CSE 473: Artificial Intelligence

Markov Decision Processes (MDPs)

Luke Zettlemoyer

Many slides over the course adapted from Dan Klein, Stuart
Russell or Andrew Moore
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Outline (roughly next two weeks)

» Markov Decision Processes (MDPs)
*MDP formalism
=Value lteration
=Policy lteration

» Reinforcement Learning (RL)
= Relationship to MDPs
=Several learning algorithms
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Review: Expectimax

= What if we don’t know what the
result of an action will be? E.g.,
= |n solitaire, next card is unknown
* |[n minesweeper, mine locations
* |n pacman, the ghosts act randomly

= (Can do expectimax search

= Chance nodes, like min nodes,
except the outcome is uncertain

» Calculate expected utilities

= Max nodes as in minimax
search

» Chance nodes take average
(expectation) of value of children

= Today, we'll learn how to formalize
the underlying problem as a
Markov Decision Process
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Reinforcement Learning

= Basic idea:
= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
» Must learn to act so as to maximize expected rewards

»[ Agent

l'ewal'd action
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state
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s | Environment
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|
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Reinforcement Learninc

Robot Motor Skill
Coordination with EM-based
Reinforcement Leaming

Petar Kormushev, Sylvain Calinon,
and Darwin G. Caldwell

ltalian Institute of Technology
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Grid World

= The agentlives in a grid

= Walls block the agent’s path

= The agent’s actions do not always
go as planned:

=  80% of the time, the action North
takes the agent North
(if there is no wall there)

= 10% of the time, North takes the
agent West; 10% East

= [f there is a wall in the direction the
agent would have been taken, the
agent stays put

Small “living” reward each step
Big rewards come at the end
Goal: maximize sum of rewards
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Markov Decision Processes

= An MDP is defined by:
= Asetofstatess& S
A set of actions a €A
A transition function T(s,a,s’)
= Prob that a from s leads to s’
= j.e.,, P(s’| s,a)
= Also called the model
A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)
A start state (or distribution)
Maybe a terminal state

= MDPs: non-deterministic
search problems

» Reinforcement learning: MDPs
where we don’t know the
transition or reward functions
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What is Markov about MDPs?

= Andrey Markov (1856-1922)

= “Markov” generally means that given
the present state, the future and the
past are independent

= For Markov decision processes,
“Markov” means:
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Solving MDPs

* |n deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal

= |[n an MDP, we want an optimal policy n*: S — A
= A policy & gives an action for each state
= An optimal policy maximizes expected utility if followed

» Defines a reflex agent

Optimal policy when 2 1 t 1]
R(s, a, s’) =-0.03 for | |
all non-terminals s
1 f - —-— -
1 2 3 4
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Example: High-Low

* Three card types: 2, 3, 4

* [nfinite deck, twice as many 2’s
= Start with 3 showing

= After each card, you say “high” 3
or “low”

= New card is flipped

= |f you're right, you win the
points shown on the new card

= Ties are no-ops
= |f you're wrong, game ends

= Differences from expectimax problems:
= #1: get rewards as you go
= #2: you might play forever!
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High-Low as an MDP

= States: 2, 3, 4, done
= Actions: High, Low

= Model: T(s, a, s'):
« P(s'=4 |4, Low)=1/4
P(s'=3 | 4, Low) = 1/4 3
P(s’=2 | 4, Low) = 1/2
P(s’=done | 4, Low) =0
P(s'=4 | 4, High) = 1/4
P(s’=3 | 4, High) = 0
P(s’=2 | 4, High) = 0
P(s’=done | 4, High) = 3/4

= Rewards: R(s, a, s'):
= Number shownons'ifs =¢’
= ( otherwise
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MDP Search Trees

= Each MDP state gives an expectimax-like search tree

(s,a)is a 1
g-state -

(s,a,s’) called a transition
T(s,a,s’) = P(s'[s,a)
R(s,a,s’)
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Utilities of Sequences

* |n order to formalize optimality of a policy, need to
understand utilities of sequences of rewards

= Typically consider stationary preferences:

[7‘, ro,71,72; - ] - ['T‘, T,Oa Tll: TIQ: a8 ]
<~
00, B0 e 55 (X 51 TS i)

= Theorem: only two ways to define stationary utilities
= Additive utility:
U([ro,r1,72,-- 1) =ro+71 472+ -+

= Discounted utility:
U([ro,r1,72,...]) =ro+r1+%r2---
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Infinite Utilities”!

