CSE 473: Artificial Intelligence

Constraint Satisfaction

Luke Zettlemoyer

Multiple slides adapted from Dan Klein, Stuart Russell, Andrew Moore

What is Search For?

= Models of the world: single agent, deterministic actions,
fully observed state, discrete state space

* Planning: sequences of actions
» The path to the goal is the important thing
» Paths have various costs, depths
» Heuristics to guide, fringe to keep backups

= |dentification: assignments to variables
* The goal itself is important, not the path
= All paths at the same depth (for some formulations)
» CSPs are specialized for identification problems

Constraint Satisfaction Problems

» Standard search problems:
= State is a “black box”: arbitrary data structure
= Goal test: any function over states
= Successor function can be anything

= Constraint satisfaction problems (CSPs):
= A special subset of search problems
= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

» Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

= Simple example of a formal representation
language

= Allows useful general-purpose algorithms with vt
more power than standard search algorithms ke

Example: N-Queens

= Formulation 1:
= Variables: X;;
* Domains: {0,1}
= Constraints

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}
Vi, j, k (X, Xi;) € {(0,0),(0,1),(1,0)}
Vi, 3,k (Xij, Xiqr j+k) €1(0,0),(0,1),(1,0)}
Vi, j, k (X, Xtk i—k) € {(0,0),(0,1),(1,0)}

2 Xij=N
i

Example: N-Queens

= Formulation 2: Q1
= Variables: @, @2

@3
* Domains: {1,2,3,...N} Q4

= Constraints:

mplicit: V4, j non-threatening(Q;, Q;)

-or

Explicit: (Q1,Q>2) € {(1,3),(1,4),...}

Example: Map-Coloring

variables: pr 4 NT Q. NSW, V, SA, T

* Domaint p = {red, green, blue}

= Constraints: adjacent regions must have
different colors

WA # NT
(WA,NT) € {(red, green), (red, blue), (green, red), ...}

= Solutions are assignments satisfying all
constraints, e.g.:

{WA =red, NT = green,Q = red,
NSW = green,V = red,SA = blue, T = green}

Constraint Graphs

= Binary CSP: each constraint relates (at most) two
variables

= Binary constraint graph: nodes are variables, arcs
show constraints

= General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an

Independent subproblem!

Example: Cryptarithmetic

= Variables (circles):
FTUW RO X1 Xo X3

ol|4 -
Cl= =
10 O

+
= Domains: F
{0,1,2,3,4,5,6,7,8,9}
= Constraints (boxes):

alldiff(F, T, U, W, R, O) @@//u W

O4+0=R+10-X;

Example: Sudoku

= Variables:
= Each (open) square

= Domains:
= {1,2,...,9}
= Constraints:

9-way alldiff for each column

9-way alldiff for each row

9-way alldiff for each region

Example: The Waltz Algorithm

The Waltz algorithm is for interpreting line drawings of
solid polyhedra

An early example of a computation posed as a CSP

™

P
Look at all intersections

Adjacent intersections impose constraints on each other

Waltz on Simple Scenes

= Assume all objects:
= Have no shadows or cracks
= Three-faced vertices

» “General position™. no junctions
change with small movements of A

the eye. "
= Then each line on image is
one of the following: =~

= Boundary line (edge of an
object) (—) with right hand of
arrow denoting “solid” and left
hand denoting “space”

= |nterior convex edge (+)
= |nterior concave edge (-)

Legal Junctions

Only certain junctions are RA A
physically possible N_A N E R

II—IgwI can we fogmulate a CSP to
abel an image” ' S ’
Variables: vertices \t(Y \rf Y Y
Domains: junction labels “f ‘T‘ ﬁy*_ *,I‘

Constraints: both ends of a line

should have the same label ;r?\ ﬂ*'\ /ﬁ
- ® i
A X%

(X.y)in <

— S S
\R . } J

~N

Varieties of CSPs

= Discrete Variables
= Finite domains

= Size d means O(d") complete assignments

= E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
» |nfinite domains (integers, strings, etc.)

= E.g., job scheduling, variables are start/end times for each job

= Linear constraints solvable, nonlinear undecidable

= Continuous variables
= E.g., start/end times for Hubble Telescope observations

» Linear constraints solvable in polynomial time by LP methods
(see ¢s170 for a bit of this theory)

Varieties of Constraints

= Varieties of Constraints
» Unary constraints involve a single variable (equiv. to shrinking domains):

SA # green

= Binary constraints involve pairs of variables:

SA £ WA

= Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

= Preferences (soft constraints):
= E.g., red is better than green
= Often representable by a cost for each variable assignment

= (Gives constrained optimization problems
= (We’'ll ignore these until we get to Bayes’ nets)

Real-World CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when
and where?

