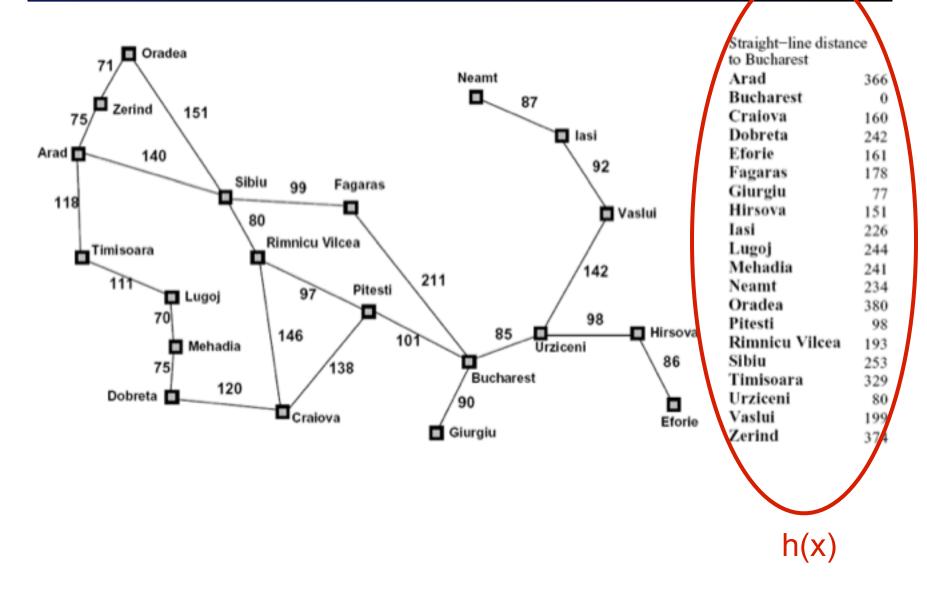
Best First (Greedy)

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state
- A common case:
 - Best-first takes you straight to the (wrong) goal
- Worst-case: like a badlyguided DFS



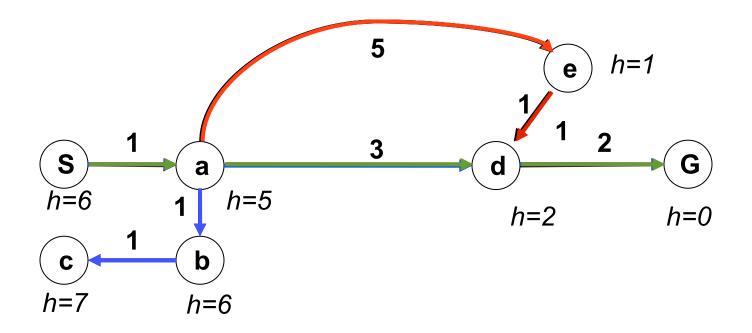


Example: Heuristic Function



Combining UCS and Greedy

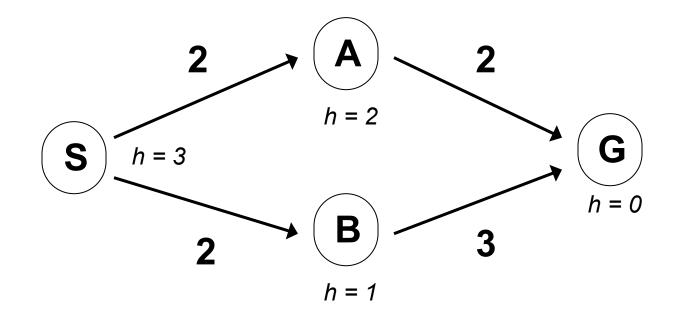
- Uniform-cost orders by path cost, or backward cost f(n)=g(n)
- Best-first orders by goal proximity, or *forward cost* f(n)=h(n)
- A* Search orders by the sum: f(n) = g(n) + h(n)



