CSE 473: Introduction to Artificial Intelligence

Hanna Hajishirzi
 Expectimax - Complex Games

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

Uncertain Outcomes

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

- Why wouldn't we know what the result of an action will be?
- Explicit randomness: rolling dice
- Unpredictable opponents: the ghosts respond randomly
- Unpredictable humans: humans are not perfect
- Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
- Max nodes as in minimax search
- Chance nodes are like min nodes but the outcome is uncertain
- Calculate their expected utilities
- I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertain-result problems as Markov Decision Processes

Video of Demo Min vs. Exp (Min)

SCORE: 0

SCORE: 0

Expectimax Pseudocode

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)

def max-value(state):

initialize $v=-\infty$
for each successor of state:

$$
v=\max (v, \text { value(successor)) }
$$

return v
def exp-value(state):
initialize $v=0$
for each successor of state:

$$
\mathrm{p}=
$$

probability(successor)
v += p * value(successor)
returnv

Expectimax Pseudocode

def exp-value(state):

initialize $v=0$
for each successor of state:
$p=$
probability(successor) v += p * value(successor)
return v

$$
v=(1 / 2)(8)+(1 / 3)(24)+(1 / 6)(-12)=10
$$

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

Probabilities

Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
- Random variable: $\mathrm{T}=$ whether there's traffic
- Outcomes: T in \{none, light, heavy\}
- Distribution: $\mathrm{P}(\mathrm{T}=$ none $)=0.25, \mathrm{P}(\mathrm{T}=$ light $)=0.50, \mathrm{P}(\mathrm{T}=$ heavy $)=0.25$
- Some laws of probability (more later):
- Probabilities are always non-negative

0.25
- Probabilities over all possible outcomes sum to one
- As we get more evidence, probabilities may change:
- $\mathrm{P}(\mathrm{T}=$ heavy $)=0.25, \mathrm{P}(\mathrm{T}=$ heavy \mid Hour=8am $)=0.60$
- We'll talk about methods for reasoning and updating probabilities later

0.25

Reminder: Expectations

- The expected value of a function of a random variable i the average, weighted by the probability distribution or outcomes
- Example: How long to get to the airport?

What Probabilities to Use?

- In expectimax search, we have a probabilist model of how the opponent (or environment) behave in any state
- Model could be a simple uniform distribution (roll a
- Model could be sophisticated and require a great deal computation
- We have a chance node for any outcome out of our control: opponent or environment
- The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?
- Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax and maximax, which have the nice property that it all collapses into one game tree

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism

Assuming chance when the world is adversarial

Dangerous Pessimism

Assuming the worst case when it's not likely

Assumptions vs. Reality

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Video of Demo World Assumptions
Random Ghost - Expectimax Pacman

Video of Demo World Assumptions Adversarial Ghost - Minimax Pacman

Video of Demo World Assumptions

Random Ghost - Minimax Pacman

Video of Demo World Assumptions

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax Pacman	Won 5/5	Won 5/5
Expectimax Pacman	Avcore: 483	Avg. Score: 493
Won 1/5	Won 5/5	

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Why not minimax?

- Worst case reasoning is too conservative
- Need average case reasoning

Other Game Types

Mixed Layer Types

- E.g. Backgammon
- Expecti-minimax
- Environment is an extra "random agent" player that moves after each $\min /$ max agent
- Each node computes the appropriate combination of its children

if state is a Max node then
return the highest ExpectiMinimax-Value of Successors(state)
if state is a MIN node then
return the lowest ExpectiMinimax-Value of Successors(state)
if state is a chance node then
return average of ExpectiMinimax-Value of Successors(state)

Example: Backgammon

- Dice rolls increase $b: 21$ possible rolls with 2 dice
- Backgammon ≈ 20 legal moves
- Depth $2=20 \times(21 \times 20)^{3}=1.2 \times 10^{9}$
- As depth increases, probability of reaching a given search node shrinks
- So usefulness of search is diminished
- So limiting depth is less damaging
- But pruning is trickier...

- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- $1^{\text {st }} \mathrm{AI}$ world champion in any game!

Multi-Agent Utilities

- What if the game is not zero-sum, or has multiple players?
- Generalization of minimax:
- Terminals have utility tuples
- Node values are also utility tuples
- Each player maximizes its own component
- Can give rise to cooperation and competition dynamically...

Utilities

- Utilities: values that we assign to every state

- Why should we average utilities? Why not minimax?
- Principle of maximum expected utility:
- A rational agent should choose the action that maximizes its expected utility, given its knowledge

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
- In a game, may be simple ($+1 /-1$)

- Utilities summarize the agent's goals
- We hard-wire utilities and let behaviors emerge

Utilities: Uncertain Outcomes

What Utilities to Use?

- For worst-case minimax reasoning, terminal function scale doesn't matter
- We just want better states to have higher evaluations (get the ordering right)
- We call this insensitivity to monotonic transformations
- For average-case expectimax reasoning, we need magnitudes to be meaningful

Next Time: MDPs!

