
CSE 473: Artificial Intelligence

Markov Decision Processes (MDPs)

Luke Zettlemoyer

Many slides over the course adapted from Dan Klein, Stuart
Russell or Andrew Moore

1
Monday, April 22, 13

Outline (roughly next two weeks)

§ Markov Decision Processes (MDPs)
§MDP formalism
§Value Iteration
§Policy Iteration

§ Reinforcement Learning (RL)
§Relationship to MDPs
§Several learning algorithms

Monday, April 22, 13

Review: Expectimax
§ What if we don’t know what the

result of an action will be? E.g.,
§ In solitaire, next card is unknown
§ In minesweeper, mine locations
§ In pacman, the ghosts act randomly

10 4 5 7

max

chance

§ Today, we’ll learn how to formalize
the underlying problem as a
Markov Decision Process

§ Can do expectimax search
§ Chance nodes, like min nodes,

except the outcome is uncertain
§ Calculate expected utilities
§ Max nodes as in minimax

search
§ Chance nodes take average

(expectation) of value of children

Monday, April 22, 13

Reinforcement Learning

§ Basic idea:
§ Receive feedback in the form of rewards
§ Agent’s utility is defined by the reward function
§ Must learn to act so as to maximize expected rewards

Monday, April 22, 13

Reinforcement Learning

Monday, April 22, 13

Grid World
§ The agent lives in a grid
§ Walls block the agent’s path
§ The agent’s actions do not always

go as planned:
§ 80% of the time, the action North

takes the agent North
(if there is no wall there)

§ 10% of the time, North takes the
agent West; 10% East

§ If there is a wall in the direction the
agent would have been taken, the
agent stays put

§ Small “living” reward each step
§ Big rewards come at the end
§ Goal: maximize sum of rewards

Monday, April 22, 13

Markov Decision Processes
§ An MDP is defined by:

§ A set of states s ∈ S
§ A set of actions a ∈ A
§ A transition function T(s,a,s’)

§ Prob that a from s leads to s’
§ i.e., P(s’ | s,a)
§ Also called the model

§ A reward function R(s, a, s’)
§ Sometimes just R(s) or R(s’)

§ A start state (or distribution)
§ Maybe a terminal state

§ MDPs: non-deterministic
search problems
§ Reinforcement learning: MDPs

where we don’t know the
transition or reward functions

Monday, April 22, 13

What is Markov about MDPs?

§ Andrey Markov (1856-1922)

§ “Markov” generally means that given
the present state, the future and the
past are independent

§ For Markov decision processes,
“Markov” means:

Monday, April 22, 13

Solving MDPs

§ In an MDP, we want an optimal policy π*: S → A
§ A policy π gives an action for each state
§ An optimal policy maximizes expected utility if followed
§ Defines a reflex agent

Optimal policy when
R(s, a, s’) = -0.03 for
all non-terminals s

§ In deterministic single-agent search problems, want an
optimal plan, or sequence of actions, from start to a goal

Monday, April 22, 13

Example Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Monday, April 22, 13

Example: High-Low

§ Three card types: 2, 3, 4
§ Infinite deck, twice as many 2’s
§ Start with 3 showing
§ After each card, you say “high”

or “low”
§ New card is flipped
§ If you’re right, you win the

points shown on the new card
§ Ties are no-ops
§ If you’re wrong, game ends

2

3
2

4

§ Differences from expectimax problems:
§ #1: get rewards as you go
§ #2: you might play forever!

Monday, April 22, 13

High-Low as an MDP
§ States: 2, 3, 4, done
§ Actions: High, Low
§ Model: T(s, a, s’):

§ P(s’=4 | 4, Low) = 1/4
§ P(s’=3 | 4, Low) = 1/4
§ P(s’=2 | 4, Low) = 1/2
§ P(s’=done | 4, Low) = 0
§ P(s’=4 | 4, High) = 1/4
§ P(s’=3 | 4, High) = 0
§ P(s’=2 | 4, High) = 0
§ P(s’=done | 4, High) = 3/4
§ …

