
CSE 473: Artificial Intelligence
Spring 2013

Adversarial Search

Luke Zettlemoyer
Based on slides from Dan Klein

Many slides over the course adapted from either Stuart Russell
or Andrew Moore

1
Wednesday, April 10, 13

Today
§ Adversarial Search

§ Minimax search
§ α-β search
§ Evaluation functions
§ Expectimax

§ Reminder:
§ Programming 1 due one week from Friday!
§ Programming 2 will be on adversarial search

Wednesday, April 10, 13

Game Playing State-of-the-Art
§ Checkers: Chinook ended 40-year-reign of human world champion

Marion Tinsley in 1994. Used an endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a total of
443,748,401,247 positions. Checkers is now solved!

§ Chess: Deep Blue defeated human world champion Gary Kasparov in a
six-game match in 1997. Deep Blue examined 200 million positions per
second, used very sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply. Current programs are
even better, if less historic.

§ Othello: Human champions refuse to compete against computers,
which are too good.

§ Go: Human champions are beginning to be challenged by machines,
though the best humans still beat the best machines. In go, b > 300, so
most programs use pattern knowledge bases to suggest plausible
moves, along with aggressive pruning.

§ Pacman: unknown

Wednesday, April 10, 13

General Game Playing

General Intelligence in Game-Playing Agents (GIGA'13)
(http://giga13.ru.is)

General Information
Artificial Intelligence (AI) researchers have for decades worked on building game-playing agents capable of matching wits with the
strongest humans in the world, resulting in several success stories for games like chess and checkers. The success of such systems has
been partly due to years of relentless knowledge-engineering effort on behalf of the program developers, manually adding
application-dependent knowledge to their game-playing agents. The various algorithmic enhancements used are often highly tailored
towards the game at hand.

Research into general game playing (GGP) aims at taking this approach to the next level: to build intelligent software agents that can,
given the rules of any game, automatically learn a strategy for playing that game at an expert level without any human intervention. In
contrast to software systems designed to play one specific game, systems capable of playing arbitrary unseen games cannot be
provided with game-specific domain knowledge a priori. Instead, they must be endowed with high-level abilities to learn strategies
and perform abstract reasoning. Successful realization of such programs poses many interesting research challenges for a wide variety
of artificial-intelligence sub-areas including (but not limited to):

knowledge representation and reasoning
heuristic search and automated planning
computational game theory
multi-agent systems
machine learning

The aim of this workshop is to bring together researchers from the above sub-fields of AI to discuss how best to address the
challenges of and further advance the state-of-the-art of general game-playing systems and generic artificial intelligence.

The workshop is one-day long and will be held onsite at IJCAI during the scheduled workshop period August 3rd-5th (exact day is to
be announced later).

Information for Authors
The workshop papers should be submitted online (see workshop webpage). Submitted papers must adhere to the IJCAI paper
formatting instructions and not exceed 8 pages (including references). The papers must present original work that has not been
published elsewhere. However, submissions of papers that are under review elsewhere are allowed, in particular we welcome papers
submitted to the main technical track of IJCAI'13 or AAAI'13. All papers will be peer reviewed and non-archival working notes
produced containing the papers presented at the workshop.

Important dates:

Paper submission: April 20th, 2013
Acceptance notification: May 20th, 2013
Camera-ready papers due: May 30st, 2013
Workshop date: August (3rd, 4th, or 5th) 2013

If you are interesting in attending the conference without submitting a paper please send a short statement of interest to either one of
the organizers listed below before May 30st.

Workshop Organizers
Organizers:

Yngvi Björnsson, Reykjavik University
Michael Thielscher, University of New South Wales

Program Committee:

Tristan Cazenave, University of Paris-Dauphine
Stefan Edelkamp, University of Bremen
Hilmar Finnsson, Reykjavik University
Michael Genesereth, Stanford University
Lukasz Kaiser, University of Paris-Diderot
Gregory Kuhlmann, Apple Inc.
Abdallah Saffidine, University of Paris-Dauphine
Torsten Schaub, University of Potsdam
Stephan Schiffel, Reykjavik University
Sam Schreiber, Google Inc.
Nathan Sturtevant, University of Denver
Mark Winands, Maastricht University

Wednesday, April 10, 13

Adversarial Search

Wednesday, April 10, 13

Game Playing

§ Many different kinds of games!

