CSE 473: Introduction to Artificial Intelligence

Hanna Hajishirzi
Search
(Un-informed, Informed Search)

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

Announcements

HW1 is released

Due: Friday 6pm

o PS1 is due: Next Wednesday (April 14th)

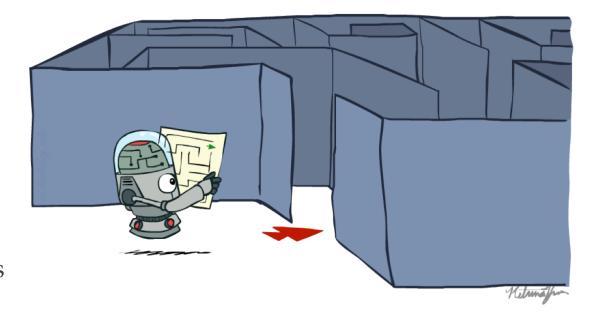
Recap: Search

• Search problem:

- States (configurations of the world)
- Actions and costs
- Successor function (world dynamics)
- Start state and goal test

Search tree:

Nodes: represent plans for reaching states

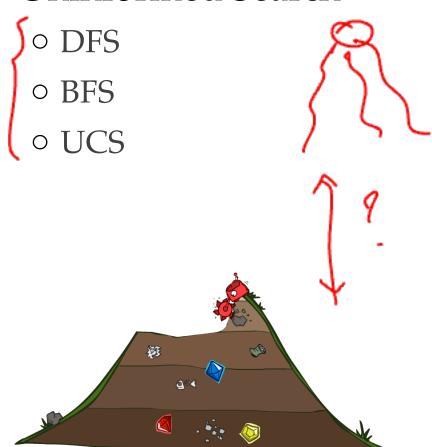


• Search algorithm:

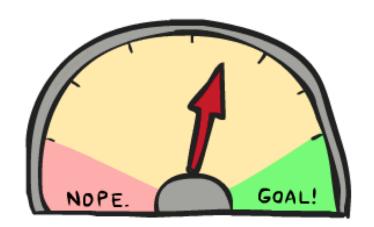
- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)
- o **Optimal:** finds least-cost plans

Informed Search

Uninformed Search



- Informed Search
 - Heuristics
 - Greedy Search
 - A* Search
 - Graph Search



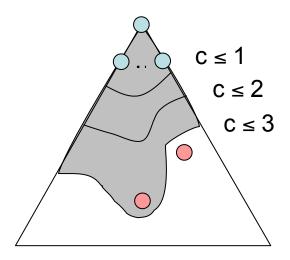
Uniform Cost Issues

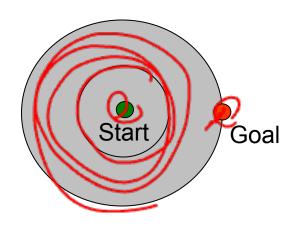
 Remember: UCS explores increasing cost contours

• The good: UCS is complete and optimal!

- The bad:
 - Explores options in every "direction"
 - No information about goal location

• We'll fix that soon!

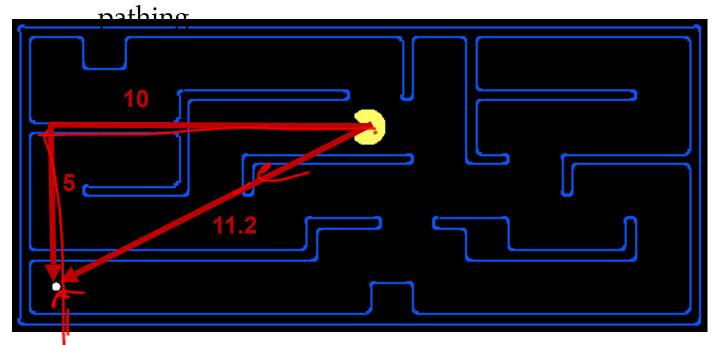


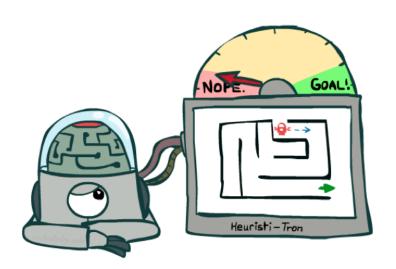


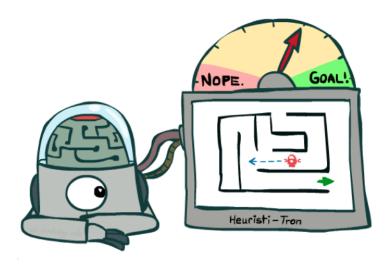
Search Heuristics

A heuristic is:

- A function that *estimates* how close a state is to a goal
- Designed for a particular search problem
- Pathing?
- Examples: Manhattan distance, Euclidean distance for

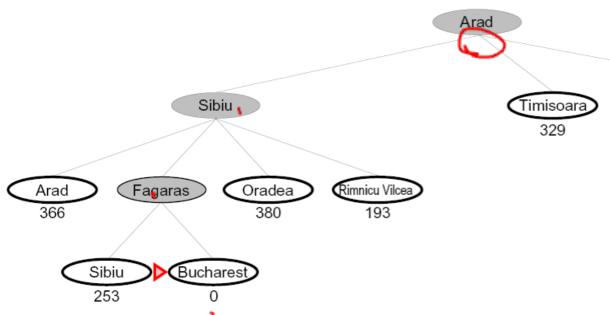




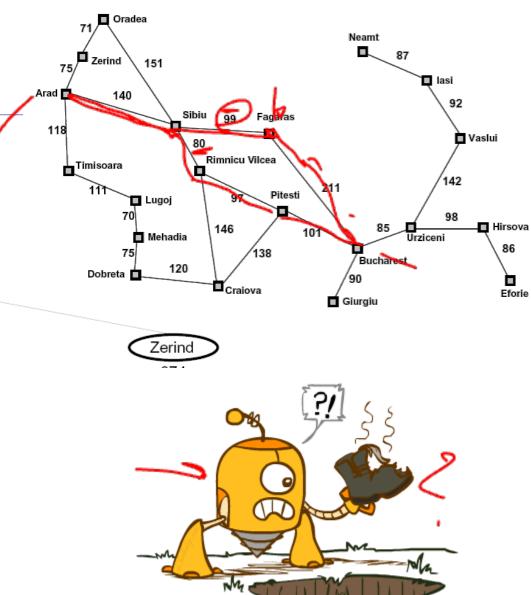


Greedy Search

• Expand the node that seems closest...