§ Rewards: R(s, a, s’):
§ Number shown on s’ if s ≠ s’
§ 0 otherwise

2

3
2

4

Monday, April 22, 13

Search Tree: High-Low
3

Low High

2 43
High Low High Low High Low

3 , Low , High3

T = 0.5,
R = 2

T = 0.25,
R = 3

T = 0,
R = 4

T = 0.25,
R = 0

Monday, April 22, 13

MDP Search Trees
§ Each MDP state gives an expectimax-like search tree

a

s

s’

s, a

(s,a,s’) called a transition

T(s,a,s’) = P(s’|s,a)

R(s,a,s’)
s,a,s’

s is a state

(s, a) is a
q-state

Monday, April 22, 13

Utilities of Sequences
§ In order to formalize optimality of a policy, need to

understand utilities of sequences of rewards
§ Typically consider stationary preferences:

§ Theorem: only two ways to define stationary utilities
§ Additive utility:

§ Discounted utility:

Monday, April 22, 13

Infinite Utilities?!
§ Problem: infinite state sequences have infinite rewards

§ Solutions:
§ Finite horizon:

§ Terminate episodes after a fixed T steps (e.g. life)
§ Gives nonstationary policies (π depends on time left)

§ Absorbing state: guarantee that for every policy, a terminal state
will eventually be reached (like “done” for High-Low)

§ Discounting: for 0 < γ < 1

§ Smaller γ means smaller “horizon” – shorter term focus

Monday, April 22, 13

Discounting

§ Typically discount
rewards by γ < 1
each time step
§ Sooner rewards

have higher utility
than later rewards

§ Also helps the
algorithms converge

Monday, April 22, 13

Recap: Defining MDPs

§ Markov decision processes:
§ States S
§ Start state s0

§ Actions A
§ Transitions P(s’|s,a) (or T(s,a,s’))
§ Rewards R(s,a,s’) (and discount γ)

§ MDP quantities so far:
§ Policy = Choice of action for each state
§ Utility (or return) = sum of discounted rewards

a

s

s, a

s,a,s’
s’

Monday, April 22, 13

Optimal Utilities
§ Define the value of a state s:

V*(s) = expected utility starting in s and acting
optimally

§ Define the value of a q-state (s,a):
Q*(s,a) = expected utility starting in s, taking action

a and thereafter acting optimally
§ Define the optimal policy:

π*(s) = optimal action from state s

a

s

s, a

s,a,s’
s’

Monday, April 22, 13

The Bellman Equations

§ Definition of “optimal utility” leads to a
simple one-step lookahead relationship
amongst optimal utility values:

§ Formally:

a

s

s, a

s,a,s’
s’

Monday, April 22, 13

Why Not Search Trees?

§ Why not solve with expectimax?

§ Problems:
§ This tree is usually infinite (why?)
§ Same states appear over and over (why?)
§ We would search once per state (why?)

§ Idea: Value iteration
§ Compute optimal values for all states all at

once using successive approximations
§ Will be a bottom-up dynamic program

similar in cost to memoization
§ Do all planning offline, no replanning

needed!

Monday, April 22, 13

Value Estimates

§ Calculate estimates Vk
*(s)

§ The optimal value considering
only next k time steps (k rewards)

§ As k → ∞, it approaches the
optimal value

§ Why:
§ If discounting, distant rewards

become negligible
§ If terminal states reachable from

everywhere, fraction of episodes
not ending becomes negligible

§ Otherwise, can get infinite expected
utility and then this approach
actually won’t work

Monday, April 22, 13

Value Iteration

§ Idea:
§ Start with V0

*(s) = 0, which we know is right (why?)
§ Given Vi

*, calculate the values for all states for depth i+1:

§ This is called a value update or Bellman update
§ Repeat until convergence

§ Theorem: will converge to unique optimal values
§ Basic idea: approximations get refined towards optimal values
§ Policy may converge long before values do

Monday, April 22, 13

Example: Value Iteration

Monday, April 22, 13

Example: Bellman Updates
Example: γ=0.9, living
reward=0, noise=0.2BRIEF ARTICLE

THE AUTHOR

V0

V1

1

BRIEF ARTICLE

THE AUTHOR

V0

V1

1

BRIEF ARTICLE

THE AUTHOR

V0

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

1

BRIEF ARTICLE

THE AUTHOR

V0

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

1

BRIEF ARTICLE

THE AUTHOR

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

Q1(h3, 3i, right) =

X

s0

T (h3, 3i, right, s0
)

⇥
R(h3, 3i, right, s0

) + �Vi(s
0
)

⇤

1

?

?