§ Choices:
§ Deterministic or stochastic?
§ One, two, or more players?
§ Perfect information (can you see the state)?

§ Want algorithms for calculating a strategy
(policy) which recommends a move in each state

Wednesday, April 10, 13

Deterministic Games

§ Many possible formalizations, one is:
§ States: S (start at s0)
§ Players: P={1...N} (usually take turns)
§ Actions: A (may depend on player / state)
§ Transition Function: S x A → S
§ Terminal Test: S → {t,f}
§ Terminal Utilities: S x P → R

§ Solution for a player is a policy: S → A

Wednesday, April 10, 13

Deterministic Single-Player
§ Deterministic, single player,

perfect information:
§ Know the rules, action effects,

winning states
§ E.g. Freecell, 8-Puzzle, Rubik’s

cube
§ … it’s just search!

win loselose

§ Slight reinterpretation:
§ Each node stores a value: the

best outcome it can reach
§ This is the maximal outcome of

its children (the max value)
§ Note that we don’t have path

sums as before (utilities at end)
§ After search, can pick move that

leads to best node

Wednesday, April 10, 13

Deterministic Two-Player

§ E.g. tic-tac-toe, chess, checkers
§ Zero-sum games

§ One player maximizes result
§ The other minimizes result

8 2 5 6

max

min§ Minimax search
§ A state-space search tree
§ Players alternate
§ Choose move to position with

highest minimax value = best
achievable utility against best
play

Wednesday, April 10, 13

Tic-tac-toe Game Tree

Wednesday, April 10, 13

Minimax Example

 3 12 8 2 4 6 14 5 2

Wednesday, April 10, 13

Minimax Search

Wednesday, April 10, 13

Minimax Properties

§ Time complexity?

§ Space complexity?

10 10 9 100

max

min
§ O(bm)

§ O(bm)

§ For chess, b ≈ 35, m ≈ 100
§ Exact solution is completely infeasible
§ But, do we need to explore the whole tree?

§ Optimal?
§ Yes, against perfect player. Otherwise?

Wednesday, April 10, 13

Can we do better?

 3 12 8 2 4 6 14 5 2

Wednesday, April 10, 13

α-β Pruning Example

[3,3] [-∞,2] [2,2]

[3,3]

 3 12 8 2 14 5 2

Wednesday, April 10, 13

α-β Pruning

§ General configuration
§ α is the best value that

MAX can get at any
choice point along the
current path

§ If n becomes worse than
α, MAX will avoid it, so
can stop considering n’s
other children

§ Define β similarly for MIN

Player

Opponent

Player

Opponent

α

n

Wednesday, April 10, 13

Alpha-Beta Pseudocode

function MAX-VALUE(state,α,β)
if TERMINAL-TEST(state) then

return UTILITY(state)
v ← −∞
for a, s in SUCCESSORS(state) do

v ← MAX(v, MIN-VALUE(s,α,β))
if v ≥ β then return v
α ← MAX(α,v)

return v

inputs: state, current game state
 α, value of best alternative for MAX on path to state
 β, value of best alternative for MIN on path to state

returns: a utility value

function MIN-VALUE(state,α,β)
if TERMINAL-TEST(state) then

return UTILITY(state)
v ← +∞
for a, s in SUCCESSORS(state) do

v ← MIN(v, MAX-VALUE(s,α,β))
if v ≤ α then return v
β ← MIN(β,v)

return v

Wednesday, April 10, 13

Alpha-Beta Pruning Example

12 5 13 2

8

14

≥8

3 ≤2 ≤1

3

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=-∞
β=3

α=8
β=3

α=3
β=+∞

α=3
β=+∞

α=3
β=+∞

α=3
β=+∞

α=3
β=2

α=3
β=+∞

α=3
β=14

α=3
β=5

α=3
β=1

Wednesday, April 10, 13

Alpha-Beta Pruning Example

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

2 3 5 9
5 62 17 40

Wednesday, April 10, 13

Alpha-Beta Pruning Example

α is MAX’s best alternative here or above
β is MIN’s best alternative here or above