Example: Teg Grenager

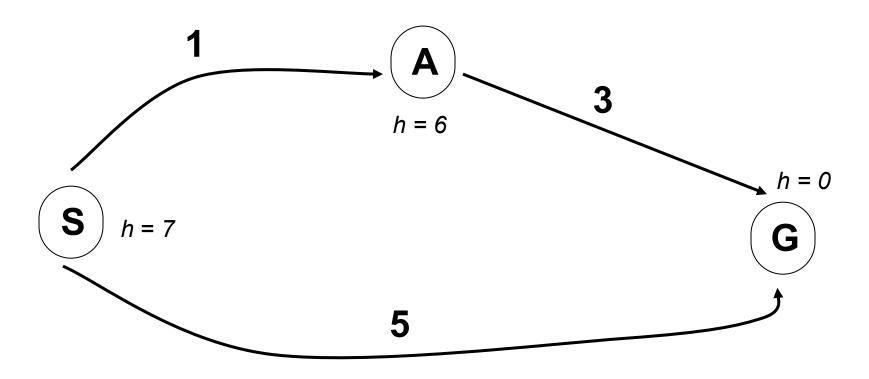
When should A* terminate?

Should we stop when we enqueue a goal?



No: only stop when we dequeue a goal

Is A* Optimal?



- What went wrong?
- Actual bad goal cost < estimated good goal cost</p>
- We need estimates to be less than actual costs!

Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) if:

 $h(n) \leq h^*(n)$

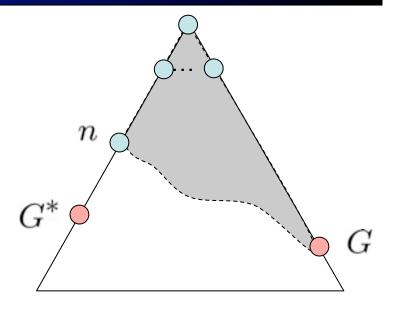
where $h^*(n)$ is the true cost to a nearest goal

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A*: Blocking

Notation:

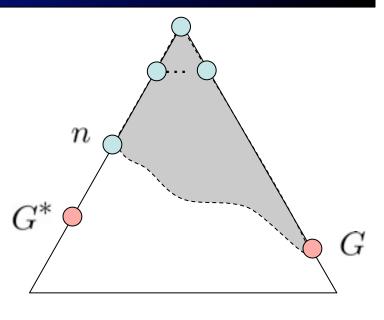
- g(n) = cost to node n
- h(n) = estimated cost from n to the nearest goal (heuristic)
- f(n) = g(n) + h(n) =
 estimated total cost via n
- G*: a lowest cost goal node
- G: another goal node



Optimality of A*: Blocking

Proof:

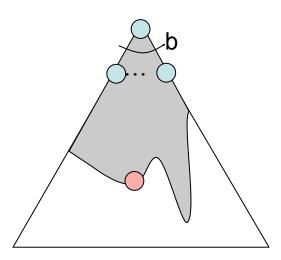
- What could go wrong?
- We'd have to have to pop a suboptimal goal G off the fringe before G*
- This can't happen:
 - For all nodes n on the best path to G*
 - f(n) < f(G)
 - So, G* will be popped before G

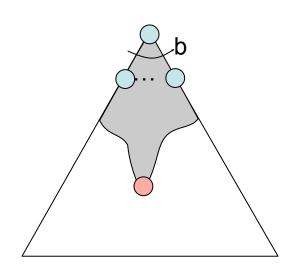


$$f(n) = g(n) + h(n)$$
$$g(n) + h(n) \le g(G^*)$$
$$g(G^*) < g(G)$$
$$g(G) = f(G)$$
$$f(n) < f(G)$$