Hardware configuration
Transportation scheduling
Factory scheduling
Floorplanning

Fault diagnosis

... lots more!

Many real-world problems involve real-valued
variables...

Standard Search Formulation

= Standard search formulation of CSPs
(incremental)

= Let's start with a straightforward, dumb
approach, then fix it

= States are defined by the values assigned so far

= |nitial state: the empty assignment, {}

= Successor function: assign a value to an unassigned
variable

» Goal test: the current assignment is complete and
satisfies all constraints

Search Methods

= \What does BFS do?
(v7)

@C'
= \What does DFS do?

DFS - and BFS would be much worse!

E— | Auton's Graphics

| :.:—

O an

(

K
%

L
%

O—C

@

Backtracking Search

ldea 1: Only consider a single variable at each point

» Variable assignments are commutative, so fix ordering
= |l.e.,, [WA=redthen NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step
= How many leaves are there now?
ldea 2: Only allow legal assignments at each point
= |.e. consider only values which do not conflict previous assignments
= Might have to do some computation to figure out whether a value is ok

» “Incremental goal test”

Depth-first search for CSPs with these two improvements is called
backtracking search

= Backtrack when there’s no legal assignment for the next variable

Backtracking search is the basic uninformed algorithm for CSPs

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var <« SELECT-UNASSIGNED-VARIABLE(VARIABLES|csp), assignment, ¢sp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS|[csp] then
add {var = value} to assignment
result «—— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

= \What are the choice points?

Backtracking Example

S

—

o o

—
=
—

< &

Backtracking

| R
mra.\.

-
Q

Are we
done?

Improving Backtracking

= General-purpose ideas give huge gains in speed

* Ordering:
= Which variable should be assigned next?
* |n what order should its values be tried?

= Filtering: Can we detect inevitable failure early?

= Structure: Can we exploit the problem structure?

NTQ
N

Forward Checking ("=

* |dea: Keep track of remaining legal values for
unassigned variables (using immediate constraints)

» |dea: Terminate when any variable has no legal values

SN

WA NT Q NSW \' SA T

Forward
Checking

o"o eSege

o"o\o,‘o'ﬁo

A O .

INSNGZ
Vo o

rrrrrrr

NT

Q

Constraint Propagation ("=

= Forward checkin rp

unassigned variables, but doesn't detect more distant failures:

\—Ll: —"‘\—L:—"\—Lg

[

WA NT Q NSW \' SA T

NSW

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?

= Constraint propagation repeatedly enforces constraints (locally)

\Y

ropagates information from assigned to adjacent

NTQ

Arc Consistency ("[=

= Simplest form of propagation makes each arc consistent
= X — Y is consistent iff for every value x there is some allowed y

S

WA NT Q NSW Vv SA T
(]| m[a e merE] E[ErE]

— ~— "

* If X loses a value, neighbors of X need to be rechecked!
 Arc consistency detects failure earlier than forward checking
* What's the downside of arc consistency?

« Can be run as a preprocessor or after each assignment

Arc Consistency

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xo, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;, X;) then
for each X}, in NEIGHBORS[X]] do
add (X%, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X;, X;) returns true iff succeeds
removed < false
for each z in DoMAIN[X;] do
if no value y in DOMAIN[X] allows (z,9) to satisfy the constraint X; < X,
then delete 2 from DOMAIN[X}]; removed «— true
return removed

= Runtime: O(n2d3), can be reduced to O(n2d?)
= ... but detecting all possible future problems is NP-hard — why?
[demo: arc consistency animation]

10 00 .HM\O C
O O ¢ Qo
Ky

EZ= w\H.M-u.%”ﬂ“

| OW‘&O%”“O”O

CEEC B
Ko L

Constraint
Propagation

Are We
Done?

Auton's Graphics [=

Q’ Q‘Q A %‘% ‘9 Q.
ASg eSS
~ ‘ el o s

Loy
A

AN Z'."‘Ié-ZlZ\:Z"Z;
o

O FCE QAR &8
S &‘%ig=? Ko o @
Lo OO O

Niera

LalPEtate?
£ !@A Q“Q:“% Q‘Q'Q
opaglt) (el) D

Limitations of Arc Consistency

= After running arc
consistency:

= Can have one solution
left

= Can have multiple
solutions left

= Can have no solutions @
left (and not know it) .

