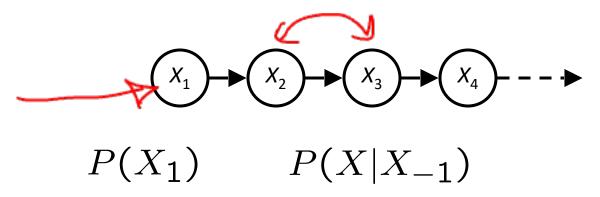
CSE 473: Introduction to Artificial Intelligence

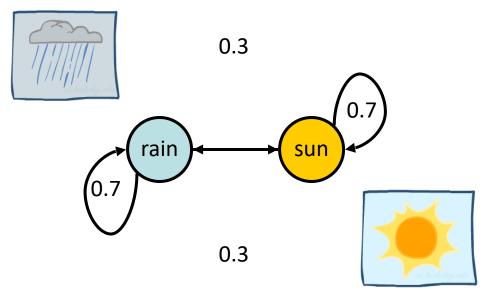
Hanna Hajishirzi HMMs Inference, Particle Filters

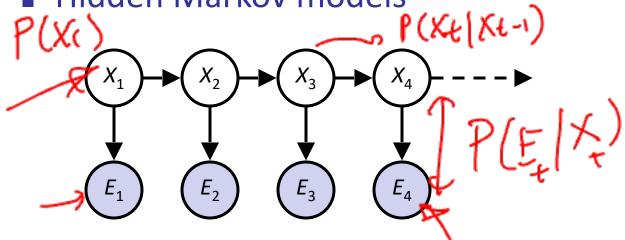
slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

Recap: Reasoning Over Time

Markov models







χt	9	P(E X
ハモ	`.	P(E X

X	Е	Р
rain	umbrella	0.9
rain	no umbrella	0.1
sun	umbrella	0.2
sun	no umbrella	0.8

