CSE 473: Introduction to Artificial Intelligence

Hanna Hajishirzi Markov Decision Processes

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

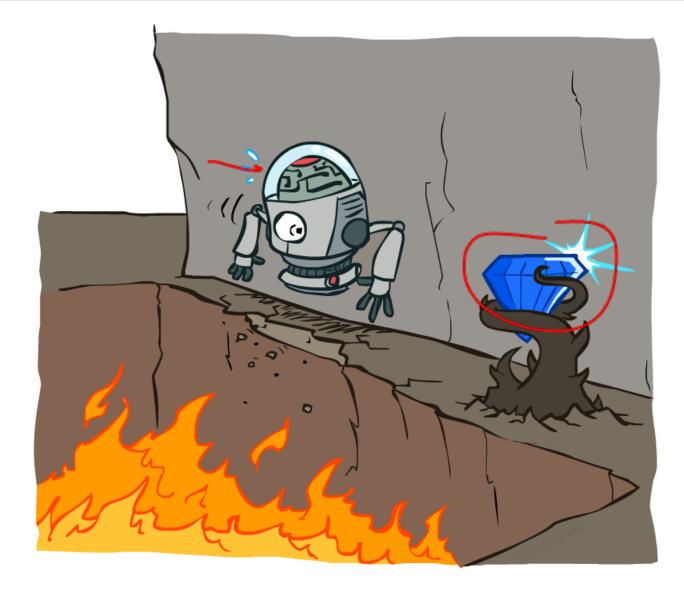
Announcements

• HW1, PS1 grades are released.
• HW2 is released → DUE: Friday, 11:59pm
• PS2 -> DUE: next Wednesday

Review and Outline

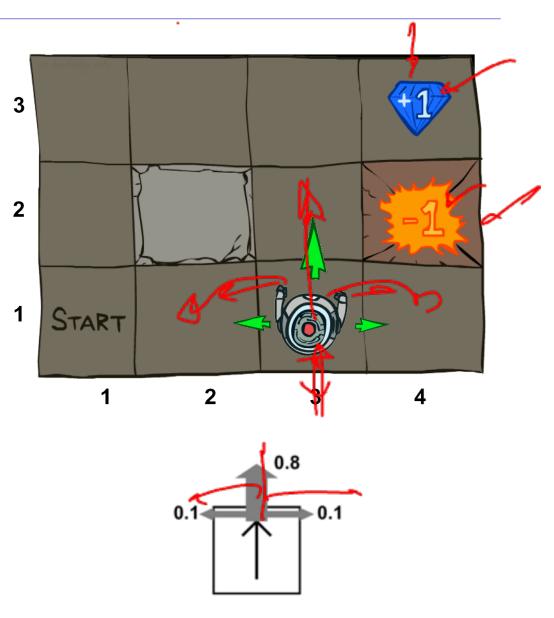
- Adversarial Games
 - Minimax search
 - α-β search
 - Evaluation functions
 - Multi-player, non-0-sum
- Stochastic Games
 - Expectimax
 - Markov Decision Processes
 - Reinforcement Learning

Non-Deterministic Search



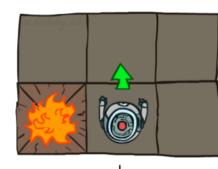
Example: Grid World

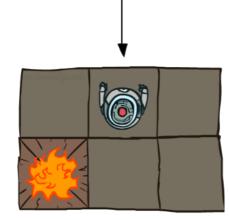
- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)



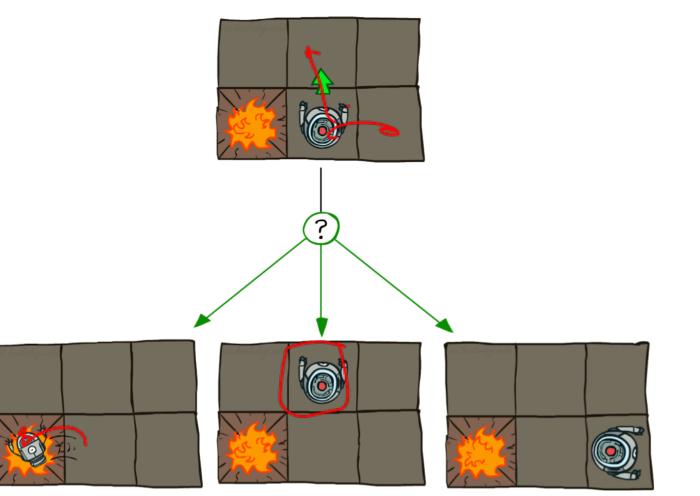
Grid World Actions

Deterministic Grid World

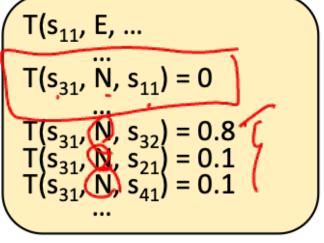




Stochastic Grid World



• An MDP is defined by: • A set of states $s \in S$ • A set of actions $a \in A$ • A transition function T(s, a, s')• Probability that a from s leads to s', i.e., P(s' + s, a)• Also called the model or the dynamics P(s + s, a)• Also called the model or the dynamics P(s + s, a)• T($s_{11}, E, ...$ T($s_{11}, E, ...$ T($s_{11}, \tilde{K}, s_{11}$) = 0 1 2



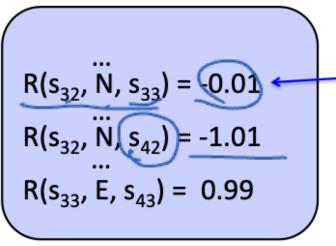
Tisa Big Table! 11 X4 x 11 = 484 entries

For now, we give this as input to the agent

3

4

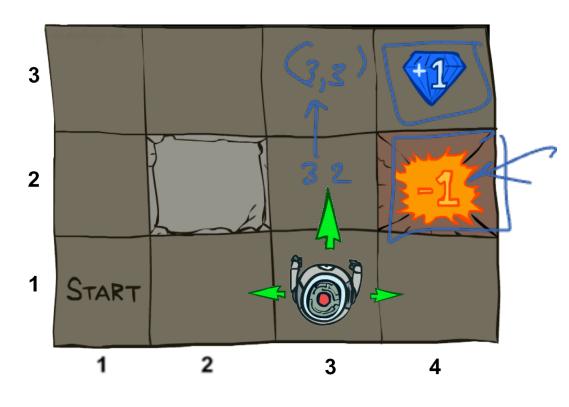
- An MDP is defined by:
 - \circ A set of states $s \in S$
 - \circ A set of actions a \in A
 - A transition function T(s, a, s')
 - $\circ\,$ Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - \circ Sometimes just R(s) or R(s')