- Is it optimal?
 - One No. Resulting path to Bucharest is not the shortest!



Greedy Search

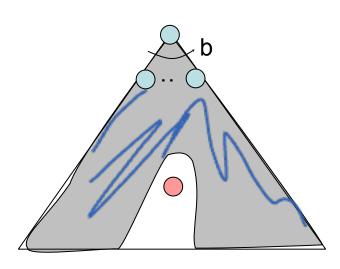
Arad of 2 Banch

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

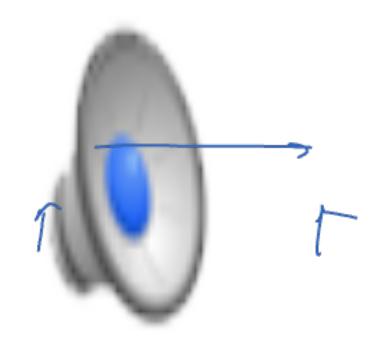


- A common case:
 - Best-first takes you straight to the (wrong) goal

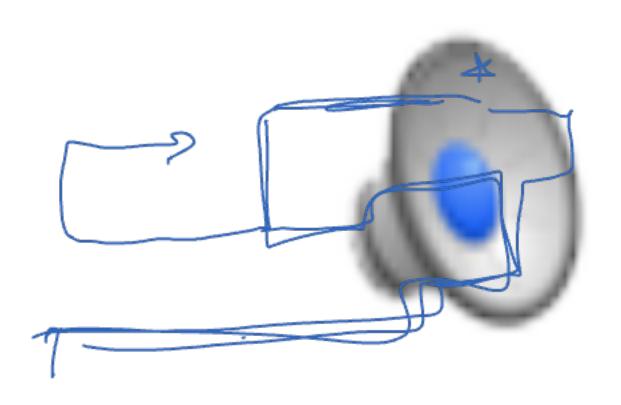
Worst-case: like a badly-guided DFS



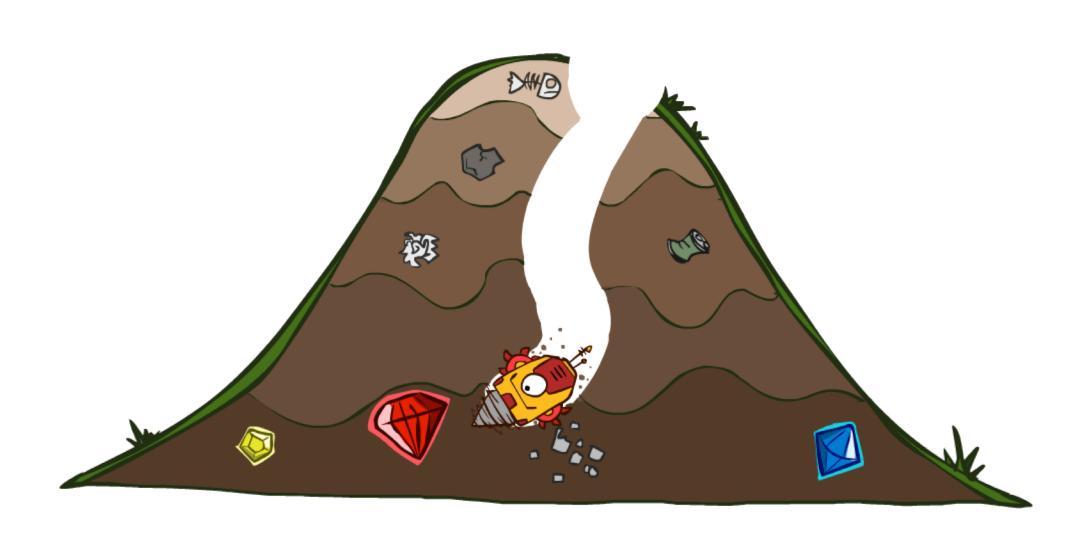
Video of Demo Contours Greedy (Empty)



Video of Demo Contours Greedy (Pacman Small Maze)



A* Search



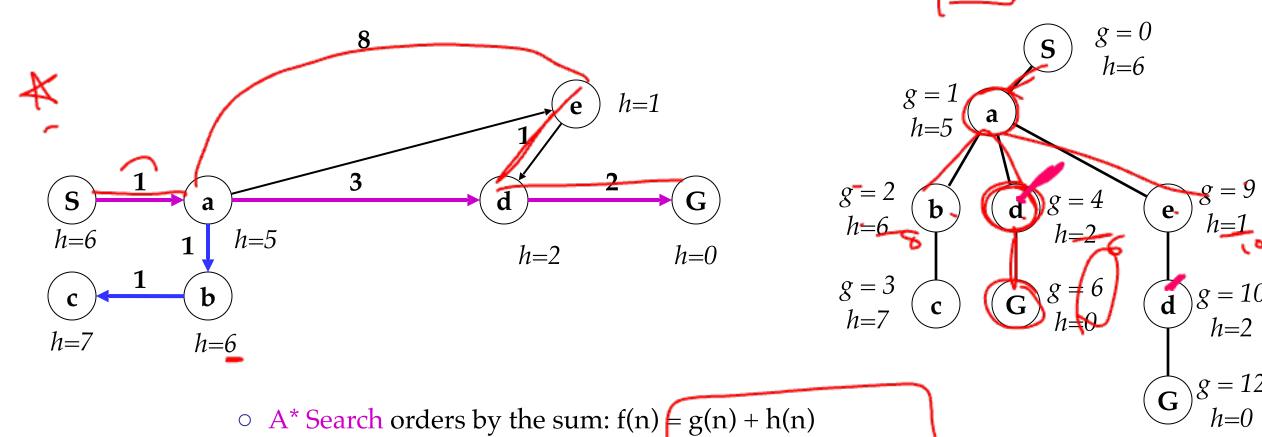
A* Search

_ UCS

greeds -

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)