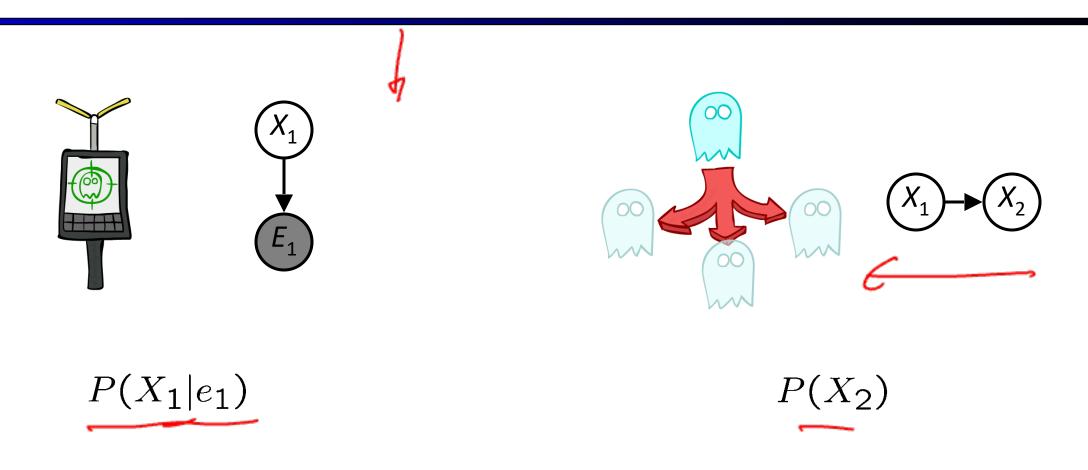
Inference: Find State Given Evidence

We are given evidence at each time and want to know

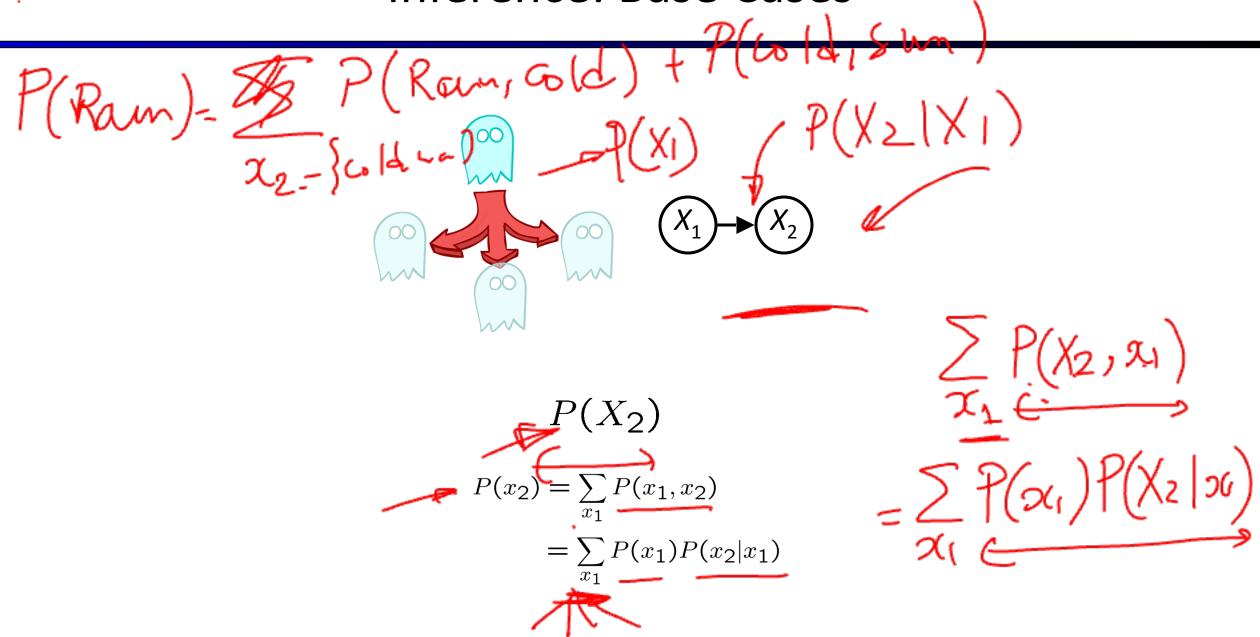
$$B_t(X) = P(X_t|e_{1:t})$$

- Idea: start with $P(X_1)$ and derive B_t in terms of B_{t-1}
 - equivalently, derive B_{t+1} in terms of B

Inference: Base Cases



Inference: Base Cases



Passage of Time

Assume we have current belief P(X | evidence to date)

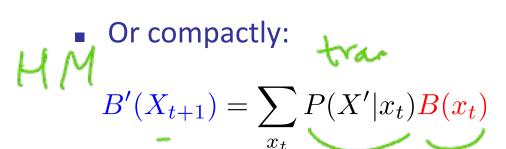
$$B(X_t) = P(X_t|e_{1:t})$$

Then, after one time step passes:

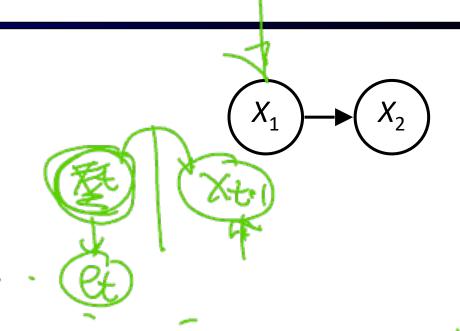
$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1},x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t,e_{1:t})P(x_t|e_{1:t})$$

$$= \sum_{x_t} P(X_{t+1}|x_t)P(x_t|e_{1:t})$$
• Basic idea: beliefs get_x*pushed" through the transitions

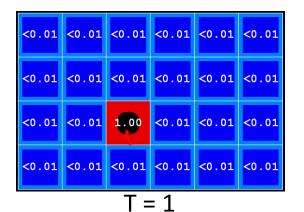


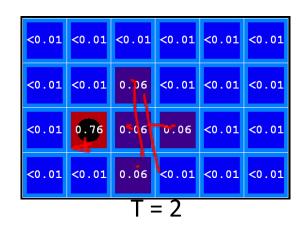
■ With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes



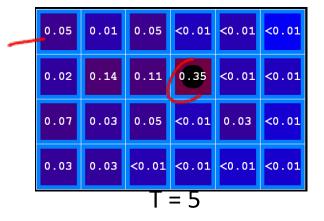
Example: Passage of Time

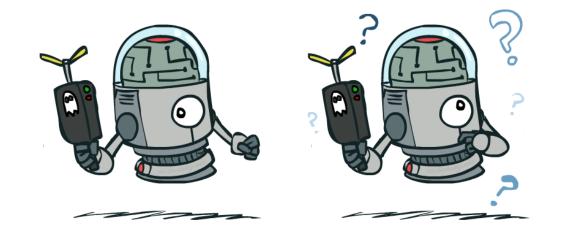
As time passes, uncertainty "accumulates"



