CSE 473: Artificial Intelligence

Bayesian Networks: Inference

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Outline

- Bayesian Networks Inference
- Exact Inference: Variable Elimination
- Approximate Inference: Sampling

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
- P (on time | no reported accidents) $=0.90$
- These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
- P (on time \mid no accidents, 5 a.m.) $=0.95$
- P (on time | no accidents, 5 a.m., raining) $=0.80$
- Observing new evidence causes beliefs to be updated

Inference by Enumeration

- General case:
- Evidence variables: $E_{1} \ldots E_{k}=e_{1} \ldots e_{k}$
- Query* variable: Q
- Hidden variables: $H_{1} \ldots H_{r}$
$X_{1}, X_{2}, \ldots X_{n}$
All variables
- We want: $P\left(Q \mid e_{1} \ldots e_{k}\right)$
- First, select the entries consistent with the evidence
- Second, sum out H to get joint of Query and evidence:

$$
P\left(Q, e_{1} \ldots e_{k}\right)=\sum_{h_{1} \ldots h_{r}} \underbrace{P\left(Q, h_{1} \ldots h_{r}, e_{1} \ldots e_{k}\right)}_{X_{1}, X_{2}, \ldots X_{n}}
$$

- Finally, normalize the remaining entries to conditionalize
- Obvious problems:
- Worst-case time complexity O(dn)
- Space complexity $O\left(d^{n}\right)$ to store the joint distribution

Variable Elimination

- Why is inference by enumeration so slow?
- You join up the whole joint distribution before you sum out the hidden variables
- You end up repeating a lot of work!
- Idea: interleave joining and marginalizing!
- Called "Variable Elimination"
- Still NP-hard, but usually much faster than inference by enumeration
- We'll need some new notation to define VE

Review: Factor Zoo I

- Joint distribution: $P(X, Y)$
- Entries $P(x, y)$ for all x, y
- Sums to 1

$$
P(T, W)
$$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

- Selected joint: $\mathrm{P}(\mathrm{x}, \mathrm{Y})$
- A slice of the joint distribution
- Entries $P(x, y)$ for fixed x, all y
- Sums to $P(x)$

T	W	P
cold	sun	0.2
cold	rain	0.3

Example: Traffic Domain

- Random Variables
- R: Raining
- T: Traffic
- L: Late for class!
- First query: $\mathrm{P}(\mathrm{L})$

$$
P(l)=\sum_{t} \sum_{r} P(l \mid t) P(t \mid r) P(r)
$$

$P(R)$

$+r$	0.1
$-r$	0.9

$P(T \mid R)$		
+r	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$P(L \mid T)$		
+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

Variable Elimination Outline

- Maintain a set of tables called factors
- Initial factors are local CPTs (one per node)

		$P(T \mid R)$			$P(L \mid T)$		
+r	0.1	+r	+t	0.8	${ }^{+ \text {t }}$	+	0.3
r	0.9	$+$	-t	0.2	${ }^{+}$	-1	0.7
		$\stackrel{-r}{-r}$	-t		$\stackrel{-}{-t}$	-	0.9

- Any known values are selected
- E.g. if we know $L=+\ell$, the initial factors are

$P(R)$	$P(T \mid R)$
+ O.	
	-

$P(+\ell \mid T)$

+t	+l	0.3
-t	+l	0.1

- VE: Alternately join factors and eliminate variables

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
- Just like a database join
- Get all factors over the joining variable
- Build a new factor over the union of the variables involved
- Example: Join on R

- Computation for each entry: pointwise products

$$
\forall r, t: \quad P(r, t)=P(r) \cdot \dot{P}(t \mid r)
$$

Example: Multiple Joins

$P(R)$

Join $P(R, T)$

$+r$	$+t$	0.08
$+r$	$-t$	0.02
$-r$	$+t$	0.09
$-r$	$-t$	0.81

$P(L \mid T)$

+t	+l	0.3
+t	-1	0.7
-t	+l	0.1
-t	-I	0.9

$P(L \mid T)$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-I	0.9

Example: Multiple Joins

$P(R, T)$

$+r$	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

$P(L \mid T)$		
+t	+1	0.3
+t	-1	0.7
-t	+1	0.1
-t	-1	0.9

Join T	$P(R, T, L)$			
	+r	+t	+1	0.024
	+r	+t	-\|	0.056
\rightarrow	+r	-t	+1	0.002
	+r	-t	-\|	0.018
	-r	+t	+1	0.027
	-r	+t	-\|	0.063
	-r	-t	+1	0.081
	-r	-t	-1	0.729