Example: Teg Grenager

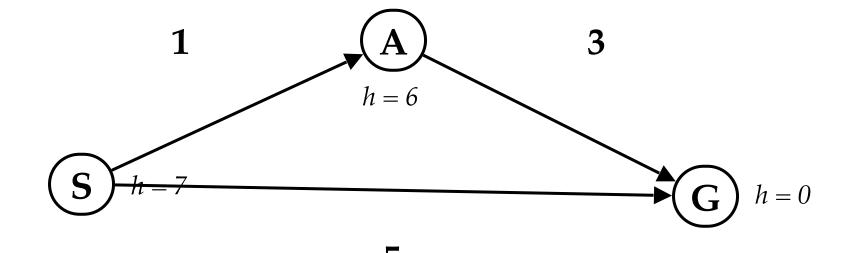
Questions

• Should we stop when we enqueue a goal?

Should we stop when we enqueue a goal?

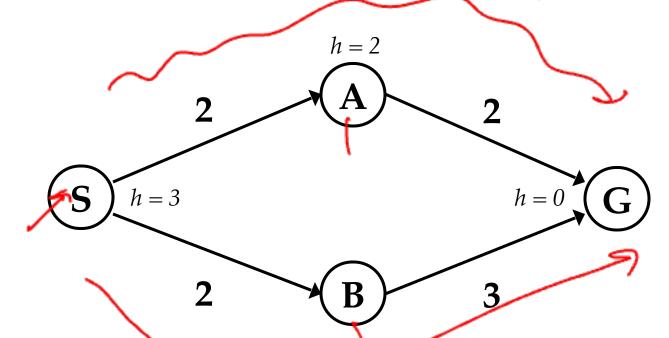
Should we stop when we enqueue a goal? h = 2 h = 0 h = 1

○ Is A* optimal?



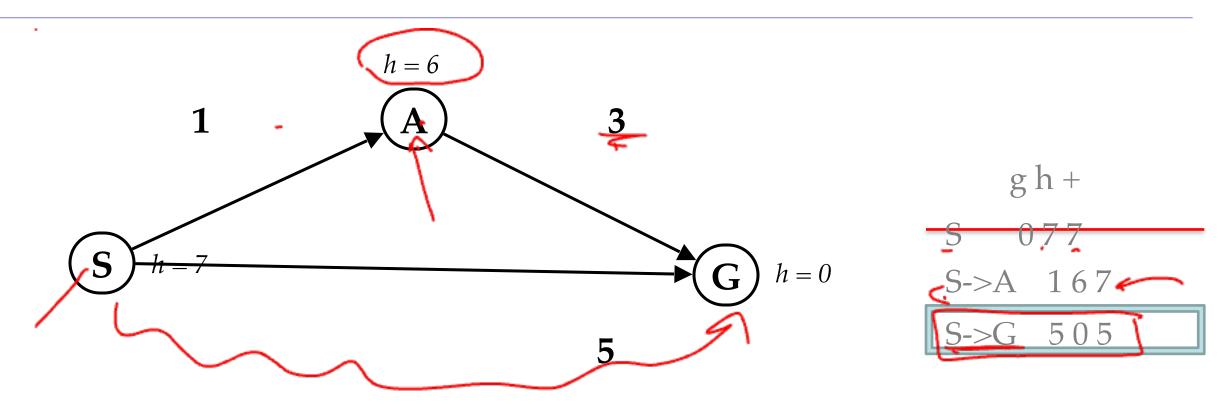
When should A* terminate?

• Should we stop when we enqueue a goal?



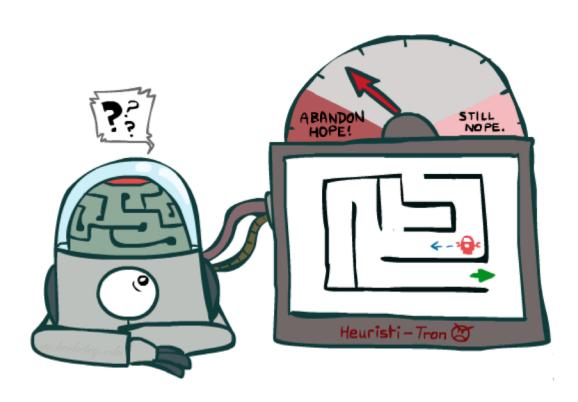
• No: only stop when we'dequeue a goal

Is A* Optimal?