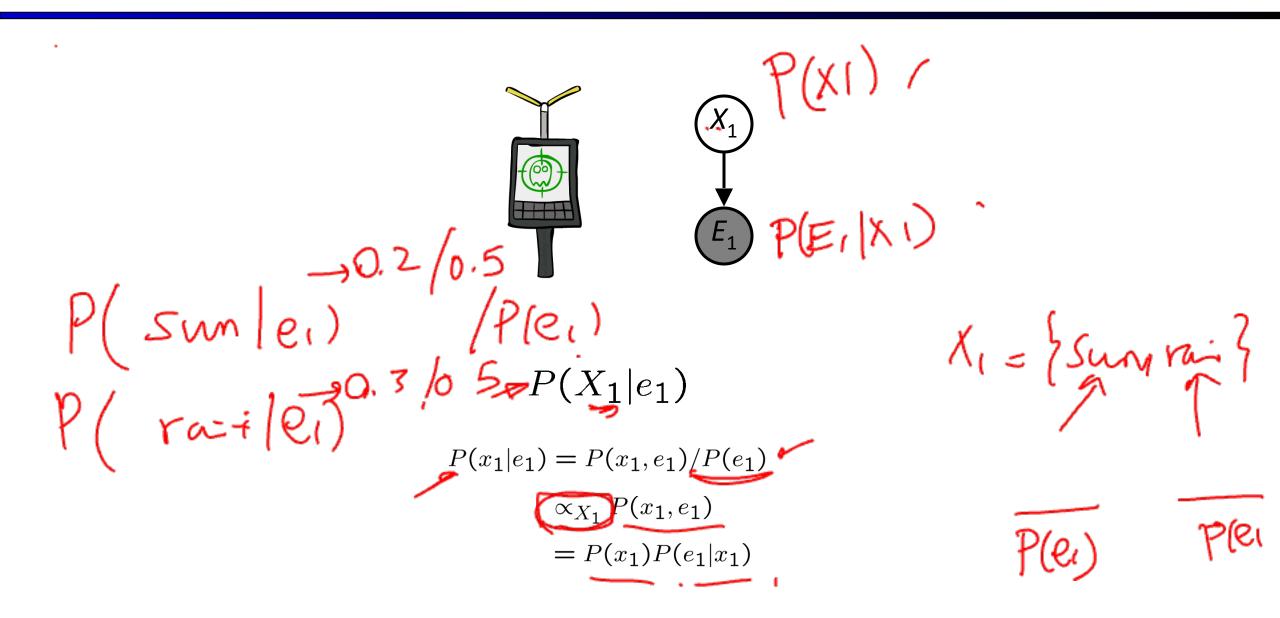


(Transition model: ghosts usually go clockwise)





Inference: Base Cases



Observation

Assume we have current belief P(X | previous evidence):

$$B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$$

■ Then, after evidence comes in:

$$P(X_{t+1}|e_{1:t+1}) = P(X_{t+1}, e_{t+1}|e_{1:t})/P(e_{t+1}|e_{1:t})$$

$$\propto_{X_{t+1}} P(X_{t+1}, e_{t+1}|e_{1:t})$$

$$= P(e_{t+1}|e_{1:t}, X_{t+1})P(X_{t+1}|e_{1:t})$$

 $= P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$

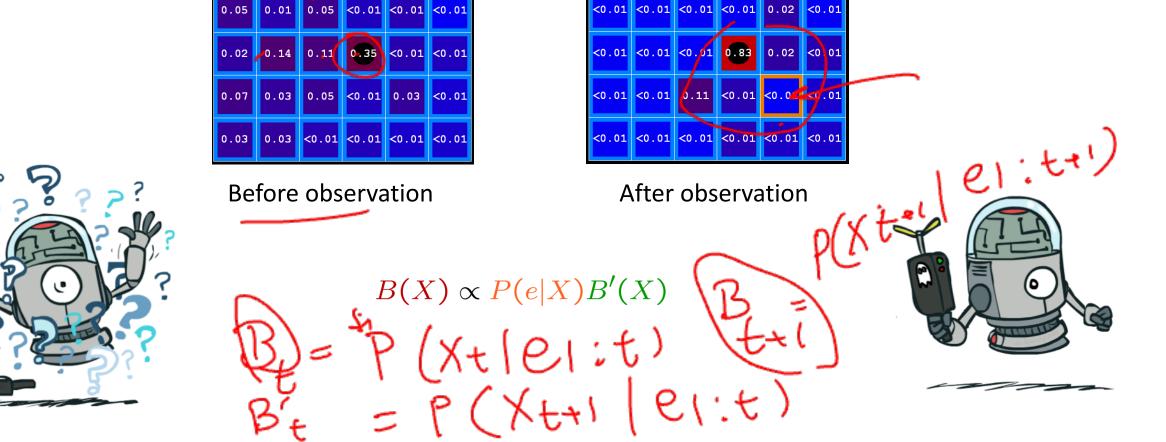
Or, compactly:

$$B(X_{t+1}) \propto_{X_{t+1}} P(e_{t+1}|X_{t+1})B'(X_{t+1})$$

- Basic idea: beliefs "reweighted" by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"



The Forward Algorithm

We are given evidence at each time and want to know

$$B_t(X) = P(X_t|e_{1:t})$$

We can derive the following updates

$$P(x_{t}|e_{1:t}) \propto_{X} P(x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, x_{t}, e_{1:t})$$

$$= \sum_{x_{t-1}} P(x_{t-1}, e_{1:t-1}) P(x_{t}|x_{t-1}) P(e_{t}|x_{t})$$

$$= P(e_{t}|x_{t}) \sum_{x_{t-1}} P(x_{t}|x_{t-1}) P(x_{t-1}, e_{1:t-1})$$

We can normalize as we go if we want to have P(x|e) at each time step, or just once at the end...

