CSE 473: Artificial Intelligence

Markov Decision Processes (MDPs)

Luke Zettlemoyer

Many slides over the course adapted from Dan Klein, Stuart
Russell or Andrew Moore

Monday, April 22, 13

Outline (roughly next two weeks)

» Markov Decision Processes (MDPs)
*MDP formalism
=Value lteration
=Policy lteration

» Reinforcement Learning (RL)
= Relationship to MDPs
=Several learning algorithms

Monday, April 22, 13

Review: Expectimax

= What if we don’t know what the
result of an action will be? E.g.,
= |n solitaire, next card is unknown
* |[n minesweeper, mine locations
* |n pacman, the ghosts act randomly

= (Can do expectimax search

= Chance nodes, like min nodes,
except the outcome is uncertain

» Calculate expected utilities

= Max nodes as in minimax
search

» Chance nodes take average
(expectation) of value of children

= Today, we'll learn how to formalize
the underlying problem as a
Markov Decision Process

Monday, April 22, 13

10

max

chance

Reinforcement Learning

= Basic idea:
= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
» Must learn to act so as to maximize expected rewards

»[Agent

l'ewal'd action
r,

state
- ,

s | Environment

| N
|

Monday, April 22, 13

Reinforcement Learninc

Robot Motor Skill
Coordination with EM-based
Reinforcement Leaming

Petar Kormushev, Sylvain Calinon,
and Darwin G. Caldwell

ltalian Institute of Technology

Monday, April 22, 13

Grid World

= The agentlives in a grid

= Walls block the agent’s path

= The agent’s actions do not always
go as planned:

= 80% of the time, the action North
takes the agent North
(if there is no wall there)

= 10% of the time, North takes the
agent West; 10% East

= [f there is a wall in the direction the
agent would have been taken, the
agent stays put

Small “living” reward each step
Big rewards come at the end
Goal: maximize sum of rewards

Monday, April 22, 13

2

1

1

START

1

Markov Decision Processes

= An MDP is defined by:
= Asetofstatess& S
A set of actions a €A
A transition function T(s,a,s’)
= Prob that a from s leads to s’
= j.e.,, P(s’| s,a)
= Also called the model
A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)
A start state (or distribution)
Maybe a terminal state

= MDPs: non-deterministic
search problems

» Reinforcement learning: MDPs
where we don’t know the
transition or reward functions

Monday, April 22, 13

1 START

0.8

0.1 0.1

What is Markov about MDPs?

= Andrey Markov (1856-1922)

= “Markov” generally means that given
the present state, the future and the
past are independent

= For Markov decision processes,
“Markov” means:

¥ a / v ; Y ; v i
P(..S[_‘;_l — S |.S[— S[.fl[— (I.{.S[_] — .S'[_l.fl[_l. ¢ o -5() = "’U)

P(S{.H = .S"IS, — .‘i{.fl/ — (l.{)

Monday, April 22, 13

Solving MDPs

* |n deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal

= |[n an MDP, we want an optimal policy n*: S — A
= A policy & gives an action for each state
= An optimal policy maximizes expected utility if followed

» Defines a reflex agent

Optimal policy when 2 1 t 1]
R(s, a, s’) =-0.03 for | |
all non-terminals s
1 f - —-— -
1 2 3 4

Monday, April 22, 13

3 o
o N
. I
0 O
h
g 0
—
S S
(@) 1
1
I y
@ 0
~" R
0
=
(qV|
5
<<
=
©
O
C
(@]
=

Example Optimal Policies

Example: High-Low

* Three card types: 2, 3, 4

* [nfinite deck, twice as many 2’s
= Start with 3 showing

= After each card, you say “high” 3
or “low”

= New card is flipped

= |f you're right, you win the
points shown on the new card

= Ties are no-ops
= |f you're wrong, game ends

= Differences from expectimax problems:
= #1: get rewards as you go
= #2: you might play forever!

Monday, April 22, 13

High-Low as an MDP

= States: 2, 3, 4, done
= Actions: High, Low

= Model: T(s, a, s'):
« P(s'=4 |4, Low)=1/4
P(s'=3 | 4, Low) = 1/4 3
P(s’=2 | 4, Low) = 1/2
P(s’=done | 4, Low) =0
P(s'=4 | 4, High) = 1/4
P(s’=3 | 4, High) = 0
P(s’=2 | 4, High) = 0
P(s’=done | 4, High) = 3/4