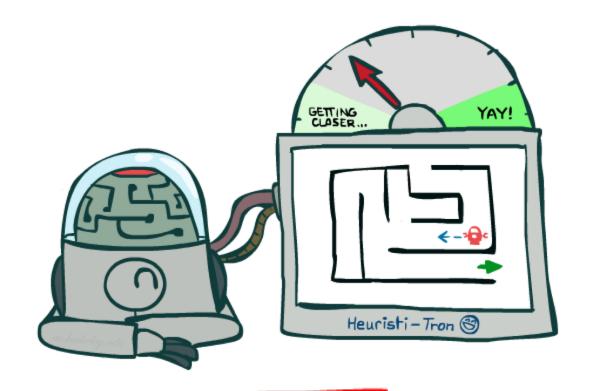


- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Idea: Admissibility



Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe



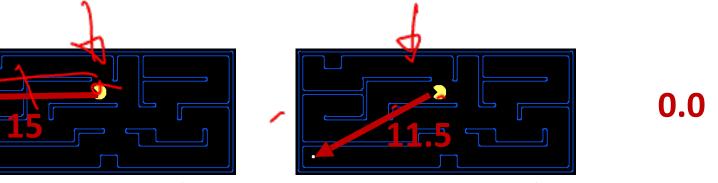
Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

• A heuristic *h* is *admissible* (optimistic) if:

$$0 \le h(n) \le h^*(n)$$
 $h(n) = h^*(n)$ is the true cost to a nearest goal

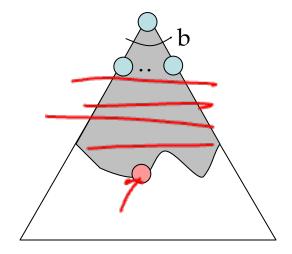
• Examples:



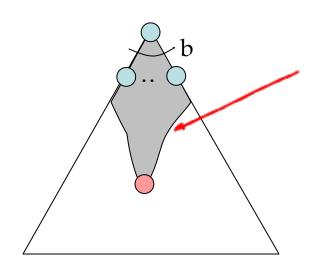
 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Properties of A*

Uniform-Cost

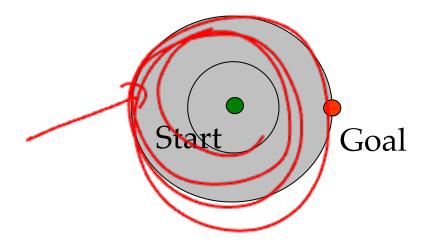


A*

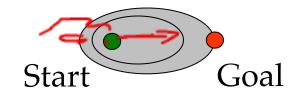


UCS vs A* Contours

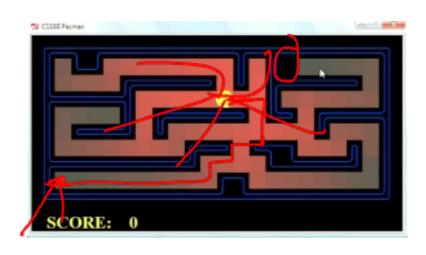
 Uniform-cost expands equally in all "directions"

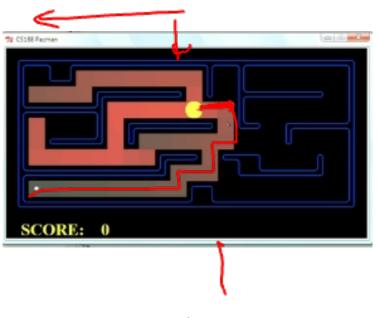


 A* expands mainly toward the goal, but does hedge its bets to ensure optimality



Comparison





Greedy

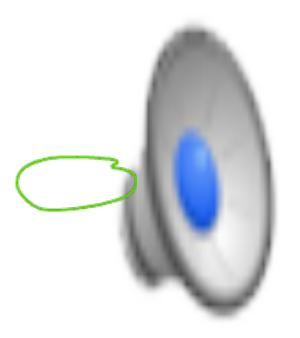
Uniform Cost

A*

Video of Demo Contours (Empty) -- UCS

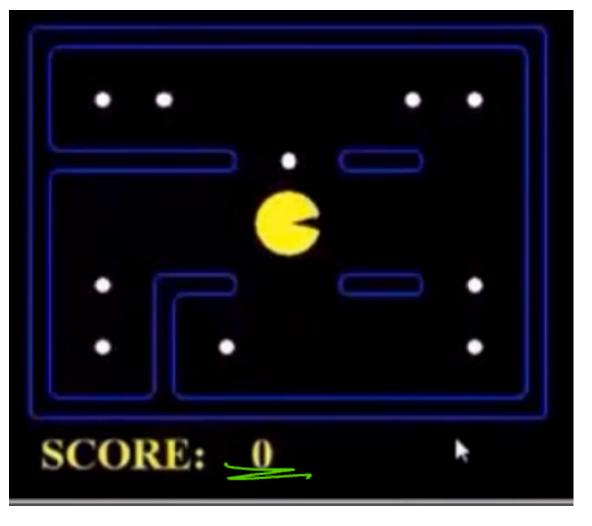
Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

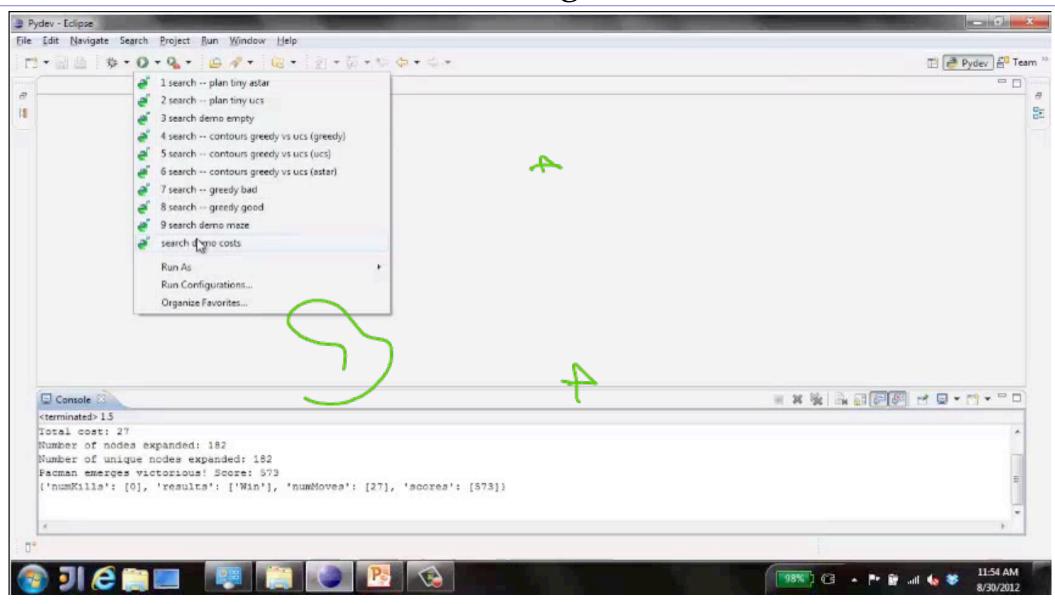


UCS vs. A*

9000



Video of Demo Empty Water Shallow/Deep – Guess Algorithm



CSE 473: Introduction to Artificial Intelligence

Hanna Hajishirzi
Search
(Un-informed, Informed Search)