Filtering: P(X_t | evidence_{1:t})

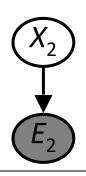
Elapse time: compute P($X_t \mid e_{1:t-1}$)

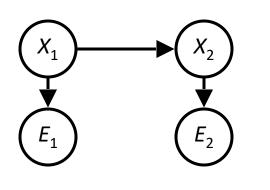
$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$



Observe: compute P($X_t \mid e_{1:t}$)

$$P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$





Belief:
$$\langle P(rain), P(sun) \rangle$$

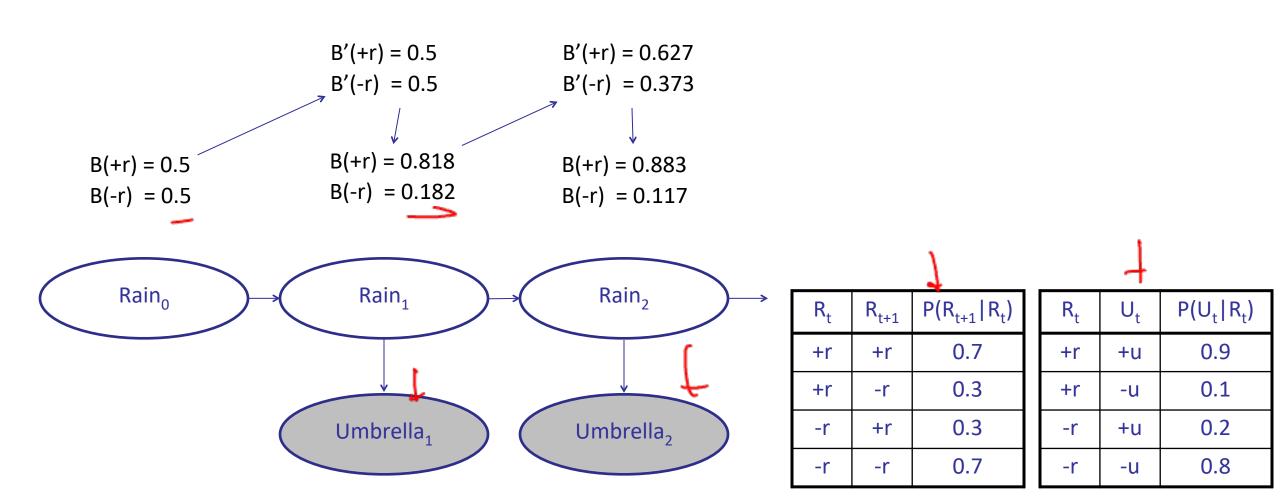
$$P(X_1) \qquad \langle 0.5, 0.5 \rangle \qquad Prior \ on \ X_1$$

$$P(X_1 \mid E_1 = umbrella) \qquad \langle 0.82 \mid 0.18 \rangle \qquad Observe$$

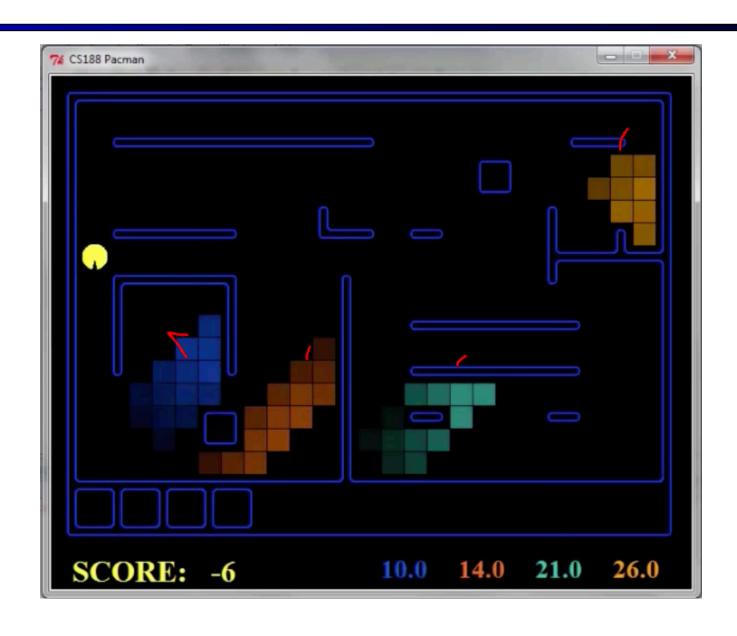
$$P(X_2 \mid E_1 = umbrella) \qquad \langle 0.63, 0.37 \rangle \qquad \textit{Elapse time}$$

$$P(X_2 \mid E_1 = umb, E_2 = umb)$$
 <0.88, 0.12> Observe

Example: Weather HMM



Pacman – Sonar (P4)



CSE 473: Introduction to Artificial Intelligence

Hanna Hajishirzi HMMs Inference, Particle Filters

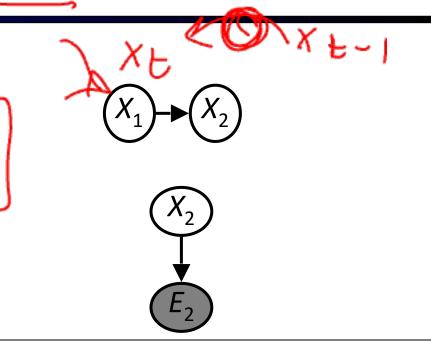
slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

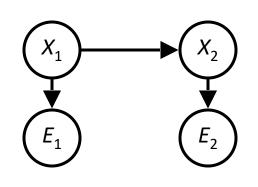
Filtering: P(X_t | evidence_{1:t})

