
CSE 473:
Intro to Artificial Intelligence

Hanna Hajishirzi

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Today

o Agents that Plan Ahead

o Search Problems

o Uninformed Search Methods
oDepth-First Search
o Breadth-First Search
oUniform-Cost Search

Agents that Plan

Reflex Agents

o Reflex agents:
o Choose action based on current percept

(and maybe memory)
o May have memory or a model of the

world’s current state
o Do not consider the future consequences of

their actions
o Consider how the world IS

o Can a reflex agent be rational?

Video of Demo Reflex Optimal

Video of Demo Reflex Odd

Planning Agents

o Planning agents:
o Ask “what if”
o Decisions based on (hypothesized)

consequences of actions
o Must have a model of how the world

evolves in response to actions
o Must formulate a goal (test)
o Consider how the world WOULD BE

o Optimal vs. complete planning

o Planning vs. replanning

Video of Demo Replanning

Video of Demo Mastermind

Search Problems

Search Problems

o A search problem consists of:

o A state space

o A successor function
(with actions, costs)

o A start state and a goal test

o A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Search: it is not just for agents
Hardware
verification

Search: It’s not just for Agents

11

Hardware verification
Planning optimal repair

sequences

Search: It’s not just for Agents

11

Hardware verification
Planning optimal repair

sequences

Planning optimal
repair sequences

Route
Planning

o Search:
Modeling the world

Example: Traveling in Romania

o State space:
o Cities

o Successor function:
o Roads: Go to adjacent city with

cost = distance
o Start state:

o Arad
o Goal test:

o Is state == Bucharest?

o Solution?

What’s in a State Space?

o Problem: Pathing
o States: (x,y) location
o Actions: NSEW
o Successor: update location

only
o Goal test: is (x,y)=END

o Problem: Eat-All-Dots
o States: {(x,y), dot booleans}
o Actions: NSEW
o Successor: update location

and possibly a dot boolean
o Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

Parsing Natural Language

§ Input:
§ Set of states

§ Operations

§ Start state

§ Goal state (test)

§ Output:

This lecture is about search algorithms.

1/3/2019 corenlp.run

http://corenlp.run/ 1/2

art-of-Speech:

This lecture is about search algorithms .
DT NN VBZ IN NN NNS .

1

asic Dependencies:

This lecture is about search algorithms .
DT NN VBZ IN NN NNS .det punctcompound

case
cop

nsubj

1

nhanced++ Dependencies:

This lecture is about search algorithms .
DT NN VBZ IN NN NNS .det punctcompound

case
cop

nsubj

1

oreNLP Tools:

Enter a TokensRegex (http://nlp.stanford.edu/software/tokensregex.shtml) expression to run against the above sentence:

Visualisation provided using the brat visualisation/annotation software (http://brat.nlplab.org/).

— Text to annotate —
This lecture is about search algorithms.

— Annotations —
dependency parse parts-of-speech

— Language —
English

Submit

TokensRegex Semgrex Tregex

Matche.g., (?$foxtype [{pos:JJ}]+) fox

State Space Sizes?

o World state:
o Agent positions: 120
o Food count: 30
o Ghost positions: 12
o Agent facing: NSEW

o How many
o World states?

120x(230)x(122)x4
o States for pathing?

120
o States for eat-all-dots?

120x(230)

State Representation

o Real-world applications:
o Requires approximations and heuristics
oNeed to design state representation so that search is feasible

oOnly focus on important aspects of the state
oE.g., Use features to represent world states

Safe Passage

o Problem: eat all dots while keeping the ghosts perma-scared
o What does the state space have to specify?

o (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

o State space graph: A mathematical
representation of a search problem
o Nodes are (abstracted) world configurations
o Arcs represent successors (action results)
o The goal test is a set of goal nodes (maybe only

one)

o In a state space graph, each state occurs
only once!

o We can rarely build this full graph in
memory (it’s too big), but it’s a useful idea

State Space Graphs

o State space graph: A mathematical
representation of a search problem
o Nodes are (abstracted) world configurations
o Arcs represent successors (action results)
o The goal test is a set of goal nodes (maybe only

one)

o In a state space graph, each state occurs
only once!

o We can rarely build this full graph in
memory (it’s too big), but it’s a useful idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny search graph for a tiny
search problem

Search Trees

o A search tree:
o The start state is the root node
o Children correspond to successors
o Nodes show states, but correspond to PLANS that achieve those states
o For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

o Nodes in state space graphs are problem states
o Represent an abstracted state of the world
o Have successors, can be goal / non-goal, have multiple predecessors

o Nodes in search trees are plans
o Represent a plan (sequence of actions) which results in the node’s

state
o Have a problem state and one parent, a path length, a depth & a cost
o The same problem state may be achieved by multiple search tree

nodes

Depth 5

Depth 6

Parent

Node

Search Nodes
Problem States

Action

State Space Graphs vs. Search Trees

State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

s
b

b G a

a

G

a G b G

… …

Tree Search

Search Example: Romania

Searching with a Search Tree

o Search:
o Expand out potential plans (tree nodes)
oMaintain a fringe of partial plans under

consideration
o Try to expand as few tree nodes as possible

General Tree Search

o Important ideas:
o Fringe
o Expansion
o Exploration strategy

o Main question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p q

c

e

h

a

f

r

Example: Tree Search

a a p

q

h

f

r

q

c G

a

q

qp

q

a

S

G

d

b

p q

c

e

h

a

f

r

fd e

r

S

d e p

e

h r

f

c G

b c

s
s à d
s à e
s à p
s à d à b
s à d à c
s à d à e
s à d à e à h
s à d à e à r
s à d à e à r à f
s à d à e à r à f à c
s à d à e à r à f à G