2 3 5
2 10

Wednesday, April 10, 13

Alpha-Beta Pruning Properties

§ This pruning has no effect on final result at the root

§ Values of intermediate nodes might be wrong!
§ but, they are bounds

§ Good child ordering improves effectiveness of pruning

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!
§ Full search of, e.g. chess, is still hopeless…

Wednesday, April 10, 13

Resource Limits
§ Cannot search to leaves
§ Depth-limited search

§ Instead, search a limited depth of tree
§ Replace terminal utilities with an eval

function for non-terminal positions
§ Guarantee of optimal play is gone
§ Example:

§ Suppose we have 100 seconds, can
explore 10K nodes / sec

§ So can check 1M nodes per move
§ α-β reaches about depth 8 – decent

chess program
? ? ? ?

-1 -2 4 9

4
min min

max
-2 4

Wednesday, April 10, 13

Evaluation Functions
§ Function which scores non-terminals

§ Ideal function: returns the utility of the position
§ In practice: typically weighted linear sum of features:

§ e.g. f1(s) = (num white queens – num black queens), etc.

Wednesday, April 10, 13

Evaluation for Pacman

What features would be good for Pacman?

Wednesday, April 10, 13

Which algorithm?

α-β, depth 4, simple eval fun

Wednesday, April 10, 13

Which algorithm?

α-β, depth 4, better eval fun

Wednesday, April 10, 13

Why Pacman Starves

§ He knows his score will go
up by eating the dot now

§ He knows his score will go
up just as much by eating
the dot later on

§ There are no point-scoring
opportunities after eating
the dot

§ Therefore, waiting seems
just as good as eating

Wednesday, April 10, 13

Iterative Deepening
Iterative deepening uses DFS as a

subroutine:

1. Do a DFS which only searches for paths
of length 1 or less. (DFS gives up on
any path of length 2)

2. If “1” failed, do a DFS which only
searches paths of length 2 or less.

3. If “2” failed, do a DFS which only
searches paths of length 3 or less.

 ….and so on.
Why do we want to do this for multiplayer

games?

…
b

Wednesday, April 10, 13

Stochastic Single-Player
§ What if we don’t know what the

result of an action will be? E.g.,
§ In solitaire, shuffle is unknown
§ In minesweeper, mine locations

10 4 5 7

max

average
§ Can do expectimax search

§ Chance nodes, like actions
except the environment controls
the action chosen

§ Max nodes as before
§ Chance nodes take average

(expectation) of value of children

Wednesday, April 10, 13

Which Algorithms?

Expectimax Minimax

3 ply look ahead, ghosts move randomly

Wednesday, April 10, 13

Maximum Expected Utility

§ Why should we average utilities? Why not minimax?

§ Principle of maximum expected utility: an agent should
chose the action which maximizes its expected utility,
given its knowledge
§ General principle for decision making
§ Often taken as the definition of rationality
§ We’ll see this idea over and over in this course!

§ Let’s decompress this definition…

Wednesday, April 10, 13

Reminder: Probabilities
§ A random variable represents an event whose outcome is unknown
§ A probability distribution is an assignment of weights to outcomes

§ Example: traffic on freeway?
§ Random variable: T = whether there’s traffic
§ Outcomes: T in {none, light, heavy}
§ Distribution: P(T=none) = 0.25, P(T=light) = 0.55, P(T=heavy) = 0.20

§ Some laws of probability (more later):
§ Probabilities are always non-negative
§ Probabilities over all possible outcomes sum to one

§ As we get more evidence, probabilities may change:
§ P(T=heavy) = 0.20, P(T=heavy | Hour=8am) = 0.60
§ We’ll talk about methods for reasoning and updating probabilities later

Wednesday, April 10, 13

What are Probabilities?