Properties of A*

Uniform-Cost





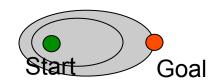
A*

UCS vs A* Contours

 Uniform-cost expanded in all directions

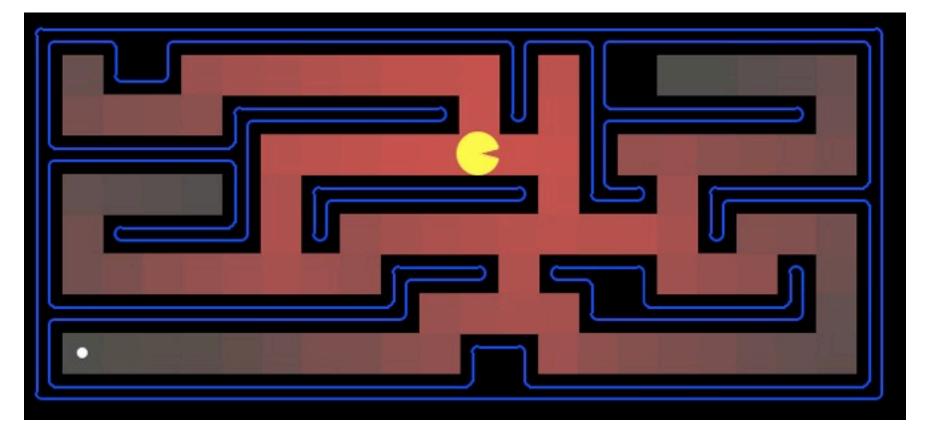
Start Goal

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality



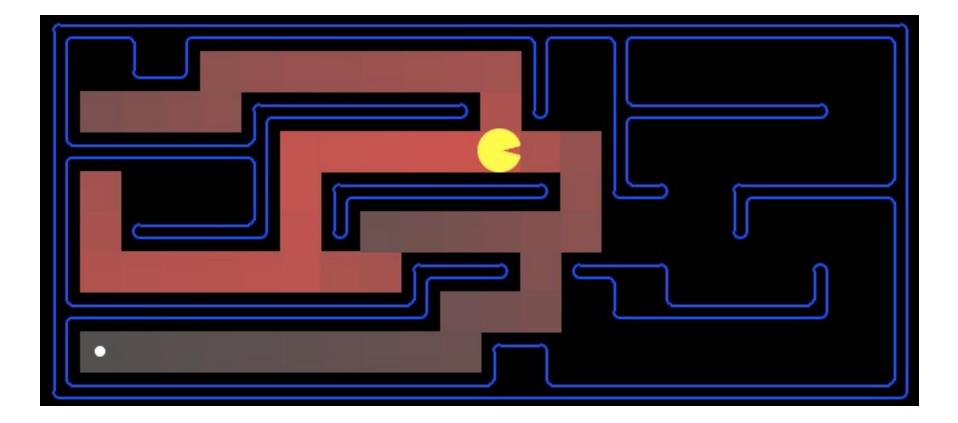
Which Algorithm?

Uniform cost search (UCS):



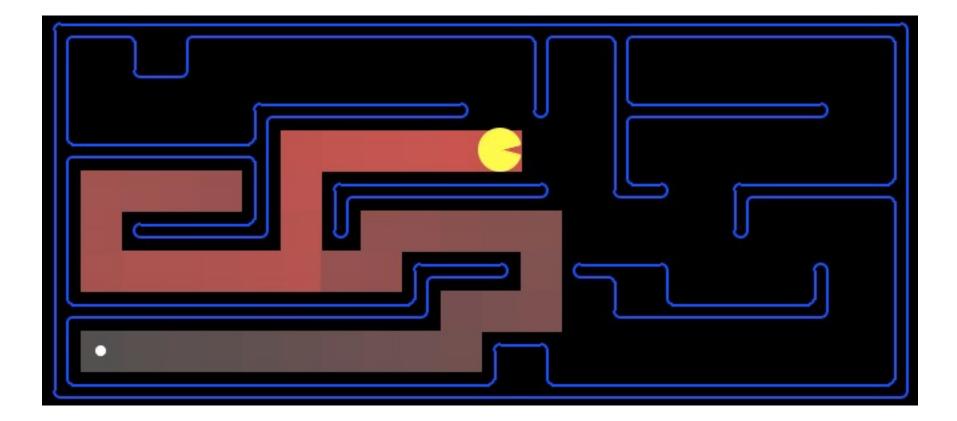
Which Algorithm?