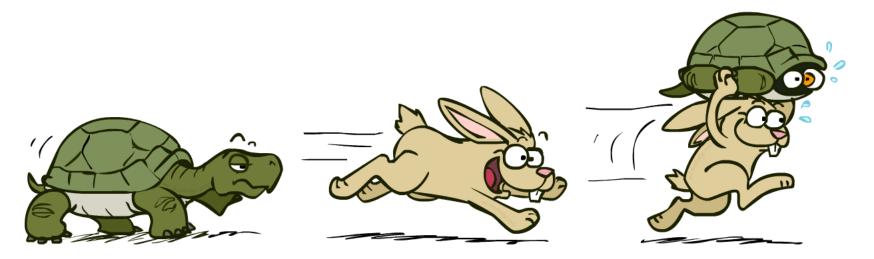
slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettelmoyer

A*: Summary

A*: Summary

• A* uses both backward costs and (estimates of) forward costs

- A* is optimal with admissible (optimistic) heuristics
- Heuristic design is key: often use relaxed problems

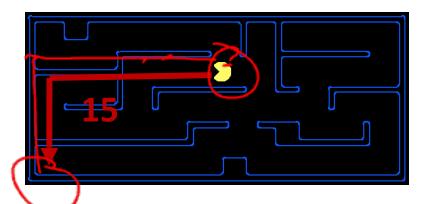


Creating Heuristics

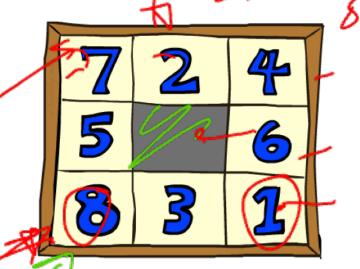
Creating Admissible Heuristics

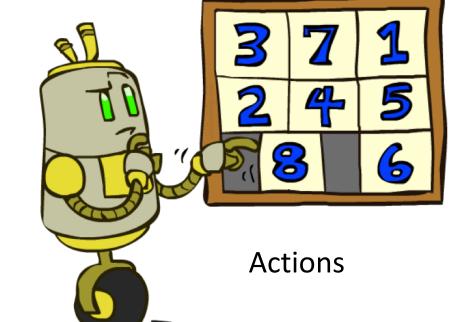
- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

• Inadmissible heuristics are often useful too

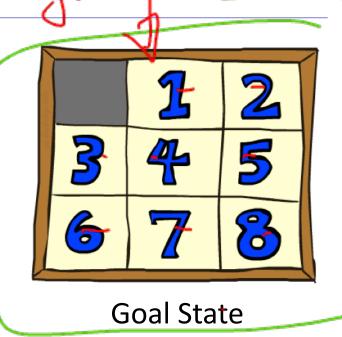


Example: 8 Puzzle





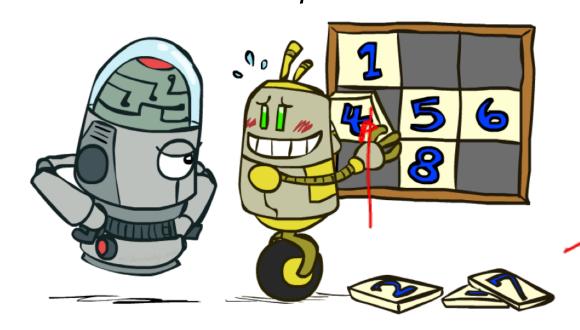
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

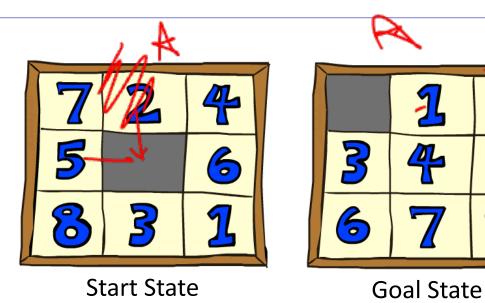


Admissible heuristics?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- \circ h(start) = 8
- This is a *relaxed-problem* heuristic

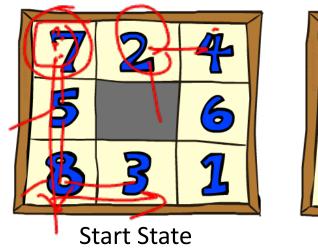




	Average nodes expanded when				
	the optimal path has				
	4 steps	.8 steps	12 steps		
UCS	112	6,300	3.6 x 10 ⁶		
TILES	13	39	227		

$0<\frac{1}{2}<\frac{1}{2}<\frac{1}{8}$ Puzzle II

 What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?



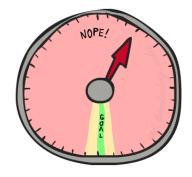
- Total Manhattan distance
- Why is it admissible?