Operation 2: Eliminate

- Second basic operation: marginalization
- Take a factor and sum out a variable
- Shrinks a factor to a smaller one
- A projection operation
- Example:
$P(R, T)$

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

$\operatorname{sum} R \quad P(T)$

$\longmapsto \quad$| +t | 0.17 |
| :---: | :---: |
| -t | 0.83 |

Multiple Elimination

P(L) : Marginalizing Early!

$$
P(R)
$$

+r	0.1
-r	0.9

Sum out R
$P(R, T)$

+r	tt	0.08
+r	-t	0.02
-r	tt	0.09
-r	-t	0.81

Marginalizing Early (aka VE*)

Evidence

- If evidence, start with factors that select that evidence
- No evidence uses these initial factors:
$P(R)$

$+r$	0.1
$-r$	0.9

$P(T \mid R)$

$+r$	+t	0.8
+r	-t	0.2
-r	+t	0.1
-r	-t	0.9

$P(L \mid T)$

+t	+l	0.3
+t	-l	0.7
-t	+l	0.1
-t	-l	0.9

- Computing $P(L \mid+r)$, the initial factors become:

$P(-1 r)$	$P(T \mid+r)$	$P(I \mid T)$
+r	0.1	

- We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
- E.g. for $P(L \mid+r)$, we'd end up with:

$P(+r, L)$			Normalize	$P(L \mid+r)$	
+r	+1	0.026		+1	0.26
+r	-1	0.074		-1	0.74

- To get our answer, just normalize this!
- That's it!

General Variable Elimination

- Query: $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$
- Start with initial factors:
- Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
- Pick a hidden variable H
- Join all factors mentioning H
- Eliminate (sum out) H
- Join all remaining factors and normalize

Variable Elimination Bayes Rule

Start / Select

$P(A \mid B) \rightarrow P(a \mid B)$

B	A	P
$+b$	$+a$	0.8
$+b$	$+a$	0.2
$\neg b$	$+a$	0.1
b	a	0.0

Join on B
a, B
$P(a, B)$
$P(a, B)$

A	B	P
+a	+b	0.08
+a	$\neg \mathrm{b}$	0.09

Normalize
$P(B \mid a)$

A	B	P
+a	+b	$8 / 17$
+a	-b	$9 / 17$

Friday, May 17, 13

Example

Query: $\quad P(B \mid j, m)$

$$
P(B) \quad P(E) \quad P(A \mid B, E) \quad P(j \mid A) \quad P(m \mid A)
$$

Choose A

$$
\begin{aligned}
& P(A \mid B, E) \\
& P(j \mid A) \\
& P(m \mid A)
\end{aligned} \quad \boxed{\times} P(j, m, A \mid B, E) \quad \sum P(j, m \mid B, E)
$$

$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

Example

$$
P(B) \quad P(E) \quad P(j, m \mid B, E)
$$

Choose E

$$
P(B) \quad P(j, m \mid B)
$$

Finish with B

$$
\begin{gathered}
P(B) \\
P(j, m \mid B)
\end{gathered} \stackrel{\times}{ } \quad P(j, m, B) \quad \underset{\sim}{\text { Normalize }} P(B \mid j, m)
$$

Exact Inference: Variable Elimination

- Remaining Issues:
- Complexity: exponential in tree width (size of the largest factor created)
- Best elimination ordering? NP-hard problem
- What you need to know:
- Should be able to run it on small examples, understand the factor creation / reduction flow
- Better than enumeration: saves time by marginalizing variables as soon as possible rather than at the end
- We have seen a special case of VE already
- HMM Forward Inference

An@roxinneternference

- Simulation has a name: sampling
- Sampling is a hot topic in machine learning, and it's really simple
- Basic idea:
- Draw N samples from a sampling distribution S
- Compute an approximate posterior probability
- Show this converges to the true probability P
- Why sample?
- Learning: get samples from a distribution you don't know
- Inference: getting a sample is faster than computing the right answer (e.g. with variable elimination)

Prior Sampling

Prior Sampling

- This process generates samples with probability:

$$
S_{P S}\left(x_{1} \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=P\left(x_{1} \ldots x_{n}\right)
$$