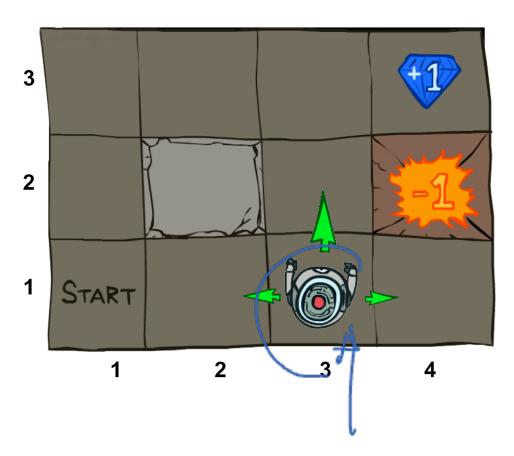
Cost of breathing

R is also a Big Table!

For now, we also give this to the agent



- An MDP is defined by:
 - $\circ \ A \text{ set of states } s \in S$
 - \circ A set of actions $a \in A$
 - A transition function T(s, a, s')
 - $\circ\,$ Probability that a from s leads to s', i.e., P(s' \mid s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - \circ Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon



What is Markov about MDPs?

St+1

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s) | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots, S_0 = s_0)$$

=
$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

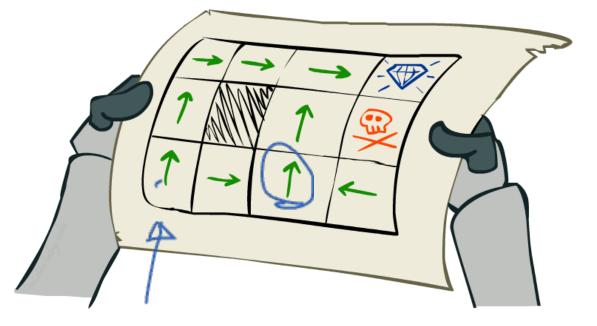
Andrey Markov (1856-1922)

This is just like search, where the successor function could only depend Ο on the current state (not the history)

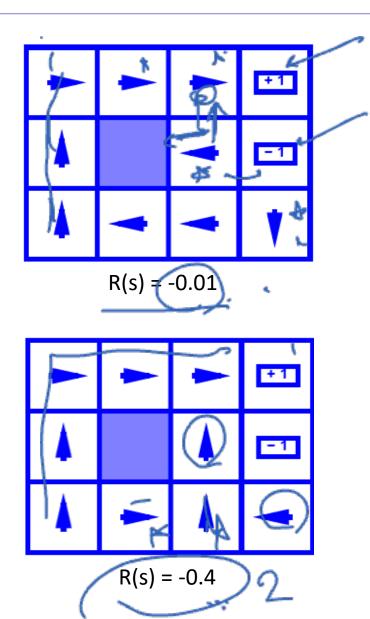
Policies

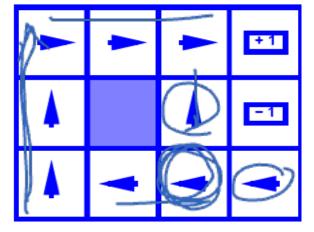
- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent

Optimal policy when R(s, a, s') = -0.4 for all non-terminals s

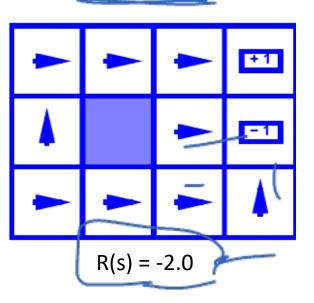


Optimal Policies

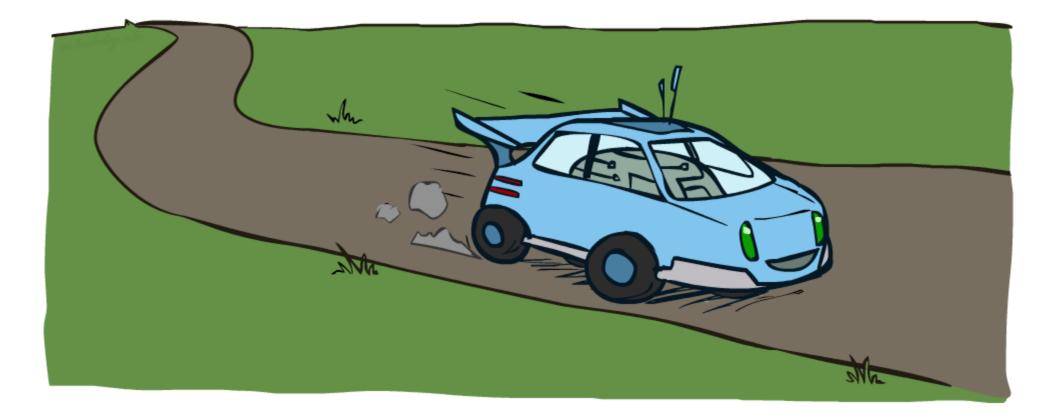




R(s) = -0.03



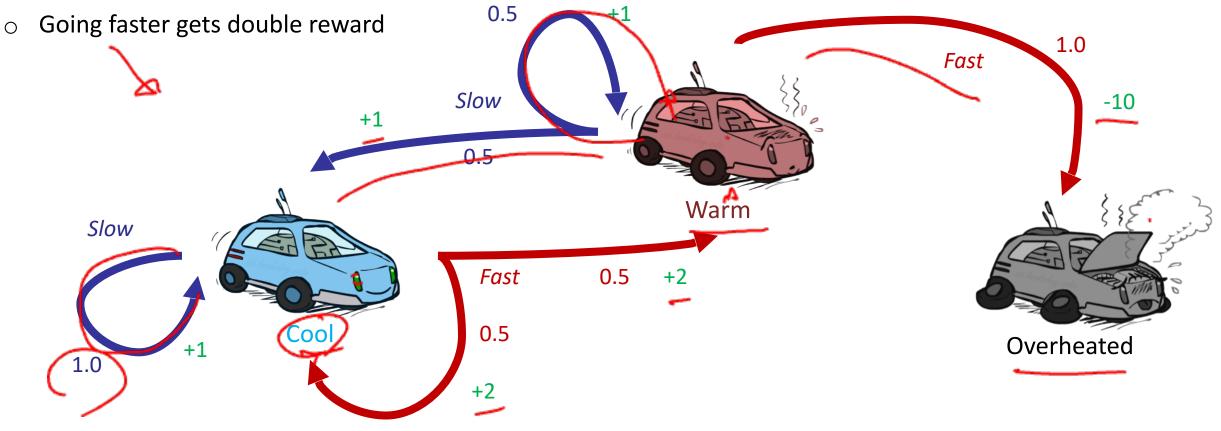
Example: Racing



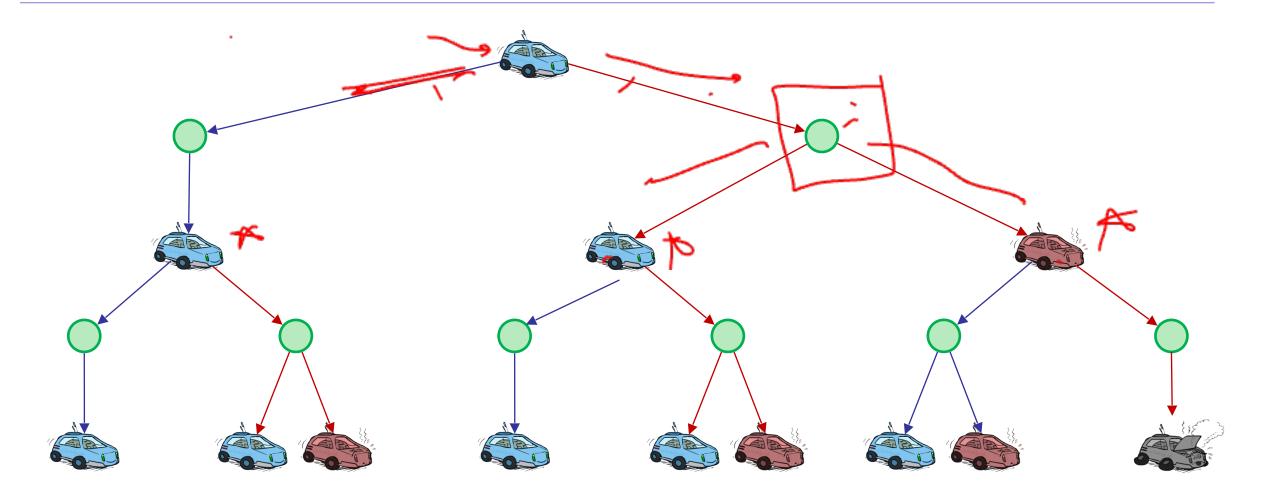
Example: Racing

602

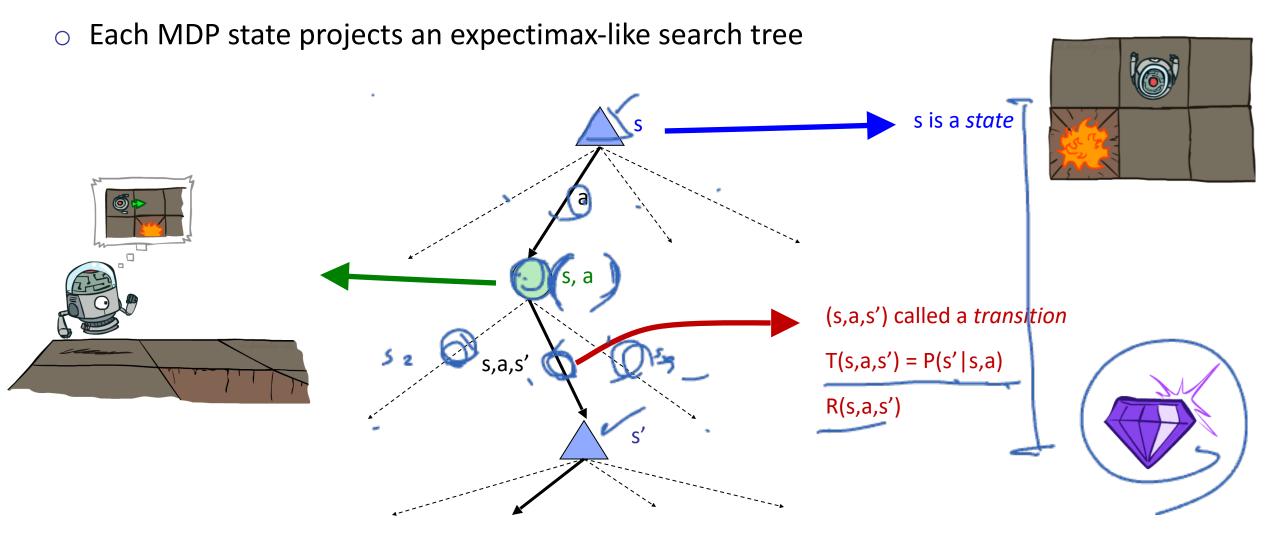
- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*