A*, Manhattan Heuristic:

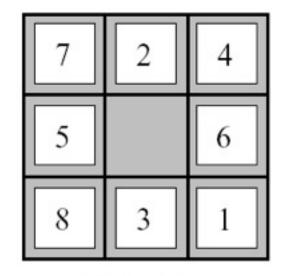


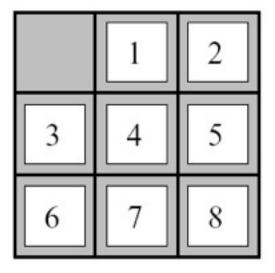
Which Algorithm?

Best First / Greedy, Manhattan Heuristic:



Creating Heuristics



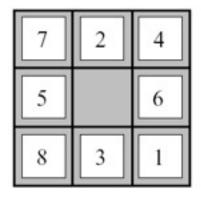


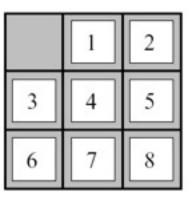
Goal State

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

 Heuristic: Number of tiles misplaced





Start State

Goal State

Is it admissible?

h(start) = 8

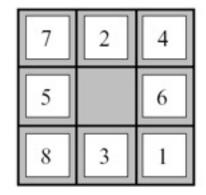
Average nodes expanded when
optimal path has length......4 steps...8 stepsUCS1126,3003.6 x 106TILES1339227

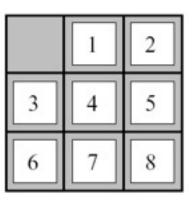
8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- h(start) =
 - 3 + 1 + 2 + ...

= 18

Admissible?





Start State

Goal	State	

	Average nodes expanded when optimal path has length			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
MANHATTAN	12	25	73	

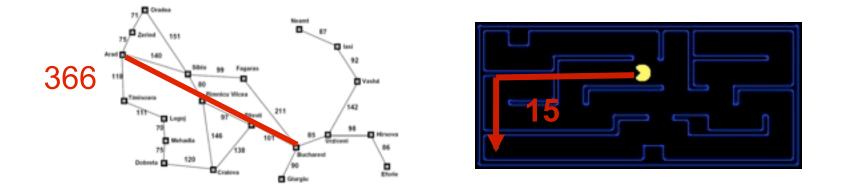
8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

With A*: a trade-off between quality of estimate and work per node!

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available



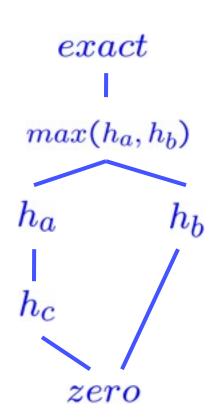
Inadmissible heuristics are often useful too (why?)

Trivial Heuristics, Dominance

- Dominance: $h_a \ge h_c$ if $\forall n : h_a(n) \ge h_c(n)$
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

 $h(n) = max(h_a(n), h_b(n))$

- Bottom of lattice is the zero heuristic (what does this give us?)
- Top of lattice is the exact heuristic

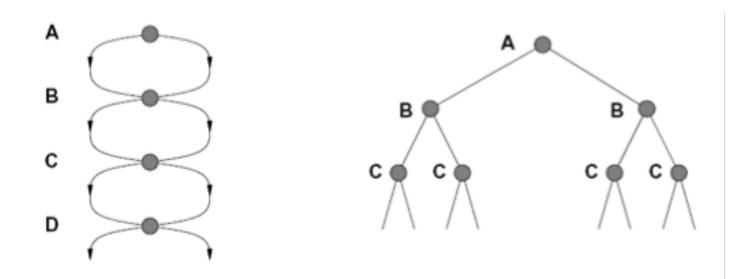


A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

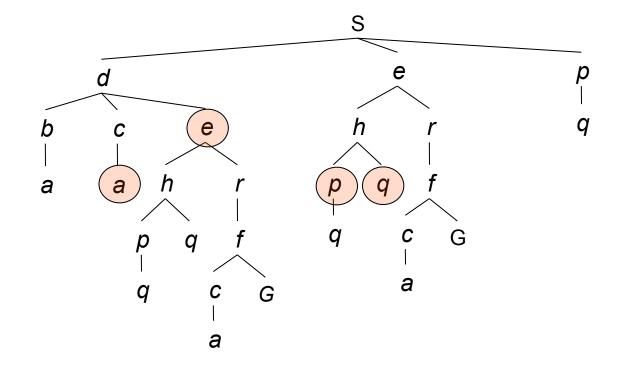
Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work. Why?