= Problem: infinite state sequences have infinite rewards

—

= Solutions:
= Finite horizon: Il.

==

= Terminate episodes after a fixed T steps (e.q. life)

=

=

KA

'

0
i

= Gives nonstationary policies (it depends on time left)

» Absorbing state: guarantee that for every policy, a terminal state

will eventually be reached (like “done” for High-Low)
= Discounting: forO <y <1

U([rg,...-rx]) = Z 1t < Rmax/(1 = %)

=0

= Smaller y means smaller “horizon” — shorter term focus
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Discounting

(_.r'([ro. e Tl ) == Z ";’I"'f s It)max/(l — 4]
=1 ~
= Typically discount 1 <
rewards by y < 1

each time step
= Sooner rewards

have higher utility b

than later rewards =
= Also helps the g

algorithms converge ~2 <
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Recap: Defining MDPs

= Markov decision processes:
= States S
Start state s,

= Actions A
* Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discount vy)

= MDP quantities so far:
» Policy = Choice of action for each state
= Utility (or return) = sum of discounted rewards
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Optimal Utilities

= Define the value of a state s:

V'(s) = expected utility starting in s and acting
optimally

= Define the value of a g-state (s,a):

Q’(s,a) = expected utility starting in s, taking action
a and thereafter acting optimally

= Define the optimal policy:
7 (s) = optimal action from state s

3 0.812 0.868 0.912 @ 3 — —— —

2 | o762 1] 2 ' 1 1]

1 | o705 | o6ss | o611 | 0388 1 f s Mg | g
1 2 3 4 1 2 3 4
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The Bellman Equations

= Definition of “optimal utility” leads to a
simple one-step lookahead relationship
amongst optimal utility values:

= Formally:

V*(s) = max Q%(s,a)

s a)= Z T(s,a,s") [R(s a,s) + ’7\-'-'*(.5’)]

Y (8) = max > T(a.0:8) [R(s, a,s') + ‘(9,)]
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Why Not Search Trees?

= Why not solve with expectimax?

= Problems:
» This tree is usually infinite (why?)
» Same states appear over and over (why?)
= We would search once per state (why?)

= |dea: Value iteration

= Compute optimal values for all states all at
once using successive approximations

= Will be a bottom-up dynamic program
similar in cost to memoization

= Do all planning offline, no replanning
needed!
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Value Estimates

= Calculate estimates V, (s)

= The optimal value considering
only next k time steps (k rewards)

= As k — o, it approaches the
optimal value

= Why:
= |[f discounting, distant rewards
become negligible

= |[f terminal states reachable from
everywhere, fraction of episodes
not ending becomes negligible

= Otherwise, can ﬂet infinite expected
utility and then this approach
actually won’t work
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Value lteration

= |dea:
= Start with V,(s) = 0, which we know is right (why?)
= Given V/, calculate the values for all states for depth i+1:

Vir1(s) « max» T(s,a,s) |R(s,a,s’) +~vV;(s)
i+1 -

» This is called a value update or Bellman update
= Repeat until convergence

» Theorem: will converge to unique optimal values
» Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do
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Example: Value lteration

VALUES AFTER O ITERATIONS
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Example: v=0.9, living
reward=0, noise=0.2

Example: Bellman Updates

s | 0 0 Fl | 2| 2| 2 | =

V() 2 0 0 =1 2 ? ” =1 Vl
1 O O O O 1 ? ? ? ?
1 3 4 1 2 3 4

Viii(s) = maXZT s,a,8') [R(s,a,s") +vVi(s')|= mC?JXQZ-H(S,a)