• h(start) =

	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
TILES	13	39	227		
MANHATTAN	12	25	73		

8 Puzzle III

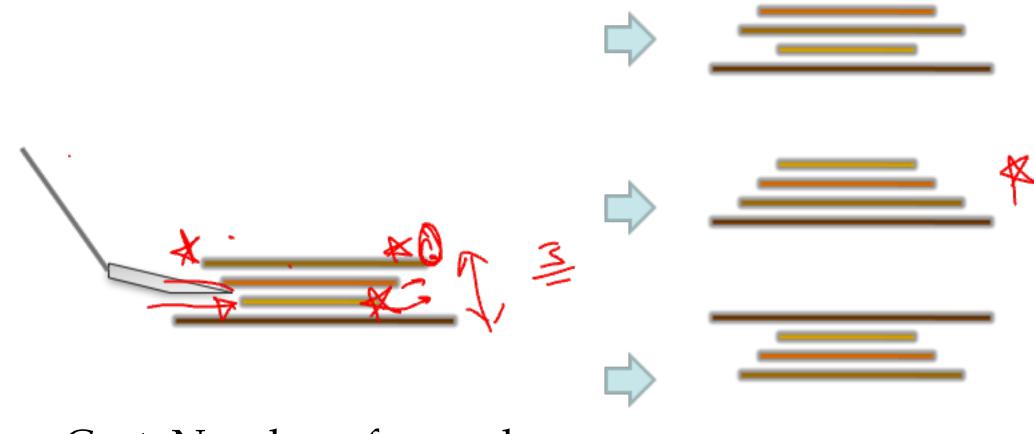
- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?



- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Example: Pancake Problem

Action: Flip over top n pancakes



Cost: Number of pancakes

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

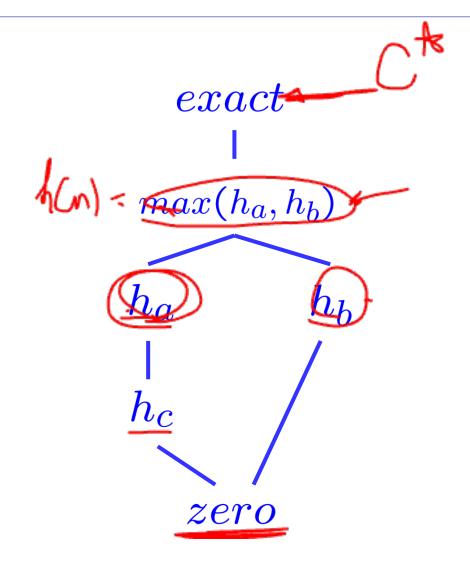
○ Dominance: $h_a \ge h_c$ if

$$\forall n: h_a(n) \geq h_c(n)$$

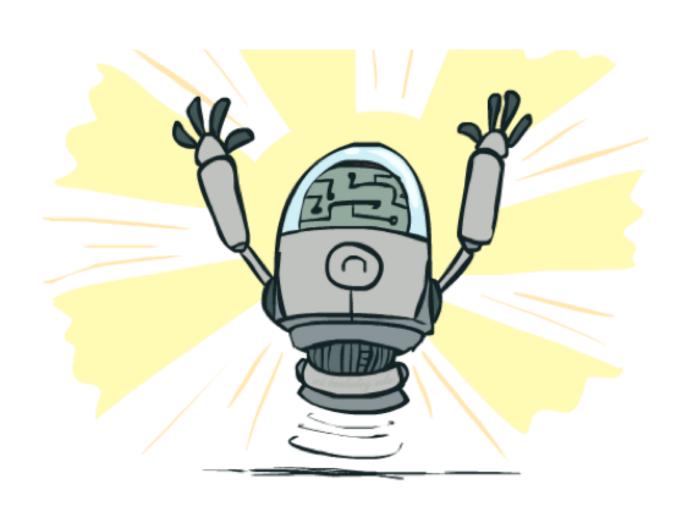
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = max(h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic



Optimality of A* Tree Search



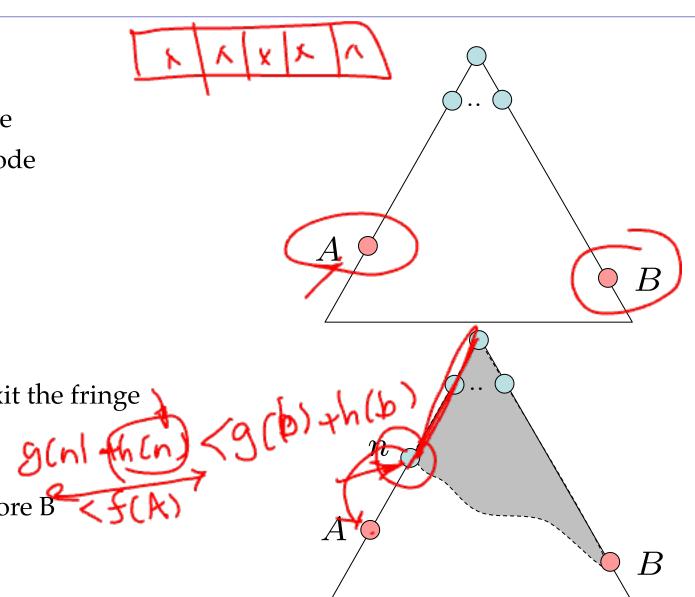
Optimality of A* Tree Search

Assume:

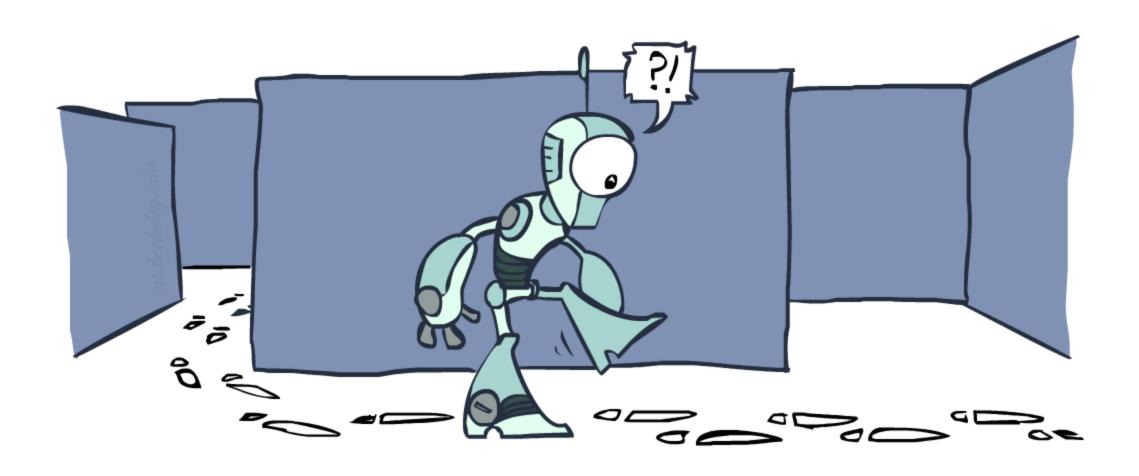
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Proof Sketch:

- All ancestors of A will exit the fringe before B
 - \circ Because f(n) < f(B)
- A will exit the fringe before B

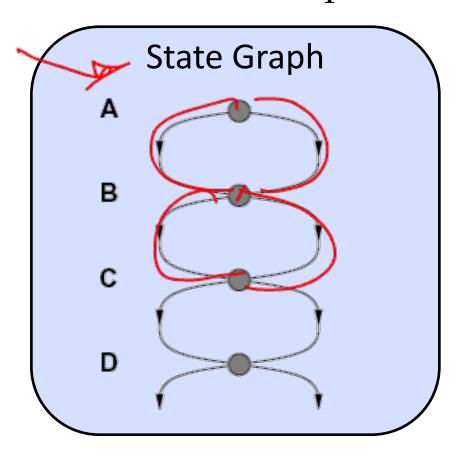


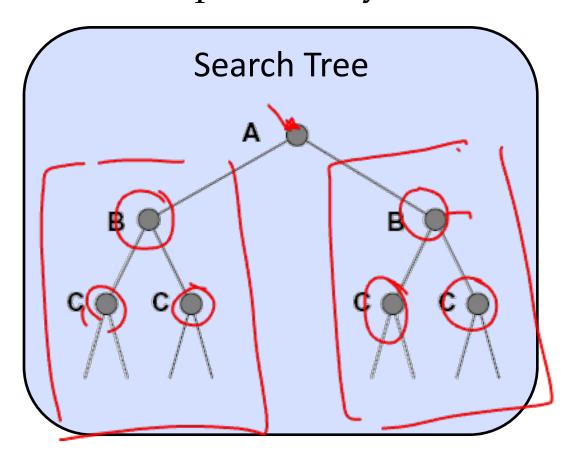
Graph Search



Tree Search: Extra Work!

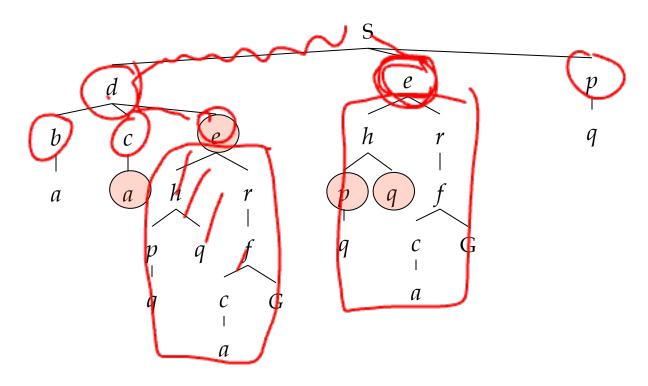
• Failure to detect repeated states can cause exponentially more work.





Graph Search

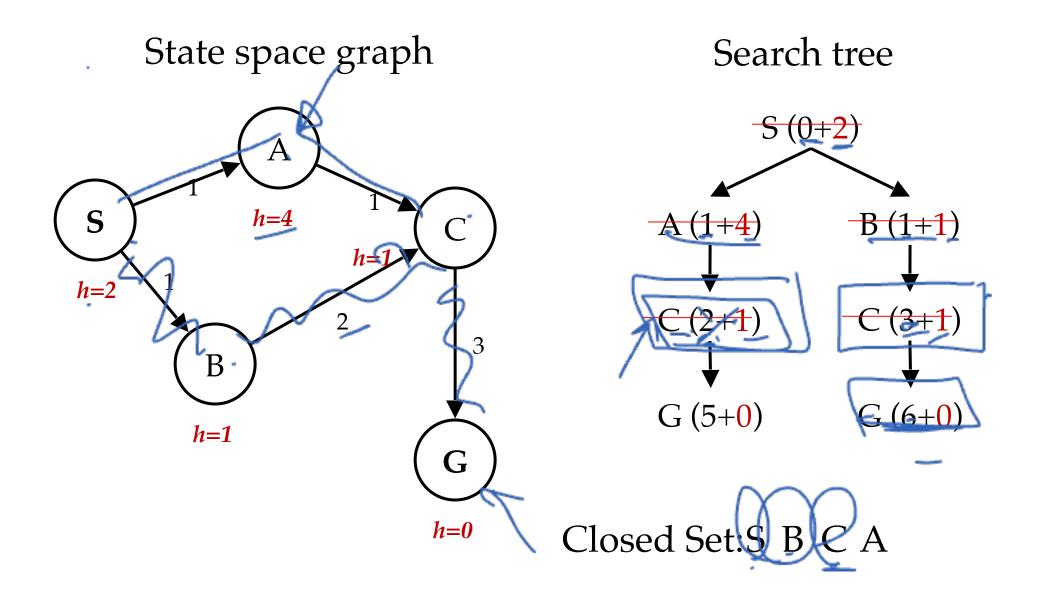
• In BFS, for example, we shouldn't bother expanding the circled nodes (why?)