Graph Search

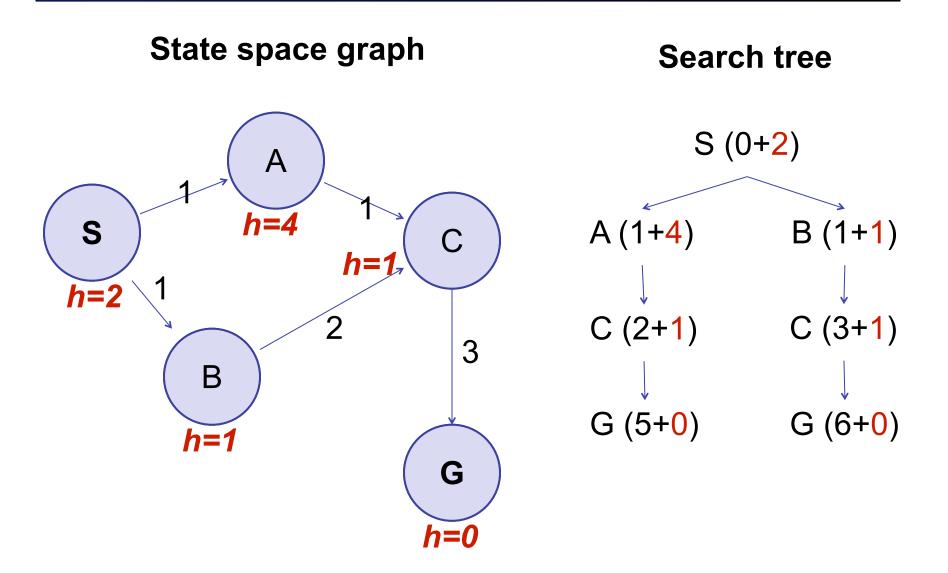
In BFS, for example, we shouldn't bother expanding some nodes (which, and why?)



Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + list of expanded states (closed list)
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state is new
 - Python trick: store the closed list as a set, not a list
 - Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong



Optimality of A* Graph Search

Proof:

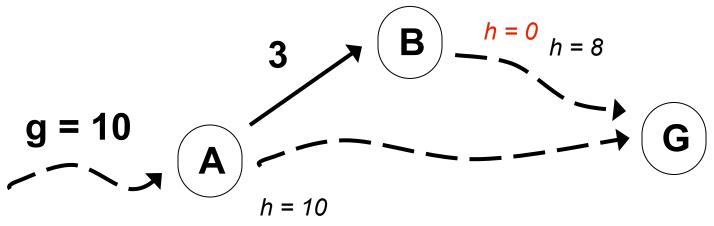
- Main idea: Argue that nodes are popped with non-decreasing f-scores
 - for all n,n' with n' popped after n :
 - $f(n') \ge f(n)$
 - is this enough for optimality?

n n' G^* G

- Sketch:
- assume: $f(n') \ge f(n)$, for all edges (n,a,n') and all actions a
 - is this true?
- proof by induction: (1) always pop the lowest f-score from the fringe, (2) all new nodes have larger (or equal) scores, (3) add them to the fringe, (4) repeat!

Consistency

Wait, how do we know parents have better f-values than their successors?



- Consistency for all edges (n,a,n'):
 h(n) ≤ c(n,a,n') + h(n')
- Proof that $f(n') \ge f(n)$,
 - f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') ≥ g(n) + h(n) = f(n)

Optimality

• Tree search:

- A* optimal if heuristic is admissible (and nonnegative)
- UCS is a special case (h = 0)

• Graph search:

- A* optimal if heuristic is consistent
- UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, natural admissible heuristics tend to be consistent

Summary: A*

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible heuristics
- Heuristic design is key: often use relaxed problems

To Do:

- Keep up with the readingsGet started on PS1
 - it is long; start soon
 - due a week from Friday