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) P(x_t|x_{t-1})$$

Observe: compute P($X_t \mid e_{1:t}$)

$$P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$





Belief:
$$P(X_1) = umbrella$$
 <0.5, 0.5> Prior on $X_1 = umbrella$ <0.82, 0.18> Observe
$$P(X_2 \mid E_1 = umbrella) = (0.63, 0.37) = Elapse time$$
 $P(X_2 \mid E_1 = umb, E_2 = umb) = (0.88, 0.12) = (0.88, 0.12)$

Approximate Inference

Sometimes |X| is too big for exact inference

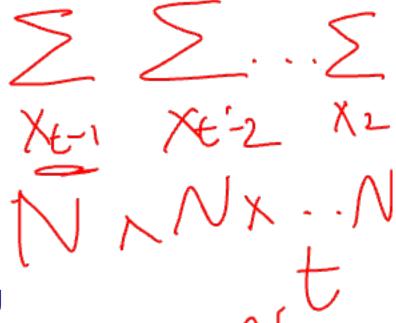
|X| may be too big to even store B(X)

• E.g. when X is continuous

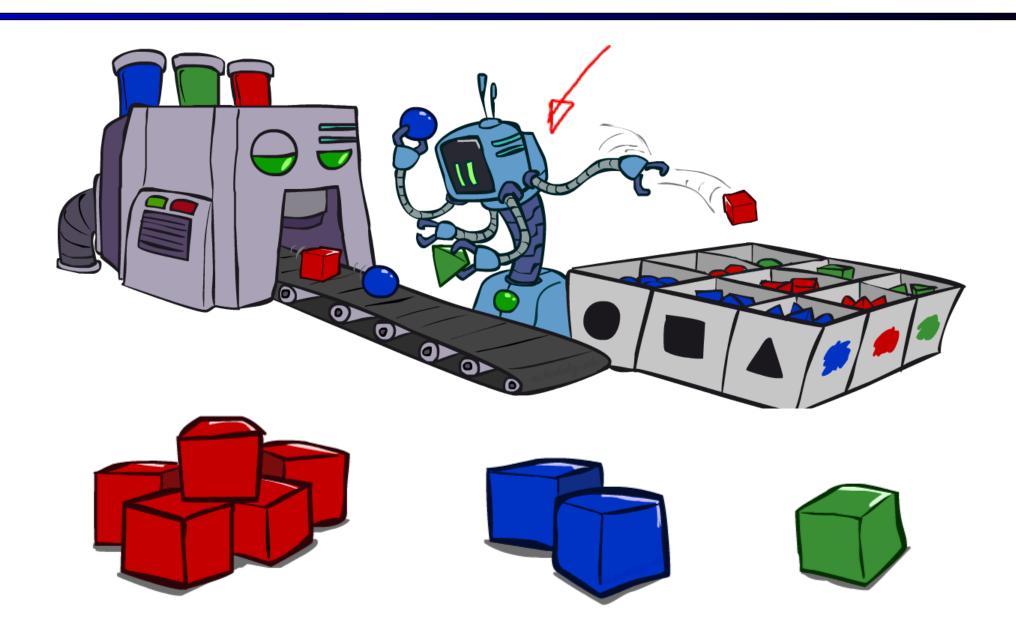
■ |X|² may be too big to do updates

Solution: approximate inference by sampling

How robot localization works in practice



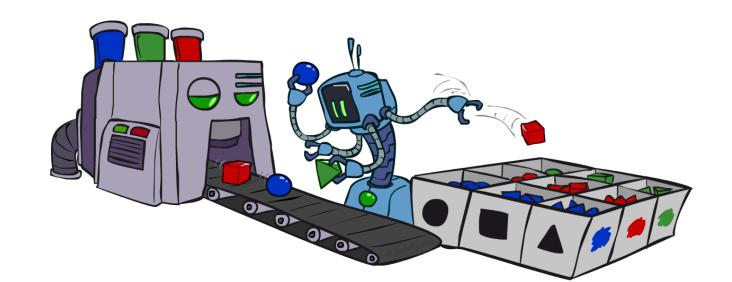
Approximate Inference: Sampling



Sampling

- Sampling is a lot like repeated simulation
 - Predicting the weather, basketball games, ...
- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute an approximate probability

- Why sample?
 - Learning: get samples from a distribution you don't know
 - Inference: getting a sample is faster than computing the right answer

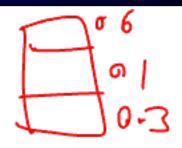


Sampling

- Sampling from given distribution
 - Step 1: Get sample u from uniform distribution over [0, 1)
 - E.g. random() in python
 - Step 2: Convert this sample *u* into an outcome for the given distribution by having each target outcome associated with a sub-interval of [0,1) with sub-interval size equal to probability of the outcome