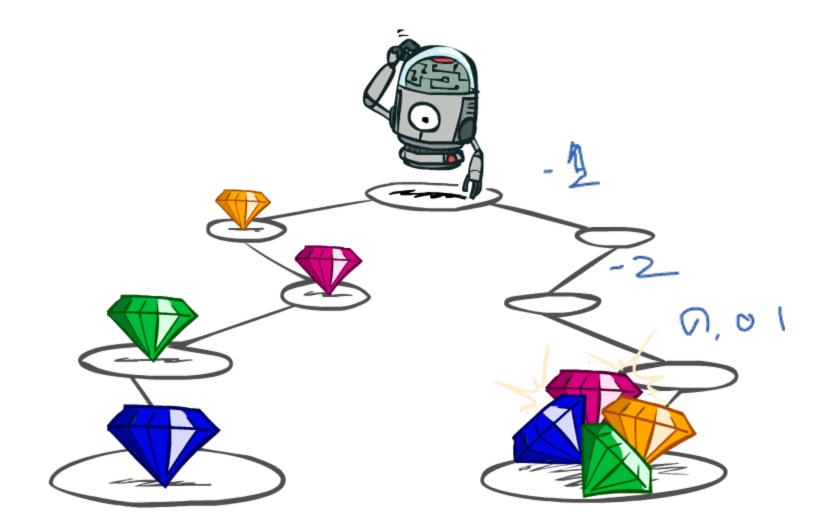
Racing Search Tree



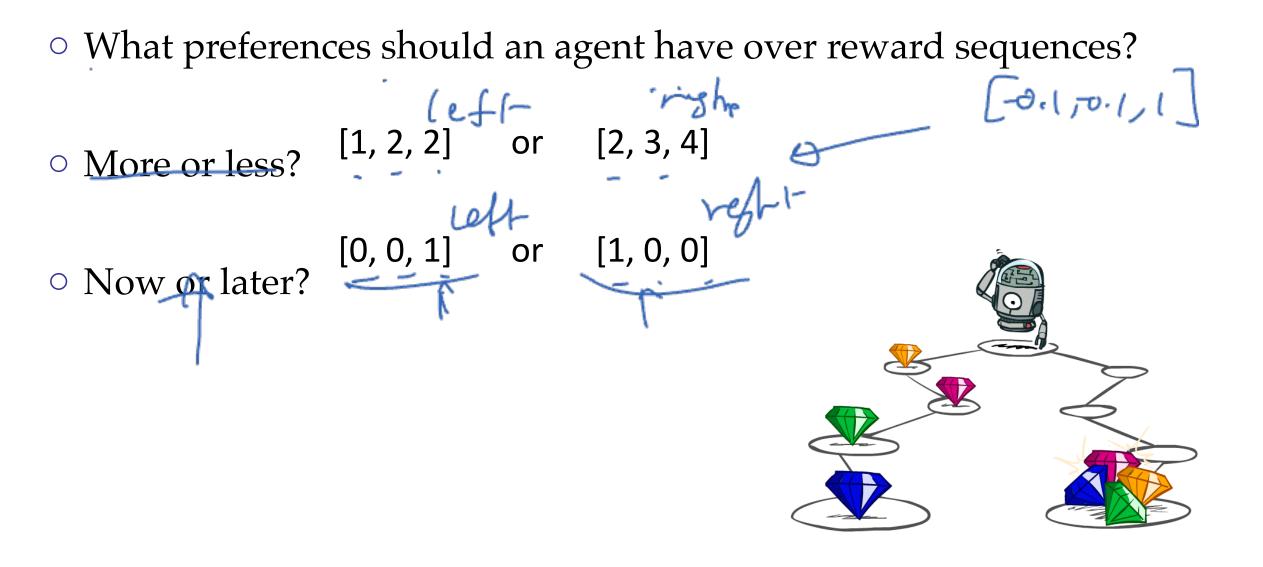
MDP Search Trees



Utilities of Sequences



Utilities of Sequences



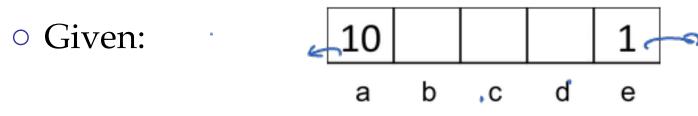
Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- How to discount?
 - Each time we descend a level, we multiply in the discount once
- Why discount?
 - Think of it as a gamma chance of ending the process at every step
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])

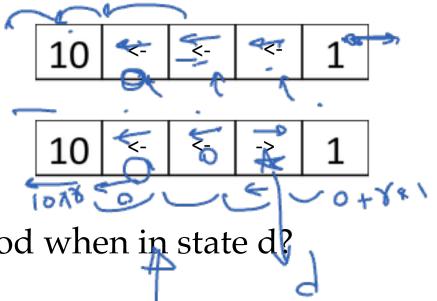
Quiz: Discounting



Actions: East, West, and Exit (only available in exit states a, e)
Transitions: deterministic

• Quiz 1: For $\gamma = 1$, what is the optimal policy?

• Quiz 2: For $\gamma = 0.1$, what is the optimal policy?

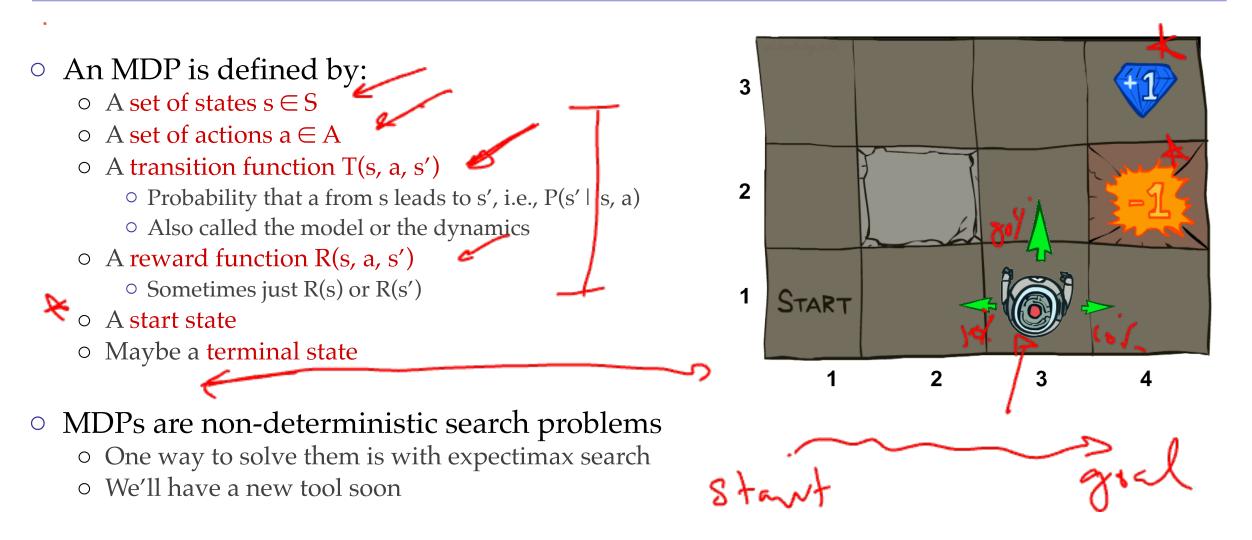


 \circ Quiz 3: For which γ are West and East equally good when in state d? $_{1\gamma=10\;\gamma^3}$

CSE 473: Introduction to Artificial Intelligence

Hanna Hajishirzi Markov Decision Processes

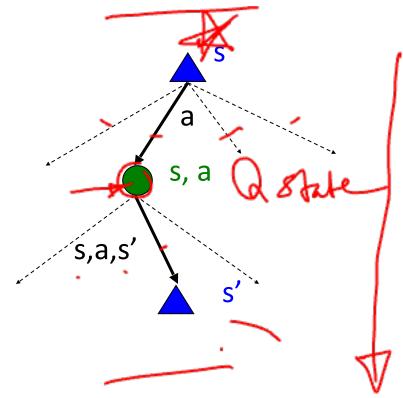
slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer



Recap: Defining MDPs

Markov decision processes: Set of states S Start state s₀ Set of actions A Transitions P(s' | s,a) (or T(s,a,s')) Rewards R(s,a,s') (and discount γ)

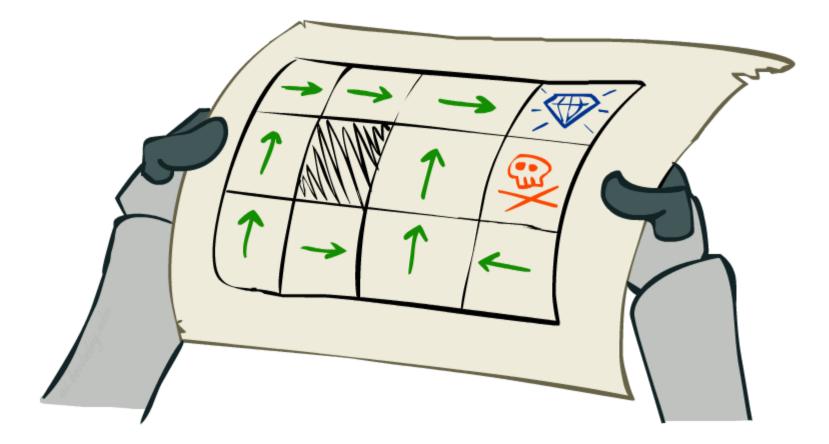
• MDP quantities so far: • Policy = Choice of action for each state • Utility = sum of (discounted) rewards $1 + \sqrt[4]{2} + \sqrt[6]{2}$

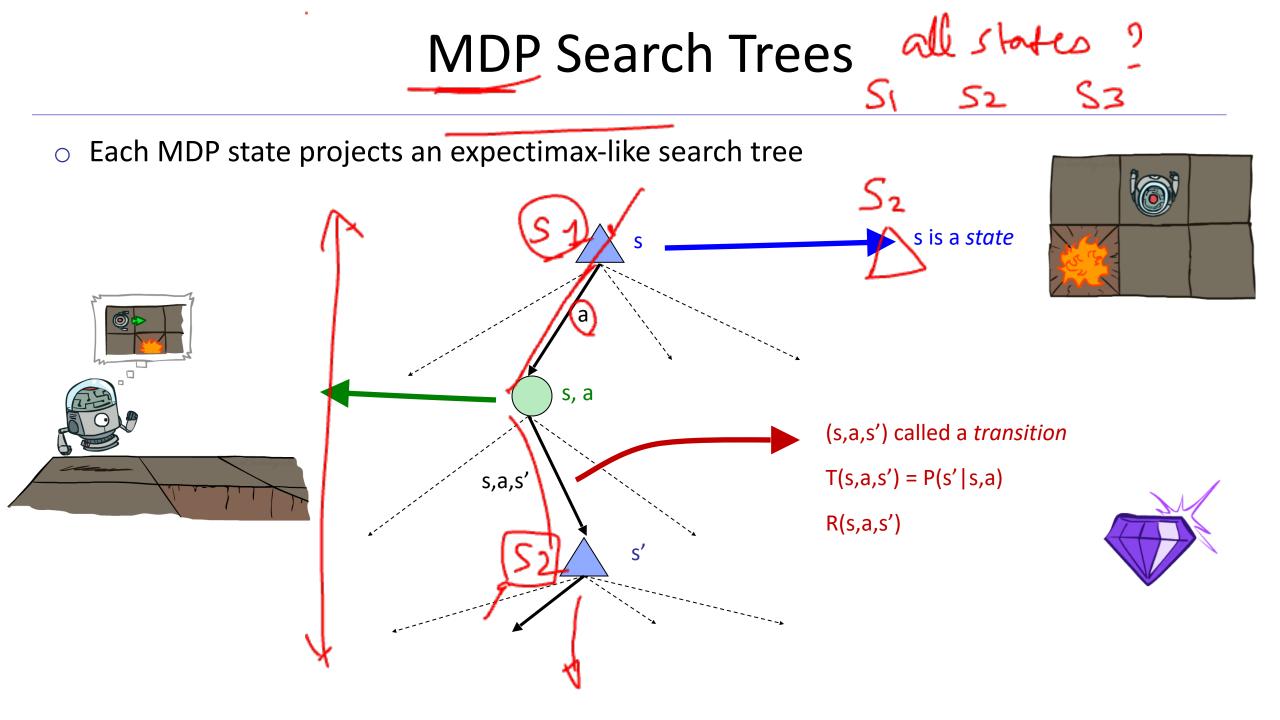


^a Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Policy π depends on time left
 - Discounting: use $0 < \gamma < 1$
 - $U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$
 - <u>Me</u>+8r1+8V2+---Rmax[1+Y+82+--• Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Solving MDPs