§ Averages over repeated experiments
§ E.g. empirically estimating P(rain) from historical observation
§ E.g. pacman’s estimate of what the ghost will do, given what it

has done in the past
§ Assertion about how future experiments will go (in the limit)
§ Makes one think of inherently random events, like rolling dice

§ Objectivist / frequentist answer:

§ Degrees of belief about unobserved variables
§ E.g. an agent’s belief that it’s raining, given the temperature
§ E.g. pacman’s belief that the ghost will turn left, given the state
§ Often learn probabilities from past experiences (more later)
§ New evidence updates beliefs (more later)

§ Subjectivist / Bayesian answer:

Wednesday, April 10, 13

Uncertainty Everywhere
§ Not just for games of chance!

§ I’m sick: will I sneeze this minute?
§ Email contains “FREE!”: is it spam?
§ Tooth hurts: have cavity?
§ 60 min enough to get to the airport?
§ Robot rotated wheel three times, how far did it advance?
§ Safe to cross street? (Look both ways!)

§ Sources of uncertainty in random variables:
§ Inherently random process (dice, etc)
§ Insufficient or weak evidence
§ Ignorance of underlying processes
§ Unmodeled variables
§ The world’s just noisy – it doesn’t behave according to plan!

Wednesday, April 10, 13

Reminder: Expectations
§ We can define function f(X) of a random variable X

§ The expected value of a function is its average value,
weighted by the probability distribution over inputs

§ Example: How long to get to the airport?
§ Length of driving time as a function of traffic:

L(none) = 20, L(light) = 30, L(heavy) = 60
§ What is my expected driving time?

§ Notation: EP(T)[L(T)]
§ Remember, P(T) = {none: 0.25, light: 0.5, heavy: 0.25}

§ E[L(T)] = L(none) * P(none) + L(light) * P(light) + L(heavy) * P(heavy)
§ E[L(T)] = (20 * 0.25) + (30 * 0.5) + (60 * 0.25) = 35

Wednesday, April 10, 13

Utilities

§ Utilities are functions from outcomes (states of the world)
to real numbers that describe an agent’s preferences

§ Where do utilities come from?
§ In a game, may be simple (+1/-1)
§ Utilities summarize the agent’s goals
§ Theorem: any set of preferences between outcomes can be

summarized as a utility function (provided the preferences meet
certain conditions)

§ In general, we hard-wire utilities and let actions emerge
(why don’t we let agents decide their own utilities?)

§ More on utilities soon…

Wednesday, April 10, 13

Stochastic Two-Player
§ E.g. backgammon
§ Expectiminimax (!)

§ Environment is an
extra player that moves
after each agent

§ Chance nodes take
expectations, otherwise
like minimax

Wednesday, April 10, 13

Stochastic Two-Player

§ Dice rolls increase b: 21 possible rolls
with 2 dice
§ Backgammon ≈ 20 legal moves
§ Depth 4 = 20 x (21 x 20)3 = 1.2 x 109

§ As depth increases, probability of
reaching a given node shrinks
§ So value of lookahead is diminished
§ So limiting depth is less damaging
§ But pruning is less possible…

§ TDGammon uses depth-2 search +
very good eval function +
reinforcement learning: world-
champion level play

Wednesday, April 10, 13

Expectimax Search Trees
§ What if we don’t know what the

result of an action will be? E.g.,
§ In solitaire, next card is unknown
§ In minesweeper, mine locations
§ In pacman, the ghosts act randomly

10 4 5 7

max

chance

§ Later, we’ll learn how to formalize
the underlying problem as a
Markov Decision Process

§ Can do expectimax search
§ Chance nodes, like min nodes,

except the outcome is uncertain
§ Calculate expected utilities
§ Max nodes as in minimax

search
§ Chance nodes take average

(expectation) of value of children

Wednesday, April 10, 13

Which Algorithm?