...i.e. the BN's joint probability

- Let the number of samples of an event be $N_{P S}\left(x_{1} \ldots x_{n}\right)$
- Then $\lim _{N \rightarrow \infty} \hat{P}\left(x_{1}, \ldots, x_{n}\right)=\lim _{N \rightarrow \infty} N_{P S}\left(x_{1}, \ldots, x_{n}\right) / N$
$=S_{P S}\left(x_{1}, \ldots, x_{n}\right)$
$=P\left(x_{1} \ldots x_{n}\right)$
- I.e., the sampling procedure is consistent

Example

- We'll get a bunch of samples from the BN:

$$
\begin{aligned}
& +\mathrm{c},-\mathrm{s},+\mathrm{r},+\mathrm{w} \\
& +\mathrm{c},+\mathrm{s},+\mathrm{r},+\mathrm{w} \\
& -\mathrm{c},+\mathrm{s},+\mathrm{r},-\mathrm{w} \\
& +\mathrm{c},-\mathrm{s},+\mathrm{r},+\mathrm{w} \\
& -\mathrm{c},-\mathrm{s},-\mathrm{r},+\mathrm{w}
\end{aligned}
$$

- If we want to know $\mathrm{P}(\mathrm{W})$
- We have counts <+w:4, -w:1>
- Normalize to get $\mathrm{P}(\mathrm{W})=<+w: 0.8,-w: 0.2>$
- This will get closer to the true distribution with more samples
- Can estimate anything else, too
- What about $\mathrm{P}(\mathrm{C} \mid+\mathrm{w})$? $\mathrm{P}(\mathrm{C} \mid+\mathrm{r},+\mathrm{w})$? $\mathrm{P}(\mathrm{C} \mid-\mathrm{r},-\mathrm{w})$?
- Fast: can use fewer samples if less time (what's the drawback?)

Rejection Sampling

- Let's say we want $\mathrm{P}(\mathrm{C})$
- No point keeping all samples around
- Just tally counts of C as we go

- Let's say we want $\mathrm{P}(\mathrm{C} \mid+\mathrm{s})$
- Same thing: tally C outcomes, but ignore (reject) samples which don't have $\mathrm{S}=+\mathrm{s}$
- This is called rejection sampling
- It is also consistent for conditional

$$
\begin{aligned}
& +c,-s,+r,+w \\
& +c,+s,+r,+w \\
& -c,+s,+r,-w \\
& +c,-s,+r,+w \\
& -c,-s,-r,+w
\end{aligned}
$$ probabilities (i.e., correct in the limit)

Likelihood Weighting

- Problem with rejection sampling:
- If evidence is unlikely, you reject a lot of samples
- You don't exploit your evidence as you sample
- Consider P(B|+a)

$$
\begin{aligned}
& -b,-a \\
& -b,-a \\
& -b,-a \\
& -b,-a \\
& +b,+a
\end{aligned}
$$

- Idea: fix evidence variables and sample the rest

- Solution: weight by probability of evidence given parents

Likelihood Weighting

$P(C)$	
$+c$	0.5
$-c$	0.5

Likelihood Weighting

- Sampling distribution if z sampled and e fixed evidence

$$
S_{W S}(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(Z_{i}\right)\right)
$$

- Now, samples have weights

$$
w(\mathbf{z}, \mathbf{e})=\prod_{i=1}^{m} P\left(e_{i} \mid \text { Parents }\left(E_{i}\right)\right)
$$

- Together, weighted sampling distribution is consistent

$$
\begin{aligned}
S_{\mathrm{WS}}(z, e) \cdot w(z, e) & =\prod_{i=1}^{l} P\left(z_{i} \mid \operatorname{Parents}\left(z_{i}\right)\right) \prod_{i=1}^{m} P\left(e_{i} \mid \operatorname{Parents}\left(e_{i}\right)\right) \\
& =P(\mathbf{z}, \mathbf{e})
\end{aligned}
$$

Likelihood Weighting

- Likelihood weighting is good
- We have taken evidence into account as we generate the sample
- E.g. here, W's value will get picked based on the evidence values of S, R
- More of our samples will reflect the state of the world suggested by the evidence
- Likelihood weighting doesn't solve all our problems

- Evidence influences the choice of downstream variables, but not upstream ones (C isn't more likely to get a value matching the evidence)
- We would like to consider evidence when we sample every variable

Markov Chain Monte Carlo*

- Idea: instead of sampling from scratch, create samples that are each like the last one.
- Gibbs Sampling: resample one variable at a time, conditioned on the rest, but keep evidence fixed.

- Properties: Now samples are not independent (in fact they're nearly identical), but sample averages are still consistent estimators!
- What's the point: both upstream and downstream variables condition on evidence.