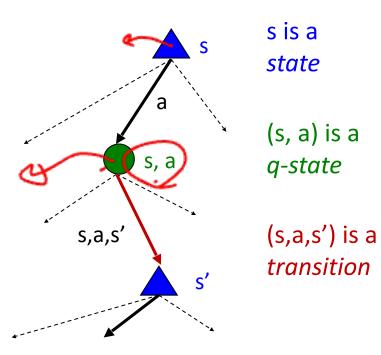




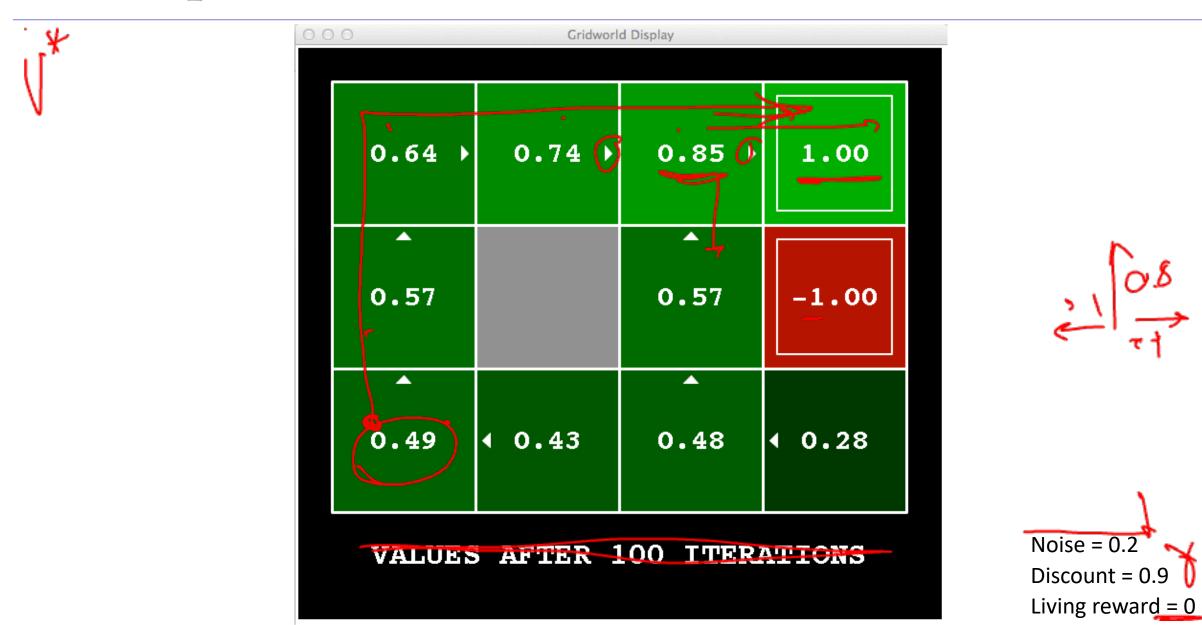
Optimal Quantities

- The value (utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:

 $\pi^*(s)$ = optimal action from state s

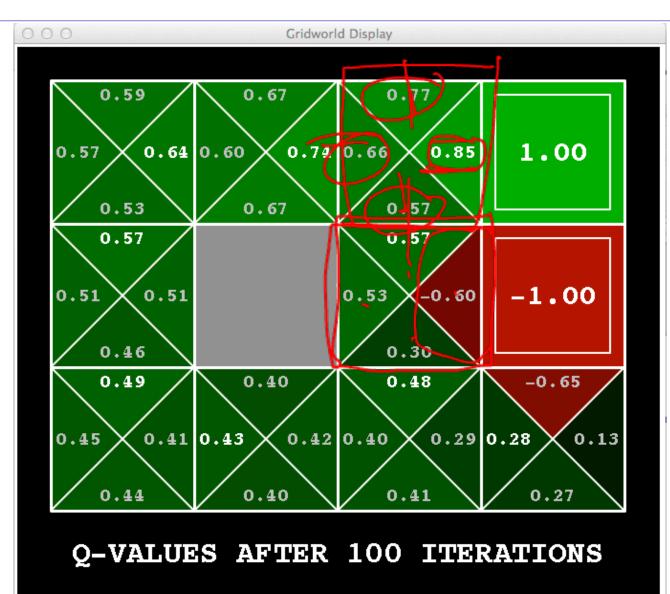


Snapshot of Demo – Gridworld V Values



Snapshot of Demo – Gridworld Q Values

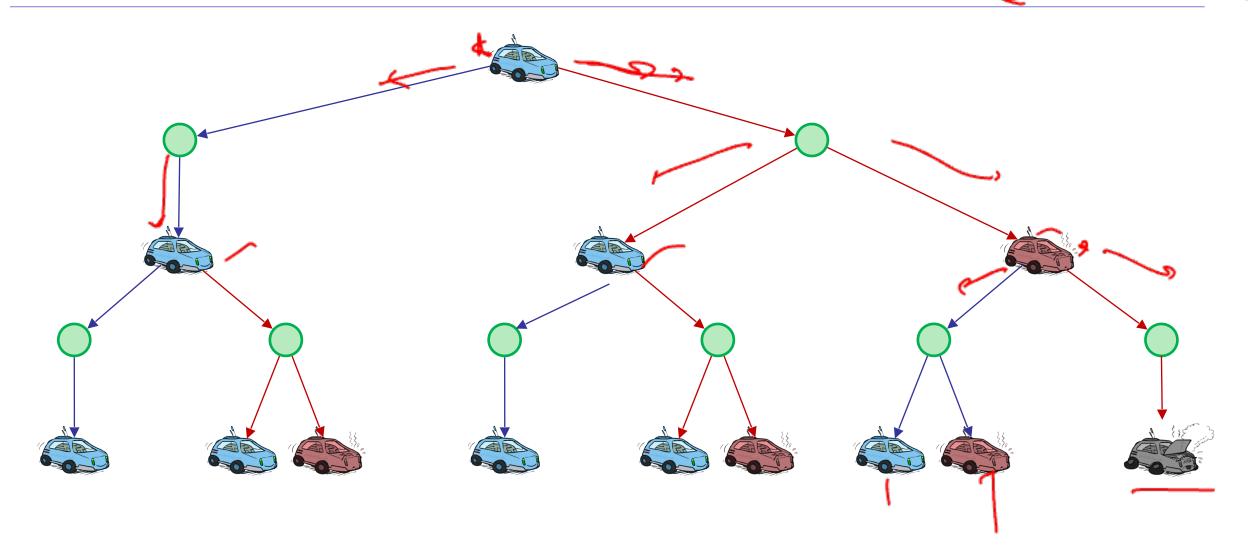
R(s,a)



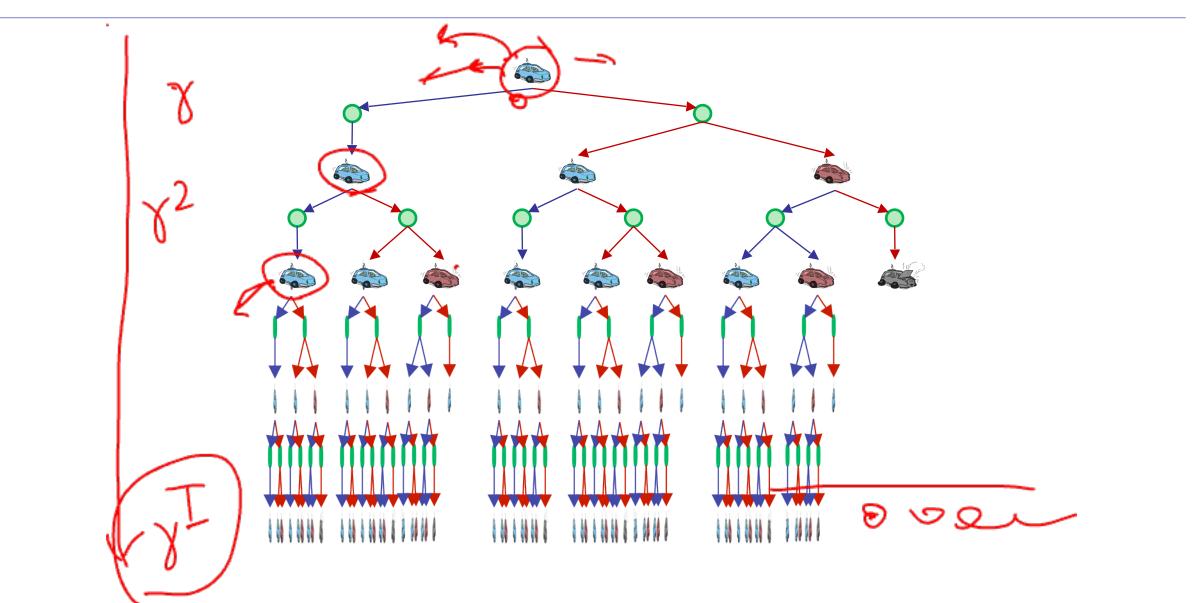
Noise = 0.2 Discount = 0.9 Living reward = 0