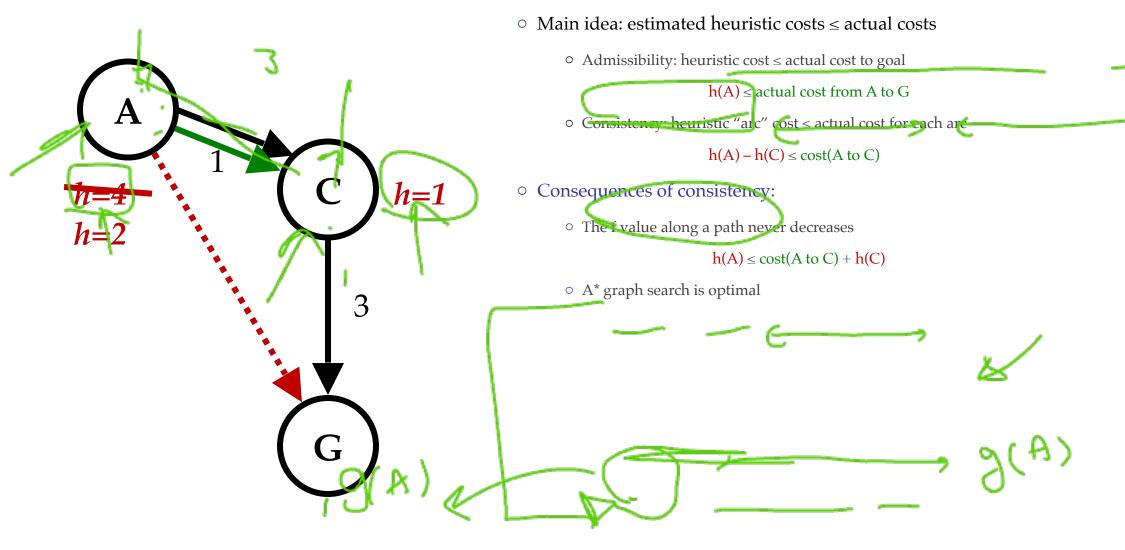
Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- O How about optimality?

A* Graph Search Gone Wrong?



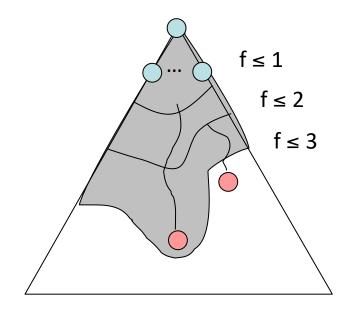
Consistency of Heuristics



A* Graph Search

 Sketch: consider what A* does with a consistent heuristic:

- Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
- Eact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
- Result: A* graph search is optimal



Optimality of A* Search

- With a admissible heuristic, Tree A* is optimal.
- With a consistent heuristic, Graph A* is optimal.
- With h=0, the same proof shows that UCS is optimal.

Pseudo-Code

```
function Tree-Search(problem, fringe) return a solution, or failure

fringe \leftarrow Insert(make-node(initial-state[problem]), fringe)

loop do

if fringe is empty then return failure

node \leftarrow remove-front(fringe)

if Goal-test(problem, state[node]) then return node

for child-node in expand(state[node], problem) do

fringe \leftarrow insert(child-node, fringe)

end

end
```

```
function GRAPH-SEARCH(problem, fringe) return a solution, or failure

closed ← an empty set

fringe ← Insert(make-node(initial-state[problem]), fringe)

loop do

if fringe is empty then return failure

node ← REMOVE-FRONT(fringe)

if GOAL-TEST(problem, STATE[node]) then return node

if STATE[node] is not in closed then

add STATE[node] to closed

for child-node in expand(state[node], problem) do

fringe ← Insert(child-node, fringe)

end

end
```

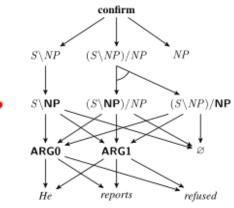
A* Applications

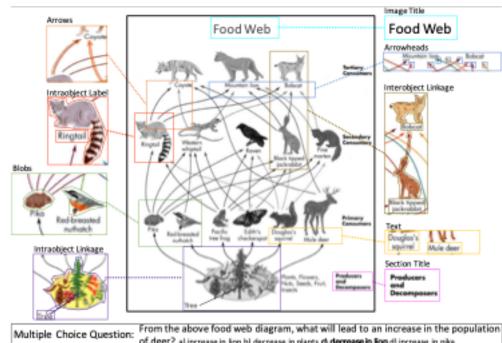
- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- O ...

A* in Recent Literature

Joint A* CCG Parsing and
 Semantic Role Labeling (EMLN'15)

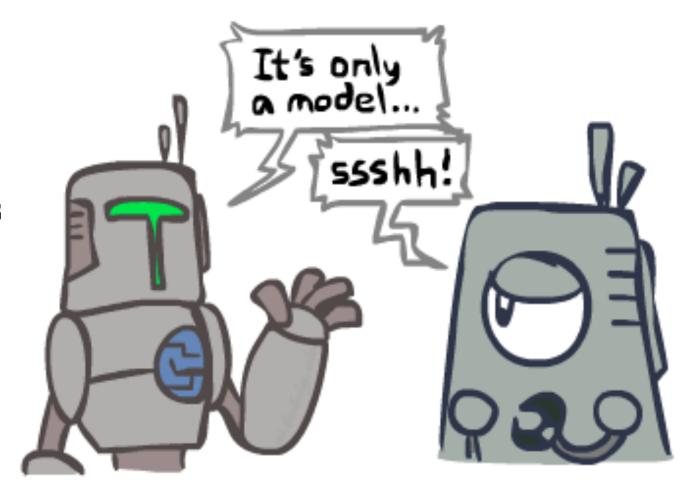
DiagramUnderstanding (ECCV'17)





Search and Models

- Search operates over models of the world
 - The agent doesn't actually try all the plans out in the real world!
 - Planning is all "in simulation"
 - Your search is only as good as your models...



Search Gone Wrong?

