
CSE 473: Artificial Intelligence

Constraint Satisfaction Examples

Cynthia Matuszek

Multiple slides adapted from Dan Klein, Stuart Russell, Andrew Moore,
Paula Matuszek

Why do we care about CSPs?

§  Why do we care?
§  Allows for informed search
§  Using structure of problems to search wisely

CSP heuristics
& methods

§  Standard search problems:
§  State is a “black box”
§  Any function can be goal,

successor function can be anything

§  Constraint satisfaction problems (CSPs):
§  Search problems that vary in the goal test.
§  State is defined by variables Xi with values from a domain D
§  Goal test is a set of constraints

Revisiting and Reviewing

§  Uninformed Search for Constraint Satisfaction
Problems

§  Backtracking Search
§  Forward Checking
§  k-Consistency
§  Ordering Heuristics

§  Minimum Remaining Values Ordering
§  Least Constraining Values

§  Tree- and almost-tree CSPs

Bread-first search & CSPs

X = {A, B}
D = {red, green}
Goal: A = B {}

A A B B

B B B A A A A B

Bread-first search & CSPs

X = {A, B, C}
D = {red, green}
Goal: A = B = C

{}

A A B B

B B B C C

C C

B C C … A A C C

C … 1.  Lots of duplication
2.  BFS always fills out the top of the search

tree, when the solutions are at the bottom

…this isn’t so good:

§  It’s actually hard to understand why
uninformed search does so badly. Why?

§  Because you would never implement
these problems that way.
§  Better successor functions, internal checks, …

§  Hence, “uninformed”

6

Can We Do Better?

Improvement 1: Commutativity
§  Idea 1: Only consider a single variable at each point

§  Variable assignments are commutative, so fix ordering

§  I.e., [A = red then B = green] same as [B = green then A = red]

§  Only need to consider assignments to a single variable at each step

{}

A A B B

B B B C C

C C

B C C … A A C C

C …

Improvement 1: Commutativity
§  Idea 1: Only consider a single variable at each point

§  Variable assignments are commutative, so fix ordering

§  I.e., [A = red then B = green] same as [B = green then A = red]

§  Only need to consider assignments to a single variable at each step

{}

A A B B

B B B C C

C C

B C C … A A C C

C …

Improvement 2: Legal Assignments
§  Idea 2: Only allow legal assignments at each point

§  Only assign values which don’t eventually doom the search

§  Might have to do some extra computation

§  “Incremental goal test”
{}

A A B B

B B B C C

C C

B C C … A A C C

C … C

Improvement 2: Legal Assignments
§  Idea 2: Only allow legal assignments at each point

§  Only assign values which do not conflict with existing assignments

§  Might have to do some extra computation

§  “Incremental goal test”
{}

A A B B

B B B C C

C C

B C C … A A C C

C … C

Idea 1 + Idea 2 = Backtracking
§  Depth-first search for CSPs with these fixes is backtracking search

§  Backtrack when there’s no legal assignment for the next variable

§  Backtracking search is the basic uninformed algorithm for CSPs

Backtracking

A A B B C C

{}

§  Idea 1

A A B B C C

{}
X = {A, B, C}
D = {red, green}
Goal: A = B = C

…

…

Backtracking

§  Plus Idea 2
X = {A, B, C}
D = {red, green}
Goal: A = B = C

…

A A B B C C

{}

B B C C

…

A A B B C C

{}

B B C C

Backtracking Example

Variable
assignment
ordering

Interim goal
check

Can we do better?

What about never getting here?

Forward Checking
§  Idea: Keep track of remaining legal values for

unassigned variables (using immediate constraints)
§  Terminate/prune when any as-yet-unassigned

variable has no legal values

Forward Checking
§  Idea: Keep track of remaining legal values for

unassigned variables (using immediate constraints)
§  Terminate/prune when any as-yet-unassigned

variable has no legal values

WA SA
NT Q

NSW
V

!

Improving Forward Checking
§  Why does forward checking allow this?
§  Forward checking propagates information from assigned

to adjacent unassigned variables, but doesn't detect
more distant failures

Constraint Propagation WA SA
NT Q

NSW
V

§  Why does forward checking allow this?

§  Neither SA nor NT have no possible assignments.
§  How do we fix it?

Arc Consistency
§  Simplest form of propagation makes each arc consistent
§  Every pair of variables that affect each other share an

arc
§  X → Y is consistent iff for every value x there is some allowed

§  If X loses a value, neighbors of X need to be rechecked!

WA SA
NT Q

NSW
V

Revisiting and Reviewing

§  Uninformed Search for Constraint Satisfaction
Problems

§  Backtracking Search
§  Forward Checking
§  k-Consistency
§  Ordering Heuristics

§  Minimum Remaining Values
§  Least Constraining Values

§  Tree- and almost-tree CSPs

Limitations of Arc Consistency

§  After running arc
consistency:
§  Can have one solution

left
§  Can have multiple

solutions left
§  Can have no solutions

left (and not know it)

§  How can we fix it?

What went
wrong here?

Variable Choice: Minimum Remaining Values

§  Minimum remaining values (MRV):
§  Choose the variable with the fewest legal values

WA SA
NT Q

NSW
V

Ordering: Degree Heuristic

§  Tie-breaker among MRV variables
§  Degree heuristic:

§  Choose the variable participating in the most
constraints on remaining variables (has the most arcs)

§  Why most rather than fewest constraints?

Ordering: Least Constraining Value

§  Given a choice of variable:
§ Choose the one that rules out the fewest values

in the remaining variables
§ Why?

§ Computationally
expensive
(sometimes)

Tree-Structured CSPs
§  Choose a variable as root, order

 variables from root to leaves such
 that every node's parent precedes it

 For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
 For i = 1 : n, assign Xi consistently with Parent(Xi)

§  Runtime: O(n d2)

§  Takeaway: tree-structured CSPs can be solved very
efficiently

Nearly Tree-Structured CSPs

§  Cutset conditioning:
§  Choose variable to instantiate that makes everything left into a tree

§  Instantiate a variable every possible way
§  Here, you now have 3 tree-search problems

§  Takeaway: you can turn some CSPs into trees (which can
still be solved very efficiently)