Example

С	P(C)
red	0.6
green	0.1
blue	0.3

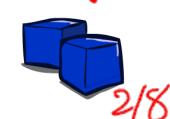


$$0 \le u < 0.6, \rightarrow C = red$$

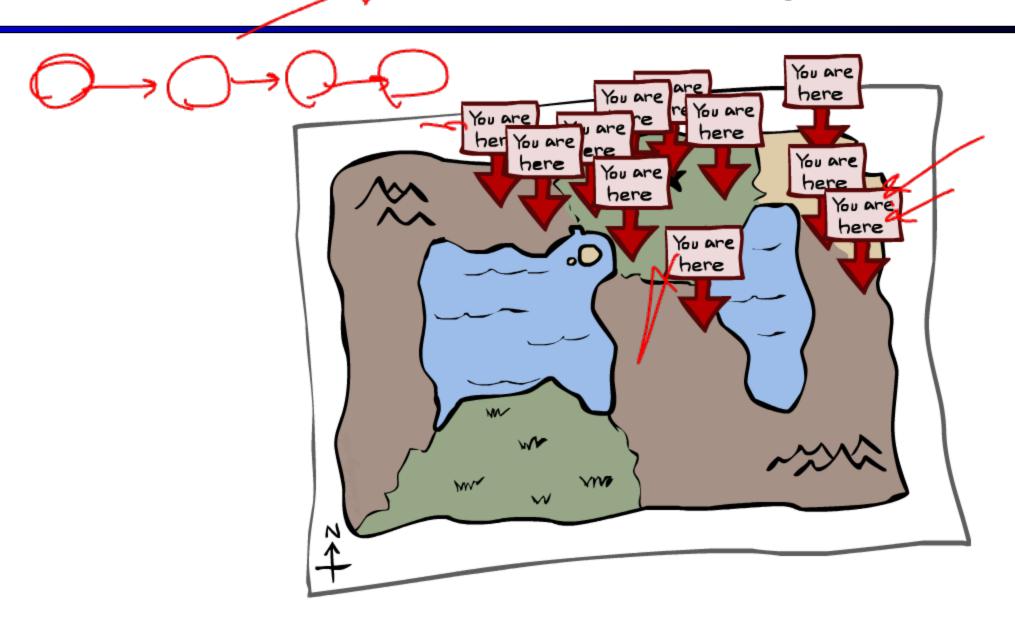
$$0.6 \le u < 0.7, \rightarrow C = green$$

$$0.7 \le u < 1, \rightarrow C = blue$$

- If random() returns u = 0.83, then our sample is C =blue
- E.g, after sampling 8 times:



Particle Filtering

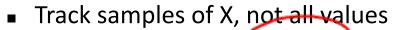


Particle Filtering

N C X

10

- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
- Solution: approximate inference



Samples are called particles

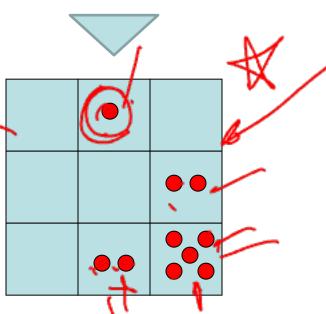
■ Time per step is linear in the number of samples

But: number needed may be large

In memory: list of particles, not states

This is how robot localization works in practice

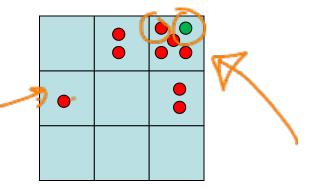
article is just new name for sample



Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|</p>
 - Storing map from X to counts would defeat the point

- \blacksquare So, many x may have P(x) = 0!
- More particles, more accuracy
- For now, all particles have a weight of 1



Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the transition model

$$x' = \operatorname{sample}(P(X'|x))$$

- Samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place

- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

וגי	rti	c۱	eς.	

(0.0)	
1221	
1.3.31	

10	21	
(2	,3)	

(3	,3	C
7	~	_	\ .

(3,2)

(3,3)

(3,2)

(3,3)

(3,3)

(2,3)

Particles:

(3,2)

(2,3) (3,2)

(3,1)

(3,3)

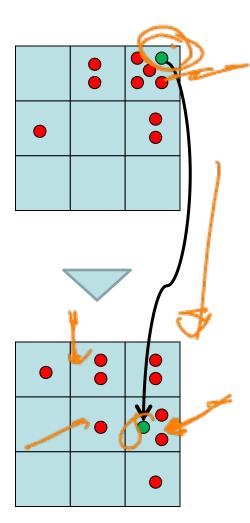
(3,2)

(1,3)

(2,3)

(3,2)

(2,2)



Particle Filtering: Observe

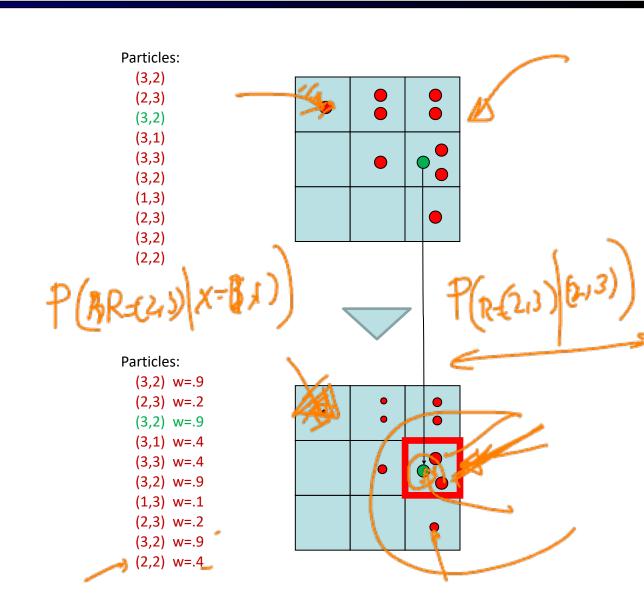
Slightly trickier:

- Don't sample observation, fix it
- Downweight samples based on the evidence

$$w(x) = P(e|x)$$

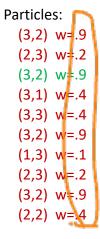
$$B(X) \propto P(e|X)B'(X)$$

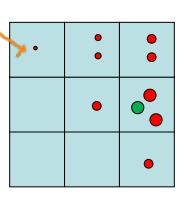
 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))



Particle Filtering: Resample

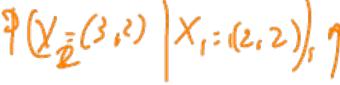
- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one



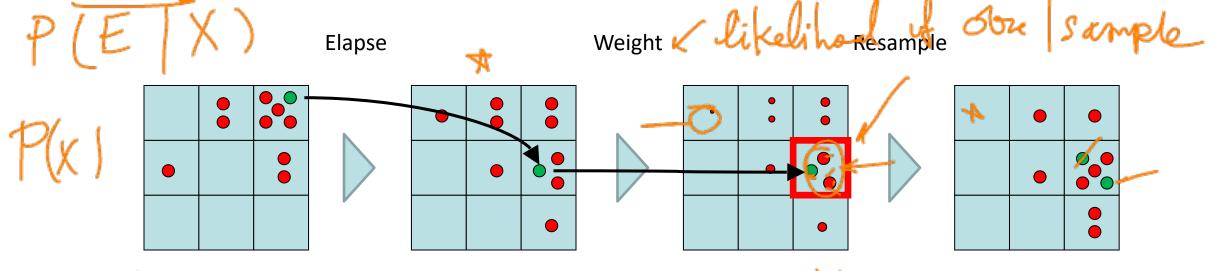




Recap: Particle Filtering (Vac(3,2)) X(1:(2,2)), 1



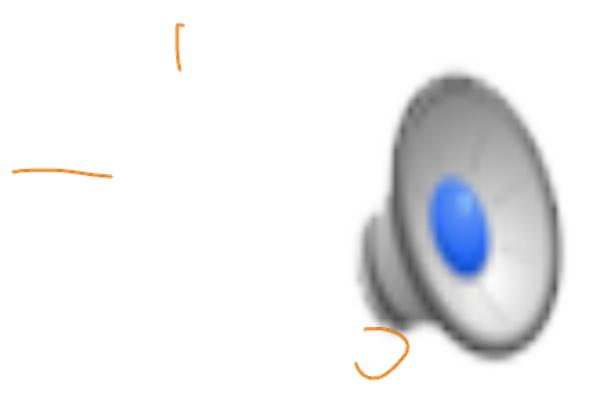
Particles: track samples of states rather than an explicit distribution



Particles:	Particles:
(3,3)	(3,2)
(2,3)	(2,3)
(3,3)	(3,2)
(3,2)	(3,1)
(3,3)	(3,3)
(3,2)	(3,2)
(1,2)	(1,3)
(3,3)	(2,3)
(3,3)	(3,2)
(2,3)	(2,2)

 $x' = \text{sample}(\bar{P}(X'|x))$

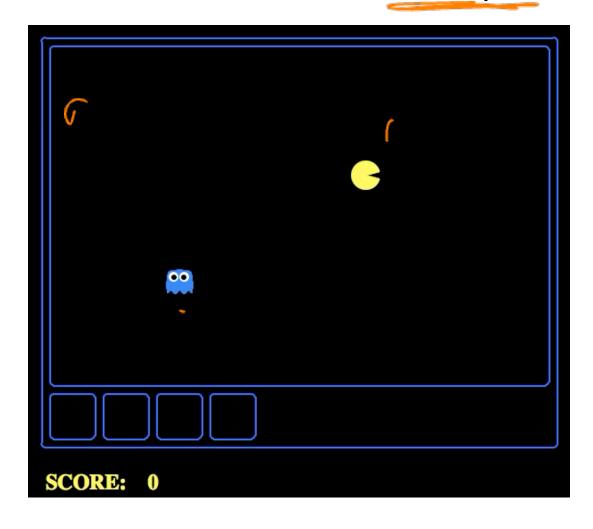
Video of Demo – Moderate Number of Particles