Values of States (Bellman Equations) • Fundamental operation: compute the (expectimax) value of a state • Expected utility under optimal action • Average sum of (discounted) rewards • This is just what expectimax computed! S, a_e Recursive definition of value: ́s,a,s[≯] $(s) = \max Q^*(s, a)$ $Q^{*}(s,a) = \sum T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$ $V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$

Racing Search Tree

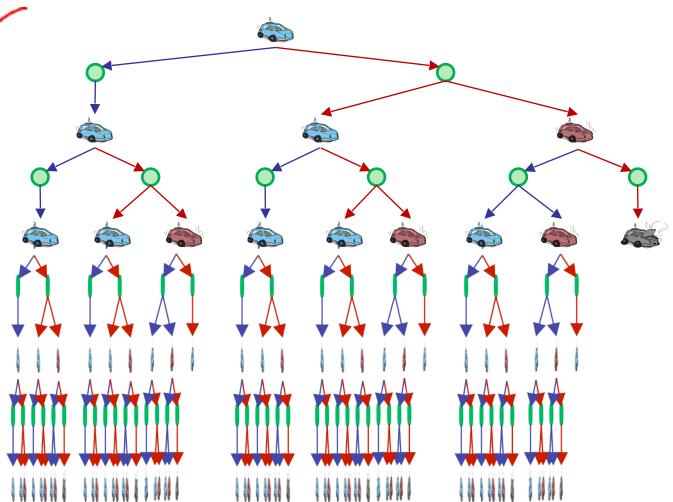


Racing Search Tree

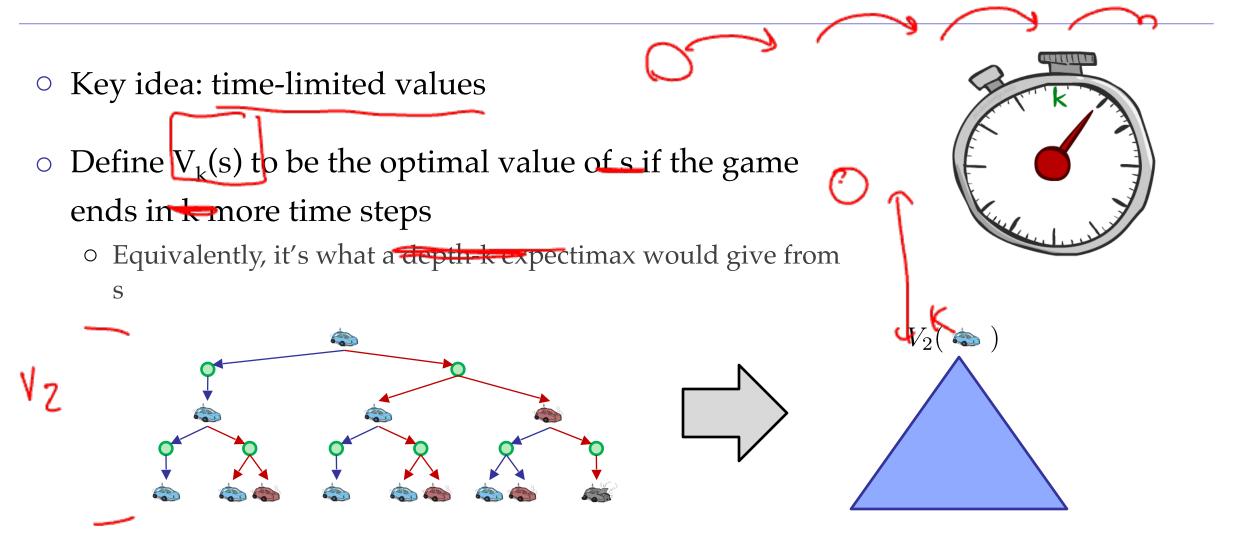


Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea quantities: Only compute needed once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$



Time-Limited Values



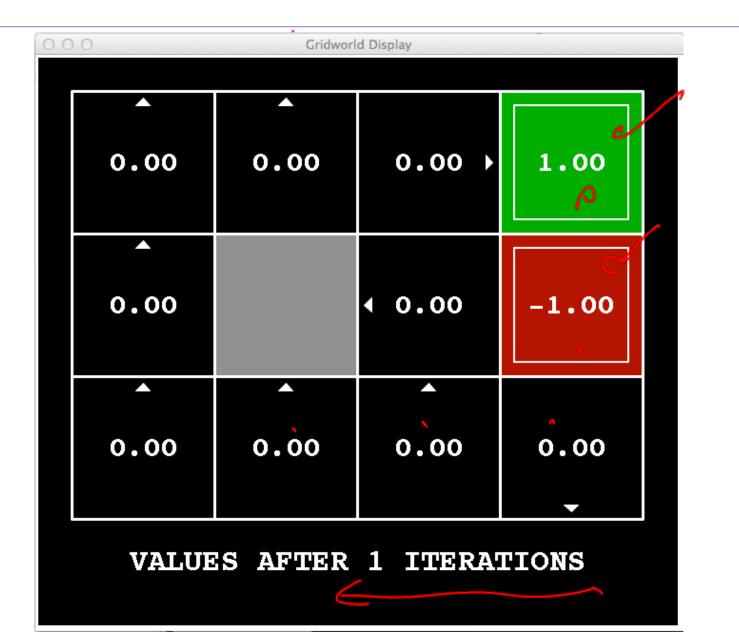
k=0

00	0	Gridworl	d Display		
	•	• 0.00	•	0.00	
	• 0.00		• 0.00	0.00	-
	• 0.00	• 0.00	• 0.00	• 0.00	
VALUES AFTER O ITERATIONS					

