CSE 473: Artificial Intelligence

Constraint Satisfaction Examples

Cynthia Matuszek

Multiple slides adapted from Dan Klein, Stuart Russell, Andrew Moore,
Paula Matuszek

Why do we care about CSPs?

» Standard search problems:
= State is a "black box”

= Any function can be goal,
successor function can be anything

» Constraint satisfaction problems (CSPs):
= Search problems that vary in the goal test.

|

| | S

| | —

L : les
!\\x
J~ \

asmamia

Tasgp

= State is defined by variables X, with values from a domain D
= Goal test is a set of constraints

CSP heuristics
= Why do we care? & methods
= Allows for informed search e

» Using structure of problems to search wisely

Revisiting and Reviewing

= Uninformed Search for Constraint Satisfaction
Problems

= Backtracking Search
= Forward Checking
= k-Consistency

» Ordering Heuristics
= Minimum Remaining Values Ordering
» | east Constraining Values

= Tree- and almost-tree CSPs

Bread-first search & CSPs

X={A, B}
D = {red, green}
Goal: A=B

Bread-first search & CSPs

X ={A, B, C} {}
D = {red, green}
Goal:A=B=C

...this isn’t so good:

1. Lots of duplication

2. BFS always fills out the top of the search
tree, when the solutions are at the bottom

Can We Do Better?

= |t's actually hard to understand why
uninformed search does so badly. Why?

= Because you would never implement
these problems that way.

= Better successor functions, internal checks, ...

= Hence, “uninformed”

Improvement 1: Commutativity

= |dea 1: Only consider a single variable at each point
= Variable assignments are commutative, so fix ordering
= |l.e.,[A=redthen B = green] same as [B = green then A = red]

= Only need to consider assignments to a single variable at each step

i

Improvement 1: Commutativity

= |dea 1: Only consider a single variable at each point
= Variable assignments are commutative, so fix ordering
= |l.e.,[A=redthen B = green] same as [B = green then A = red]

= Only need to consider assignments to a single variable at each step

i

B

Improvement 2: Legal Assignments

= |dea 2: Only allow legal assignments at each point
= Only assign values which don’t eventually doom the search

= Might have to do some extra computation

i

= “Incremental goal test”

Improvement 2: Legal Assignments

= |dea 2: Only allow legal assignments at each point

= Only assign values which do not conflict with existing assignments

= Might have to do some extra computation

i

= “Incremental goal test”

AECH -

ldea 1 + Idea 2 = Backtracking

= Depth-first search for CSPs with these fixes is backtracking search
= Backtrack when there’s no legal assignment for the next variable

= Backtracking search is the basic uninformed algorithm for CSPs

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var<«— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, ('.s'/)) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

Backtracking

= |dea 1

{}
X={A, B, C}
D = {red, green}
Goal:A=B=C

~
)

Backtracking

* Plus Idea 2 1

X = {A, B, C}

D = {red, green}
Goal:A=B=C

Backtracking Example

o

A

Interim goal
check /\ Variable

assignment
% ‘\—lc‘ “.L’: ordering

‘\ [N Can we do better?
What about never getting here?

Forward Checking

» |dea: Keep track of remaining legal values for
unassigned variables (using immediate constraints)

= Terminate/prune when any as-yet-unassigned
variable has no legal values

NTQ

Forward Checking "

» |dea: Keep track of remaining legal values for
unassigned variables (using immediate constraints)

= Terminate/prune when any as-yet-unassigned
variable has no legal values

\—L: _"\—L% ‘\—%

\\

WA NT Q NSW \' SA T

(] TE[ErEEr [T E] T E[ErE]
— 1 B[e E[ErE] 11
(] m[ese [em] 7 [men]

Improving Forward Checking

= Why does forward checking allow this?

= Forward checking propagates information from assigned

to adjacent unassigned variables, but doesn't detect
more distant failures

@

NT

Constraint Propagation "=

= Why does forward checking allow this?
g g
N e et

WA NT Q NSW \' SA T

I I I ireireriren

NSW

| mE[e mErE] EeErE

= Neither SA nor NT have no possible assignments.

= How do we fix it?

NTQ

Arc Consistency " N

= Simplest form of propagation makes each arc consistent

= Every pair of variables that affect each other share an
arc

= X — Y is consistent iff for every value x there is some allowed
» |f X loses a value, neighbors of X need to be rechecked!

SSI SSEA Ss

WA NT Q NSW \') SA T
(] m[e mEErE] E[ErE]

— ~— "

Revisiting and Reviewing

Uninformed Search for Constraint Satisfaction
Problems

Backtracking Search
Forward Checking
k-Consistency

Ordering Heuristics
* Minimum Remaining Values
» | east Constraining Values

Tree- and almost-tree CSPs

Limitations of Arc Consistency

= After running arc
consistency:

= Can have one solution
left

= Can have multiple
solutions left

= Can have no solutions @

left (and not know it)

= How can we fix it? @ ¢’

What went
wrong here?

Variable Choice: Minimum Remaining Values

= Minimum remaining values (MRV):
» Choose the variable with the fewest legal values

WA NT Q NSW Vv SA T
I I I ireireriren
| "EErfEErE[ErE] "E[ErE
| B E[EFE[EEE] FE[EFE
| C [mE [mr e

—
N

Ordering: Degree Heuristic

= Tie-breaker among MRV variables

= Degree heuristic:

» Choose the variable participating in the most
constraints on remaining variables (has the most arcs)

_\

O\ N

\\

~ ~

= Why most rather than fewest constraints?

Ordering: Least Constraining Value

= Given a choice of variable:
= Choose the one that rules out the fewest values

in the remaining variables
"L
'_\

4“;:< %A

= Computationally
expensive
(sometimes)

Tree-Structured CSPs

= Choose a variable as root, order
variables from root to leaves such
that every node's parent precedes it

Fori=n:2, apply Removelnconsistent(Parent(X),X))
Fori=1:n, assign X consistently with Parent(X)

= Runtime: O(n d?)

= Takeaway: tree-structured CSPs can be solved very
efficiently

Nearly Tree-Structured CSPs

% Ny
(v O

O, O,

= Cutset conditioning:
» Choose variable to instantiate that makes everything /left into a tree

* Instantiate a variable every possible way
= Here, you now have 3 tree-search problems

= Takeaway: you can turn some CSPs into trees (which can
still be solved very efficiently)