What went
wrong here?

K-Consistency”

Increasing degrees of consistency O

1-Consistency (Node Consistency): Each
single node’s domain has a value which Q = @
meets that node’s unary constraints

2-Consistency (Arc Consistency): For each .
pair of nodes, any consistent assignment to Q
one can be extended to the other

K-Consistency: For each k nodes, any <©>:> @
consistent assignment to k-1 can be O
extended to the k" node. N

Higher k more expensive to compute @

(You need to know the k=2 algorithm) ‘1.‘.1'

What Were Choice Points?

= At each step we

have to decide... ‘_Lt:

= What variable to —]
assign next \ | \ | \ [

= What order to ‘ ‘
explore its o T~
assignments ‘ : “.Jt-

/\

< &

Ordering: Minimum Remaining Values

= Minimum remaining values (MRV):
= Choose the variable with the fewest legal values

\—L: _"\—L:—- _"\QL%_"\%L-

\

= \Why min rather than max?
= Also called "most constrained variable”
= “Fail-fast” ordering

Ordering: Degree Heuristic

= Tie-breaker among MRYV variables
* What do we color first? (All have 3 choices)

= Degree heuristic:

» Choose the variable participating in the most
constraints on remaining variables

SANSNgS:

K

\.\

\\

S
\\

— A

= WWhy most rather than fewest constraints?

Domain Ordering: Least Constraining Value

= (Gjven a choice of variable:

= Choose the least constraining
assignment value

= The one that rules out the fewest
values in the remaining variables

= Note that it may take some
computation to determine this!

= Why least rather than most?

= Combining these heuristics
makes 1000 queens feasible

<

I
=2

Propagation
with
Ordering

O | Auton's Graphics

=
ga ».o%."fw 7"

‘9 o

Q',, - ‘;.-.4 «O»A

< \

S 90@

o 9
c "/
QQQQQQ ‘QQQQ
o dorde 9 (o oo ol ol 9 AR AR A

Problem Structure

» Tasmania and mainland are
Independent subproblems

= |dentifiable as connected @ e
components of constraint

graph

= Suppose each subproblem
has ¢ variables out of #» total

O((n/c)(d©)) - linear in n
= £Eg.,n=80,d=2,¢c=20

= 280 =4 billion years at 10
million nodes/sec

= (4)(229) = 0.4 seconds at 10
million nodes/sec

= \Worst-case solution cost is @

Tree-Structured CSPs

= Choose a variable as root, order
variables from root to leaves such
that every node's parent precedes

it in the ordering (so now every node
has exactly 1 parent)

= Fori=n—2, apply Removelnconsistent(Parent(X),X)
= (i.e., apply arc consistency from each parent to child)

= Fori=1—n, assign X consistently with Parent(X)

= Runtime: O(n d?)

Nearly Tree-Structured CSPs

@‘@"’ ClnC
-» £

Q, Q,

Cycle cutset: a set of variables whose removal makes a graph
iInto a tree

Conditioning: instantiate a variable, prune its neighbors'
domains

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size ¢ gives runtime O((d¢) (n-c) d°), very fast for small ¢

Iterative Algorithms for CSPs

Greedy and local methods typically work with “complete”
states, i.e., all variables assigned

To apply to CSPs:

= Allow states with unsatisfied constraints
» Operators reassign variable values

Variable selection: randomly select any conflicted
variable

Value selection by min-conflicts heuristic:
» Choose value that violates the fewest constraints
= |.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

o
> Bt
o L

]
I
vl

h=2 h=0

States: 4 queens in 4 columns (4% = 256 states)
Operators: move queen in column

Goal test: no attacks

Evaluation: h(n) = number of attacks

Performance of Min-Conflicts

Given random initial state, can solve n-queens in almost constant
time for arbitrary n with high probability (e.g., n = 10,000,000)

The same appears to be true for any randomly-generated CSP
except in a narrow range of the ratio

number of constraints

R = ;
number of variables

CPU
time

|
critical
ratio

Summary

CSPs are a special kind of search problem:
» States defined by values of a fixed set of variables
» Goal test defined by constraints on variable values

Backtracking = depth-first search with one legal variable
assigned per node

Variable ordering and value selection heuristics help
significantly

Forward checking prevents assignments that guarantee
later failure

Constraint propagation (e.g., arc consistency) does
additional work to constrain values and detect
Inconsistencies

The constraint graph representation allows analysis of
problem structure

Tree-structured CSPs can be solved in linear time