Video of Demo – Huge Number of Particles

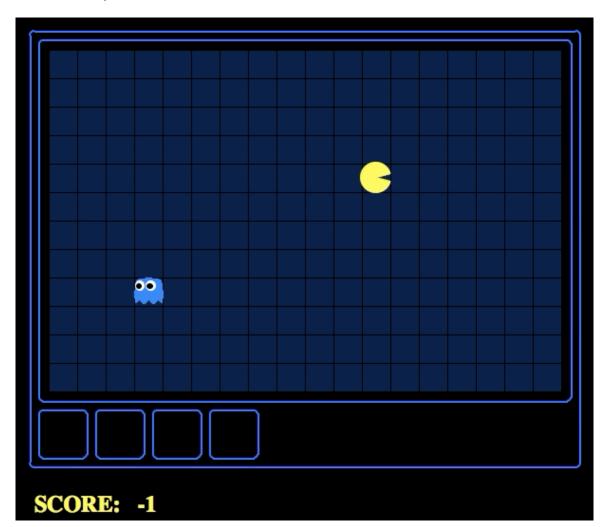
Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles



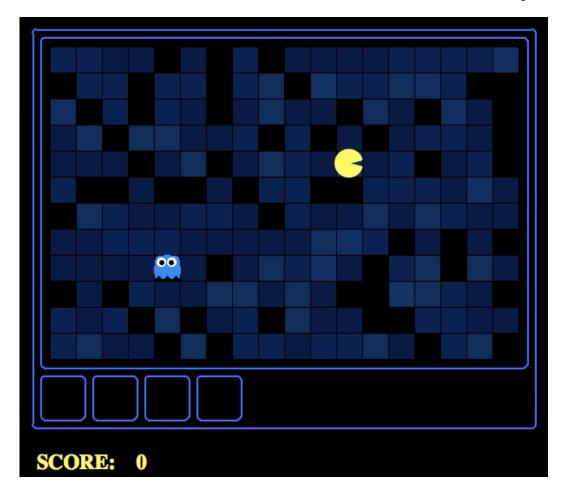
Which Algorithm?

Exact filter, uniform initial beliefs



Which Algorithm?

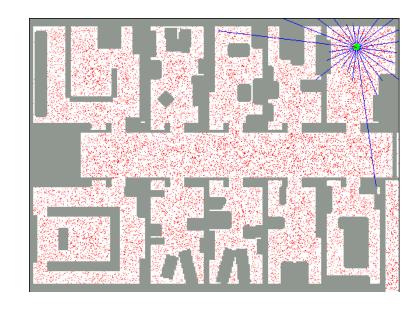
Particle filter, uniform initial beliefs, 300 particles

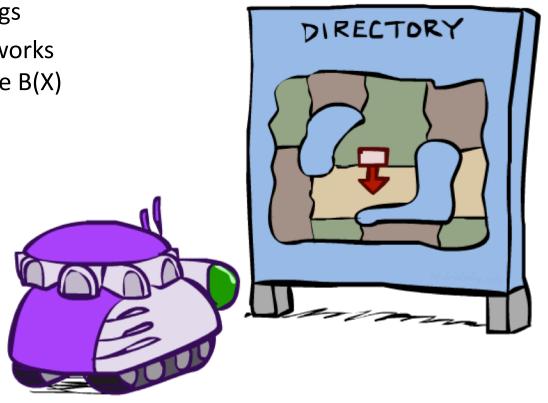


Robot Localization

In robot localization:

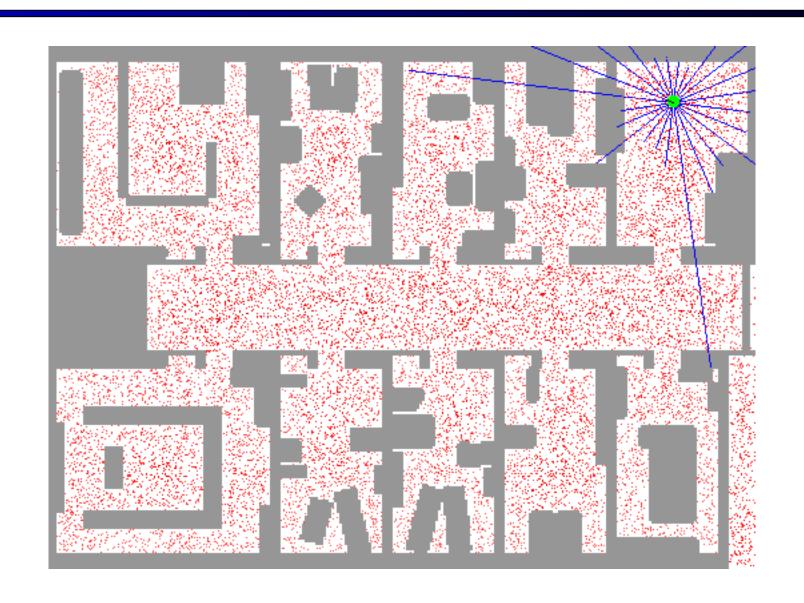
- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique





Particle Filter Localization (Sonar)

Particle Filter Localization (Laser)



Our Status in 473

- Done with Search and Planning
- Done with Decision Making Under Uncertainty
- Done with Probabilistic Inference
- Next Topic: Machine Learning and Neural Networks (Briefly)
 - Recommend to take CSE 446 for more