Minimax: no point in trying

3 ply look ahead, ghosts move randomly

Wednesday, April 10, 13

Which Algorithm?

Expectimax: wins some of the time

3 ply look ahead, ghosts move randomly

Wednesday, April 10, 13

Expectimax Search
§ In expectimax search, we have a

probabilistic model of how the
opponent (or environment) will
behave in any state
§ Model could be a simple uniform

distribution (roll a die)
§ Model could be sophisticated and

require a great deal of computation
§ We have a node for every outcome

out of our control: opponent or
environment

§ The model might say that adversarial
actions are likely!

§ For now, assume for any state we
magically have a distribution to
assign probabilities to opponent
actions / environment outcomes

Wednesday, April 10, 13

Expectimax Pseudocode
def value(s)
 if s is a max node return maxValue(s)
 if s is an exp node return expValue(s)
 if s is a terminal node return evaluation(s)

def maxValue(s)
 values = [value(s’) for s’ in successors(s)]
 return max(values)

def expValue(s)
 values = [value(s’) for s’ in successors(s)]
 weights = [probability(s, s’) for s’ in successors(s)]
 return expectation(values, weights)

8 4 5 6

Wednesday, April 10, 13

Expectimax for Pacman
§ Notice that we’ve gotten away from thinking that the

ghosts are trying to minimize pacman’s score
§ Instead, they are now a part of the environment
§ Pacman has a belief (distribution) over how they will

act
§ Quiz: Can we see minimax as a special case of

expectimax?
§ Quiz: what would pacman’s computation look like if

we assumed that the ghosts were doing 1-ply
minimax and taking the result 80% of the time,
otherwise moving randomly?

Wednesday, April 10, 13

Expectimax for Pacman

Minimizing
Ghost

Random
Ghost

Minimax
Pacman

Expectimax
Pacman

Results from playing 5 games

Pacman does depth 4 search with an eval function that avoids trouble
Minimizing ghost does depth 2 search with an eval function that seeks Pacman

SCORE: 0

Won 5/5
Avg. Score:

493

Won 5/5
Avg. Score:

483

Won 5/5
Avg. Score:

503

Won 1/5
Avg. Score:

-303

Wednesday, April 10, 13

Expectimax Pruning?

§ Not easy
§ exact: need bounds on possible values
§ approximate: sample high-probability branches

Wednesday, April 10, 13

Expectimax Evaluation

§ Evaluation functions quickly return an estimate for a
node’s true value (which value, expectimax or minimax?)

§ For minimax, evaluation function scale doesn’t matter
§ We just want better states to have higher evaluations

(get the ordering right)
§ We call this insensitivity to monotonic transformations

§ For expectimax, we need magnitudes to be meaningful

0 40 20 30 x2 0 1600 400 900

Wednesday, April 10, 13

Mixed Layer Types
§ E.g. Backgammon
§ Expectiminimax

§ Environment is an
extra player that moves
after each agent

§ Chance nodes take
expectations, otherwise
like minimax

Wednesday, April 10, 13

Stochastic Two-Player

§ Dice rolls increase b: 21 possible rolls
with 2 dice
§ Backgammon ≈ 20 legal moves
§ Depth 4 = 20 x (21 x 20)3 1.2 x 109

§ As depth increases, probability of
reaching a given node shrinks
§ So value of lookahead is diminished
§ So limiting depth is less damaging
§ But pruning is less possible…

§ TDGammon uses depth-2 search +
very good eval function +
reinforcement learning: world-
champion level play

Wednesday, April 10, 13

Multi-player Non-Zero-Sum Games

§ Similar to
minimax:
§ Utilities are now

tuples
§ Each player

maximizes their
own entry at
each node

§ Propagate (or
back up) nodes
from children

§ Can give rise to
cooperation and
competition
dynamically…

1,2,6 4,3,2 6,1,2 7,4,1 5,1,1 1,5,2 7,7,1 5,4,5

Wednesday, April 10, 13