? ???

?

? ?

BRIEF ARTICLE

THE AUTHOR

V1

Vi+1(s) = max

a

X

s0

T (s, a, s0
)

⇥
R(s, a, s0

) + �Vi(s
0
)

⇤

= max

a
Qi+1(s, a)

Q1(h3, 3i, right) =

X

s0

T (h3, 3i, right, s0
)

⇥
R(h3, 3i, right, s0

) + �Vi(s
0
)

⇤

= 0.8 ⇤ [0.0 + 0.9 ⇤ 1.0] + 0.1 ⇤ [0.0 + 0.9 ⇤ 0.0] + 0.1 ⇤ [0.0 + 0.9 ⇤ 0.0]

1

Monday, April 22, 13

Example: Value Iteration

§ Information propagates outward from terminal
states and eventually all states have correct
value estimates

V1 V2

Monday, April 22, 13

Convergence
§ Define the max-norm:

§ Theorem: For any two approximations U and V

§ I.e. any distinct approximations must get closer to each other, so,
in particular, any approximation must get closer to the true U and
value iteration converges to a unique, stable, optimal solution

§ Theorem:

§ I.e. once the change in our approximation is small, it must also
be close to correct

Monday, April 22, 13

Value Iteration Complexity

§ Problem size:
§ |A| actions and |S| states

§ Each Iteration
§ Computation: O(|A|⋅|S|2)
§ Space: O(|S|)

§ Num of iterations
§ Can be exponential in the discount factor γ

Monday, April 22, 13

Practice: Computing Actions

§ Which action should we chose from state s:

§ Given optimal values Q?

§ Given optimal values V?

§ Lesson: actions are easier to select from Q’s!

Monday, April 22, 13

Aside: Q-Value Iteration

§ Value iteration: find successive approx optimal values
§ Start with V0

*(s) = 0
§ Given Vi

*, calculate the values for all states for depth i+1:

§ But Q-values are more useful!
§ Start with Q0

*(s,a) = 0
§ Given Qi

*, calculate the q-values for all q-states for depth i+1:

Monday, April 22, 13

Utilities for Fixed Policies
§ Another basic operation:

compute the utility of a state s
under a fix (general non-optimal)
policy

§ Define the utility of a state s,
under a fixed policy π:
Vπ(s) = expected total discounted

rewards (return) starting in s and
following π

§ Recursive relation (one-step
look-ahead / Bellman equation):

π(s)

s

s, π(s)

s, π(s),s’

s’

Monday, April 22, 13

Policy Evaluation

§ How do we calculate the V’s for a fixed policy?

§ Idea one: modify Bellman updates

§ Idea two: it’s just a linear system, solve with
Matlab (or whatever)

Monday, April 22, 13

Policy Iteration

§ Problem with value iteration:
§ Considering all actions each iteration is slow: takes |A|

times longer than policy evaluation
§ But policy doesn’t change each iteration, time wasted

§ Alternative to value iteration:
§ Step 1: Policy evaluation: calculate utilities for a fixed

policy (not optimal utilities!) until convergence (fast)
§ Step 2: Policy improvement: update policy using one-

step lookahead with resulting converged (but not
optimal!) utilities (slow but infrequent)

§ Repeat steps until policy converges

Monday, April 22, 13

Policy Iteration

§ Policy evaluation: with fixed current policy π, find values
with simplified Bellman updates
§ Iterate until values converge

§ Note: could also solve value equations with other techniques

§ Policy improvement: with fixed utilities, find the best
action according to one-step look-ahead

Monday, April 22, 13

Policy Iteration Complexity

§ Problem size:
§ |A| actions and |S| states

§ Each Iteration
§ Computation: O(|S|3 + |A|⋅|S|2)
§ Space: O(|S|)

§ Num of iterations
§ Unknown, but can be faster in practice
§ Convergence is guaranteed

Monday, April 22, 13

Comparison

§ In value iteration:
§ Every pass (or “backup”) updates both utilities (explicitly, based

on current utilities) and policy (possibly implicitly, based on
current policy)

§ In policy iteration:
§ Several passes to update utilities with frozen policy
§ Occasional passes to update policies

§ Hybrid approaches (asynchronous policy iteration):
§ Any sequences of partial updates to either policy entries or

utilities will converge if every state is visited infinitely often

Monday, April 22, 13