S D E R F G

Today

o Uninformed Search Methods
oDepth-First Search
o Breadth-First Search
oUniform-Cost Search

o Informed Search Methods

Recap: Search

o Search problem:
o States (configurations of the world)
o Actions and costs
o Successor function (world dynamics)
o Start state and goal test

o Search tree:
o Nodes: represent plans for reaching states

o Search algorithm:
o Systematically builds a search tree
o Chooses an ordering of the fringe (unexplored nodes)

General Tree Search

o Important ideas:
o Fringe
o Expansion
o Exploration strategy

o Main question: which fringe nodes to explore?

Search Algorithms

o Uninformed Search Methods
oDepth-First Search
o Breadth-First Search
oUniform-Cost Search

o Heuristic Search Methods
o Best First / Greedy Search
oA*

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

o Complete: Guaranteed to find a solution if one exists?
o Optimal: Guaranteed to find the least cost path?
o Time complexity?
o Space complexity?

o Cartoon of search tree:
o b is the branching factor
o m is the maximum depth
o solutions at various depths

o Number of nodes in entire tree?
o 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

o What nodes DFS expand?
o Some left prefix of the tree.
o Could process the whole tree!
o If m is finite, takes time O(bm)

o How much space does the fringe take?
o Only has siblings on path to root, so O(bm)

o Is it complete?
o m could be infinite, so only if we prevent

cycles (more later)

o Is it optimal?
o No, it finds the “leftmost” solution,

regardless of depth or cost

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

o What nodes does BFS expand?
o Processes all nodes above shallowest

solution
o Let depth of shallowest solution be s
o Search takes time O(bs)

o How much space does the fringe
take?
o Has roughly the last tier, so O(bs)

o Is it complete?
o s must be finite if a solution exists, so yes!

o Is it optimal?
o Only if costs are all 1 (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

BFS
Algorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS

Y N O(bm) O(bm)

Y Y* O(bs) O(bs)

…
b 1 node

b nodes

b2 nodes

bm nodes

d tiers

bs nodes

Quiz: DFS vs BFS

Video of Demo Maze Water DFS/BFS (part 1)

Video of Demo Maze Water DFS/BFS (part 2)

DFS vs BFS

o When will BFS outperform DFS?

o When will DFS outperform BFS?

Iterative Deepening

o Idea: get DFS’s space advantage with
BFS’s time / shallow-solution
advantages
o Run a DFS with depth limit 1. If no

solution…
o Run a DFS with depth limit 2. If no

solution…
o Run a DFS with depth limit 3. …..

o Isn’t that wastefully redundant?
o Generally most work happens in the lowest

level searched, so not so bad!

…
b

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

How?

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority queue
(priority: cumulative cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164 11
5

713

8

1011

17 11

0

6

3 9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties

o What nodes does UCS expand?
o Processes all nodes with cost less than cheapest solution!
o If that solution costs C* and arcs cost at least e , then the

“effective depth” is roughly C*/e
o Takes time O(bC*/e) (exponential in effective depth)

o How much space does the fringe take?
o Has roughly the last tier, so O(bC*/e)

o Is it complete?
o Assuming best solution has a finite cost and minimum

arc cost is positive, yes!

o Is it optimal?
o Yes! (Proof next lecture via A*)

b

C*/e “tiers”
c £ 3

c £ 2
c £ 1

Uniform Cost Issues

o Remember: UCS explores increasing
cost contours

o The good: UCS is complete and
optimal!

o The bad:
o Explores options in every “direction”
o No information about goal location

o We’ll fix that soon!

Start Goal

…

c £ 3
c £ 2

c £ 1

Video of Demo Empty UCS

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part
3)

The One Queue

o All these search algorithms are
the same except for fringe
strategies
o Conceptually, all fringes are priority

queues (i.e. collections of nodes
with attached priorities)

o Practically, for DFS and BFS, you
can avoid the log(n) overhead from
an actual priority queue, by using
stacks and queues

o Can even code one implementation
that takes a variable queuing object

Search Gone Wrong?

Search and Models

o Search operates over
models of the world
o The agent doesn’t

actually try all the
plans out in the real
world!

o Planning is all “in
simulation”

o Your search is only as
good as your models…

To Do:

o Try python practice (PS0)
oWon’t be graded

o PS1 on the website
o Start ASAP
o Submission: Canvas

o Website:
oDo readings for search algorithms
o Try this search visualization tool

ohttp://qiao.github.io/PathFinding.js/visual/