= Rewards: R(s, a, s'):
= Number shownons'ifs =¢’
= (otherwise

Monday, April 22, 13

High

Monday, April 22, 13

Search Tree: High-Low
3

High

3 , Low 3 , High

T=0.5 T=0.25 T=0, ~T=0.25,
R=2 R=3 R\=4 R =0
Low High Low High Low

MDP Search Trees

= Each MDP state gives an expectimax-like search tree

(s,a)is a 1
g-state -

(s,a,s’) called a transition
T(s,a,s’) = P(s'[s,a)
R(s,a,s’)

Monday, April 22, 13

Utilities of Sequences

* |n order to formalize optimality of a policy, need to
understand utilities of sequences of rewards

= Typically consider stationary preferences:

[7‘, ro,71,72; -] - ['T‘, T,Oa Tll: TIQ: a8]
<~
00, B0 e 55 (X 51 TS i)

= Theorem: only two ways to define stationary utilities
= Additive utility:
U([ro,r1,72,-- 1) =ro+71 472+ -+

= Discounted utility:
U([ro,r1,72,...]) =ro+r1+%r2---

Monday, April 22, 13

Infinite Utilities”!

= Problem: infinite state sequences have infinite rewards

—

= Solutions:
= Finite horizon: Il.

==

= Terminate episodes after a fixed T steps (e.q. life)

=

=

KA

'

0
i

= Gives nonstationary policies (it depends on time left)

» Absorbing state: guarantee that for every policy, a terminal state

will eventually be reached (like “done” for High-Low)
= Discounting: forO <y <1

U([rg,...-rx]) = Z 1t < Rmax/(1 = %)

=0

= Smaller y means smaller “horizon” — shorter term focus

Monday, April 22, 13

Discounting

(_.r'([ro. e Tl) == Z ";’I"'f s It)max/(l — 4]
=1 ~
= Typically discount 1 <
rewards by y < 1

each time step
= Sooner rewards

have higher utility b

than later rewards =
= Also helps the g

algorithms converge ~2 <

Monday, April 22, 13

Recap: Defining MDPs

= Markov decision processes:
= States S
Start state s,

= Actions A
* Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (and discount vy)

= MDP quantities so far:
» Policy = Choice of action for each state
= Utility (or return) = sum of discounted rewards

Monday, April 22, 13

Optimal Utilities

= Define the value of a state s:

V'(s) = expected utility starting in s and acting
optimally

= Define the value of a g-state (s,a):

Q’(s,a) = expected utility starting in s, taking action
a and thereafter acting optimally

= Define the optimal policy:
7 (s) = optimal action from state s

3 0.812 0.868 0.912 @ 3 — —— —

2 | o762 1] 2 ' 1 1]

1 | o705 | o6ss | o611 | 0388 1 f s Mg | g
1 2 3 4 1 2 3 4

Monday, April 22, 13

The Bellman Equations

= Definition of “optimal utility” leads to a
simple one-step lookahead relationship
amongst optimal utility values:

= Formally:

V*(s) = max Q%(s,a)

s a)= Z T(s,a,s") [R(s a,s) + ’7\-'-'*(.5’)]

Y (8) = max > T(a.0:8) [R(s, a,s') + ‘(9,)]

Monday, April 22, 13

Why Not Search Trees?

= Why not solve with expectimax?

= Problems:
» This tree is usually infinite (why?)
» Same states appear over and over (why?)
= We would search once per state (why?)

= |dea: Value iteration

= Compute optimal values for all states all at
once using successive approximations

= Will be a bottom-up dynamic program
similar in cost to memoization

= Do all planning offline, no replanning
needed!

Monday, April 22, 13

Value Estimates

= Calculate estimates V, (s)

= The optimal value considering
only next k time steps (k rewards)

= As k — o, it approaches the
optimal value

= Why:
= |[f discounting, distant rewards
become negligible

= |[f terminal states reachable from
everywhere, fraction of episodes
not ending becomes negligible

= Otherwise, can ﬂet infinite expected
utility and then this approach
actually won’t work

Monday, April 22, 13

Value lteration

= |dea:
= Start with V,(s) = 0, which we know is right (why?)
= Given V/, calculate the values for all states for depth i+1:

Vir1(s) « max» T(s,a,s) |R(s,a,s’) +~vV;(s)
i+1 -

» This is called a value update or Bellman update
= Repeat until convergence

» Theorem: will converge to unique optimal values
» Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Monday, April 22, 13

Example: Value lteration

VALUES AFTER O ITERATIONS

Monday, April 22, 13

Example: v=0.9, living
reward=0, noise=0.2

Example: Bellman Updates

s | 0 0 Fl | 2| 2| 2 | =

V() 2 0 0 =1 2 ? ” =1 Vl
1 O O O O 1 ? ? ? ?
1 3 4 1 2 3 4

Viii(s) = maXZT s,a,8') [R(s,a,s") +vVi(s')|= mC?JXQZ-H(S,a)