Q1((3,3),right) = ZT (3, 3), right, s") [R((S,S},right,s’) —|—7Vi(5’)}

S/

= 0.8 % [0.0 4 0.9 % 1.0] + 0.1 % [0.0 + 0.9 % 0.0] + 0.1 % [0.0 4 0.9 % 0.0]
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Example: Value lteration

V1 V2
3 0O +1 3 0O +1
2 O -1 2 O -1
L 0 O 0 0 1 O O 0 O

* Information propagates outward from terminal
states and eventually all states have correct
value estimates

Monday, April 22, 13



Convergence

= Define the max-norm: ||U|| = maxs |U(s)]

* Theorem: For any two approximations U and V
|\ 2ig dert i |8 4| el |
= |.e. any distinct approximations must get closer to each other, so,

in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

= Theorem:

UL - U Uttl —U|| < 2ev/(1 — )

= |.e. once the change in our approximation is small, it must also
be close to correct

| <€, = |
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Value lteration Complexity

= Problem size:
= |A| actions and |S| states

= Each Iteration
= Computation: O(|A|-|S|?)
= Space: O(|S|)

= Num of iterations
= Can be exponential in the discount factor y
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Practice: Computing Actions

= \Which action should we chose from state s:

= Given optimal values Q?
argmax Q™ (s, a)
)

= Given optimal values V?

argmax » T(s,a,s)[R(s,a,s) +~yV*(s')]

= | esson: actions are easier to select from Q’s!
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Aside: Q-Value lteration

= Value iteration: find successive approx optimal values
= Start with V,(s) =0
= Given V/, calculate the values for all states for depth i+1:

Vit1(8) « max Z} T(s,a,s’) {R(s, a,s’) +~ \,(s’)]

= But Q-values are more useful!
= Start with Q,(s,a) =0
= Given Q/, calculate the g-values for all g-states for depth i+1:

Qir1(s,a) «— Z T(s,a,s’) {R(s. a,s’) +~ max Q,; (s, a")
S'/

a
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Utilities for Fixed Policies

= Another basic operation:
compute the utility of a state s
under a fix (general non-optimal)
policy

= Define the utility of a state s,
under a fixed policy m:

V7(s) = expected total discounted

rewards (return) starting in s and
following

= Recursive relation (one-step
look-ahead / Bellman equation):

V™ (s) = ) _T(s,n(s),8)[R(s,7(s),s") + V™ (s')]
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Policy Evaluation

= How do we calculate the V's for a fixed policy?

= |dea one: modify Bellman updates

Vo (s) =0

Vi (s) — Y T(s,m(s), ) [R(s, m(5), 8) + V()

= |dea two: it's just a linear system, solve with
Matlab (or whatever)
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Policy lteration

= Problem with value iteration:

» Considering all actions each iteration is slow: takes |A|
times longer than policy evaluation

= But policy doesn’t change each iteration, time wasted

= Alternative to value iteration:

= Step 1: Policy evaluation: calculate utilities for a fixed
policy (not optimal utilities!) until convergence (fast)

» Step 2: Policy improvement: update policy using one-
step lookahead with resulting converged (but not
optimal!) utilities (slow but infrequent)

» Repeat steps until policy converges
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Policy lteration

= Policy evaluation: with fixed current policy =, find values
with simplified Bellman updates
= [terate until values converge

ViE (8) « 3" T(s,mi(s),8") |R(s, mi(s),8") + V"™ ()]

= Note: could also solve value equations with other techniques

= Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

ma1(s) = argmax Y T(s,a,s’) |R(s,a,s’) + yV™k(s")
k+1 .

S
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Policy lteration Complexity

= Problem size:
= |A| actions and |S| states

= Each lteration
= Computation: O(|S|® + |A|-[S|?)
= Space: O(|S])

= Num of iterations
= Unknown, but can be faster in practice
= Convergence is guaranteed
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Comparison

= |n value iteration:

= Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (possibly implicitly, based on
current policy)

= |n policy iteration:
» Several passes to update utilities with frozen policy
= QOccasional passes to update policies

= Hybrid approaches (asynchronous policy iteration):

» Any sequences of partial updates to either policy entries or
utilities will converge if every state is visited infinitely often
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