Q1((3,3),right) = ZT (3, 3), right, s") [R((S,S},right,s’) —|—7Vi(5’)}

S/

= 0.8 % [0.0 4 0.9 % 1.0] + 0.1 % [0.0 + 0.9 % 0.0] + 0.1 % [0.0 4 0.9 % 0.0]

Monday, April 22, 13

Example: Value lteration

V1 V2
3 0O +1 3 0O +1
2 O -1 2 O -1
L 0 O 0 0 1 O O 0 O

* Information propagates outward from terminal
states and eventually all states have correct
value estimates

Monday, April 22, 13

Convergence

= Define the max-norm: ||U|| = maxs |U(s)]

* Theorem: For any two approximations U and V
|\ 2ig dert i |8 4| el |
= |.e. any distinct approximations must get closer to each other, so,

in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

= Theorem:

UL - U Uttl —U|| < 2ev/(1 —)

= |.e. once the change in our approximation is small, it must also
be close to correct

| <€, = |

Monday, April 22, 13

Value lteration Complexity

= Problem size:
= |A| actions and |S| states

= Each Iteration
= Computation: O(|A|-|S|?)
= Space: O(|S|)

= Num of iterations
= Can be exponential in the discount factor y

Monday, April 22, 13

Practice: Computing Actions

= \Which action should we chose from state s:

= Given optimal values Q?
argmax Q™ (s, a)
)

= Given optimal values V?

argmax » T(s,a,s)[R(s,a,s) +~yV*(s')]

= | esson: actions are easier to select from Q’s!

Monday, April 22, 13

Aside: Q-Value lteration

= Value iteration: find successive approx optimal values
= Start with V,(s) =0
= Given V/, calculate the values for all states for depth i+1:

Vit1(8) « max Z} T(s,a,s’) {R(s, a,s’) +~ \,(s’)]

= But Q-values are more useful!
= Start with Q,(s,a) =0
= Given Q/, calculate the g-values for all g-states for depth i+1:

Qir1(s,a) «— Z T(s,a,s’) {R(s. a,s’) +~ max Q,; (s, a")
S'/

a

Monday, April 22, 13

Utilities for Fixed Policies

= Another basic operation:
compute the utility of a state s
under a fix (general non-optimal)
policy

= Define the utility of a state s,
under a fixed policy m:

V7(s) = expected total discounted

rewards (return) starting in s and
following

= Recursive relation (one-step
look-ahead / Bellman equation):

V™ (s) =) _T(s,n(s),8)[R(s,7(s),s") + V™ (s')]

Monday, April 22, 13

Policy Evaluation

= How do we calculate the V's for a fixed policy?

= |dea one: modify Bellman updates

Vo (s) =0

Vi (s) — Y T(s,m(s),) [R(s, m(5), 8) + V()

= |dea two: it's just a linear system, solve with
Matlab (or whatever)

Monday, April 22, 13

Policy lteration

= Problem with value iteration:

» Considering all actions each iteration is slow: takes |A|
times longer than policy evaluation

= But policy doesn’t change each iteration, time wasted

= Alternative to value iteration:

= Step 1: Policy evaluation: calculate utilities for a fixed
policy (not optimal utilities!) until convergence (fast)

» Step 2: Policy improvement: update policy using one-
step lookahead with resulting converged (but not
optimal!) utilities (slow but infrequent)

» Repeat steps until policy converges

Monday, April 22, 13

Policy lteration

= Policy evaluation: with fixed current policy =, find values
with simplified Bellman updates
= [terate until values converge

ViE (8) « 3" T(s,mi(s),8") |R(s, mi(s),8") + V"™ ()]

= Note: could also solve value equations with other techniques

= Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

ma1(s) = argmax Y T(s,a,s’) |R(s,a,s’) + yV™k(s")
k+1 .

S

Monday, April 22, 13

Policy lteration Complexity

= Problem size:
= |A| actions and |S| states

= Each lteration
= Computation: O(|S|® + |A|-[S|?)
= Space: O(|S])

= Num of iterations
= Unknown, but can be faster in practice
= Convergence is guaranteed

Monday, April 22, 13

Comparison

= |n value iteration:

= Every pass (or “backup”) updates both utilities (explicitly, based
on current utilities) and policy (possibly implicitly, based on
current policy)

= |n policy iteration:
» Several passes to update utilities with frozen policy
= QOccasional passes to update policies

= Hybrid approaches (asynchronous policy iteration):

» Any sequences of partial updates to either policy entries or
utilities will converge if every state is visited infinitely often

Monday, April 22, 13