Noise = 0.2 Discount = 0.9 Living reward = 0

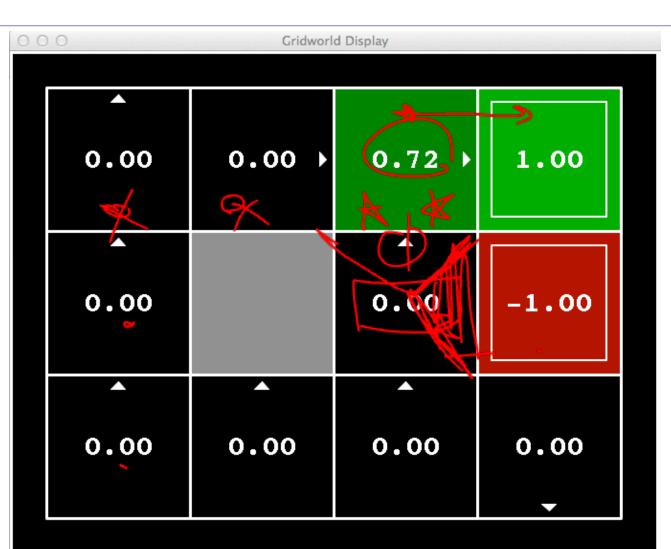
Vu

 \geq



Noise = 0.2 Discount = 0.9 Living reward = 0

 $V_{i}(S)$



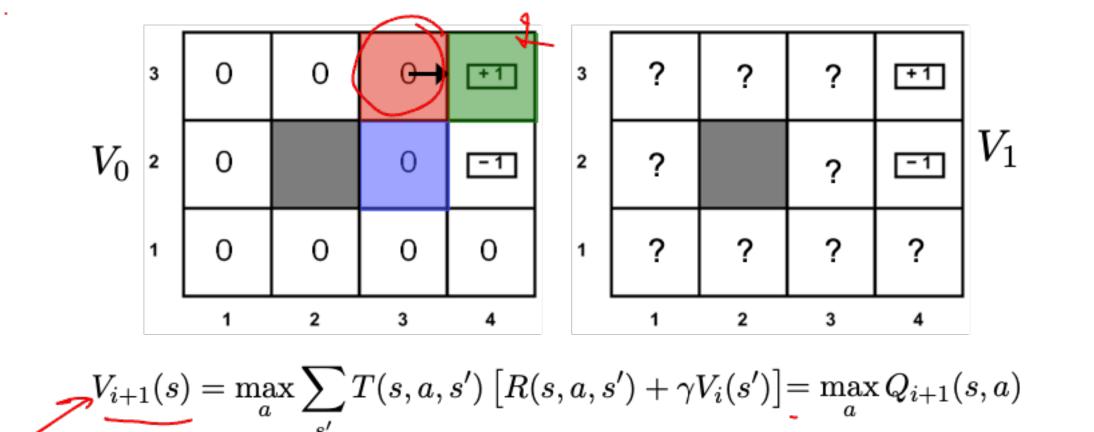
VALUES AFTER 2 ITERATIONS

Noise = 0.2 Discount = 0.9 Living reward = 0

Vn (S

Bellman Updates

Example: y=0.9, living reward=0, noise=0.2



$$V_{i+1}(s) = \max_{a} \sum_{s'} T(s, a, s) [T(s, a, s) + \gamma V_i(s)] = \max_{a} Q_{i+1}(s, a)$$

$$Q_1(\langle 3, 3 \rangle, \text{right}) = \sum_{s'} T(\langle 3, 3 \rangle, \text{right}, s') [R(\langle 3, 3 \rangle, \text{right}, s') + \gamma V_i(s')]$$

$$= 0.8 * [0.0 + 0.9 * 1.0] + 0.1 * [0.0 + 0.9 * 0.0] + 0.1 * [0.0 + 0.9 * 0.0]$$

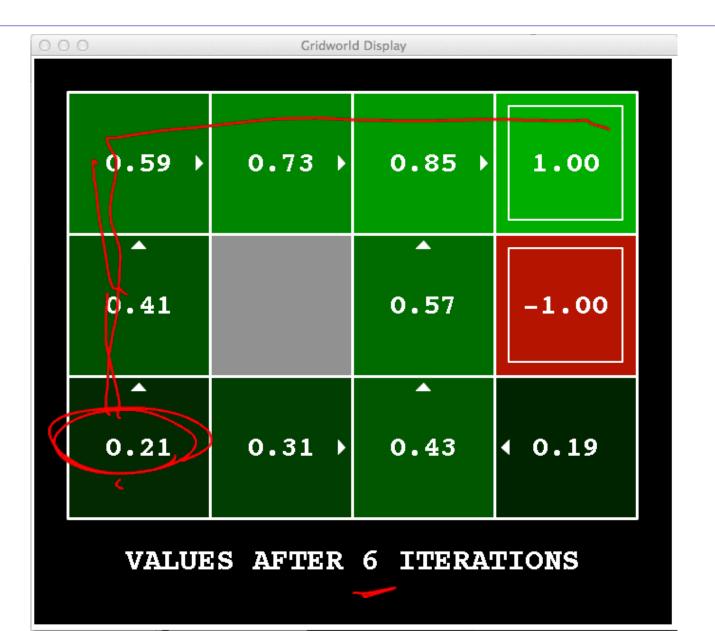
0 0	0	Gridworl	d Display		
		9			
	0.00 →	0.52 →	0.78)	0	
	^		^		
	0.00		0.43	-1.00	
	^	^			
	0.00	0.00	0.00	0.00	
				\bigcirc	
	VALUE	S AFTER	3 ITERA	FIONS	

k=4

0 0	Gridworld Display			
	0.37 ▶	0.66)	0.83 →	1.00
	•		• 0.51	-1.00
	•	0.00 →	• 0.31	∢ 0.00
	VALUE	S AFTER	4 ITERA	FIONS

000)	Gridworl	d Display	
	0.51)	0.72 ♪	0.84)	1.00
	• 0.27		• 0.55	-1.00
	•	0.22 →	• 0.37	∢ 0.13
	VALUE	S AFTER	5 ITERA	FIONS

k=6



0 0	Gridworld Display			
	0.62 ▸	0.74)	0.85)	1.00
	• 0.50		• 0.57	-1.00
	▲ 0.34	0.36)	• 0.45	∢ 0.24
	VALUE	S AFTER	7 ITERA	FIONS

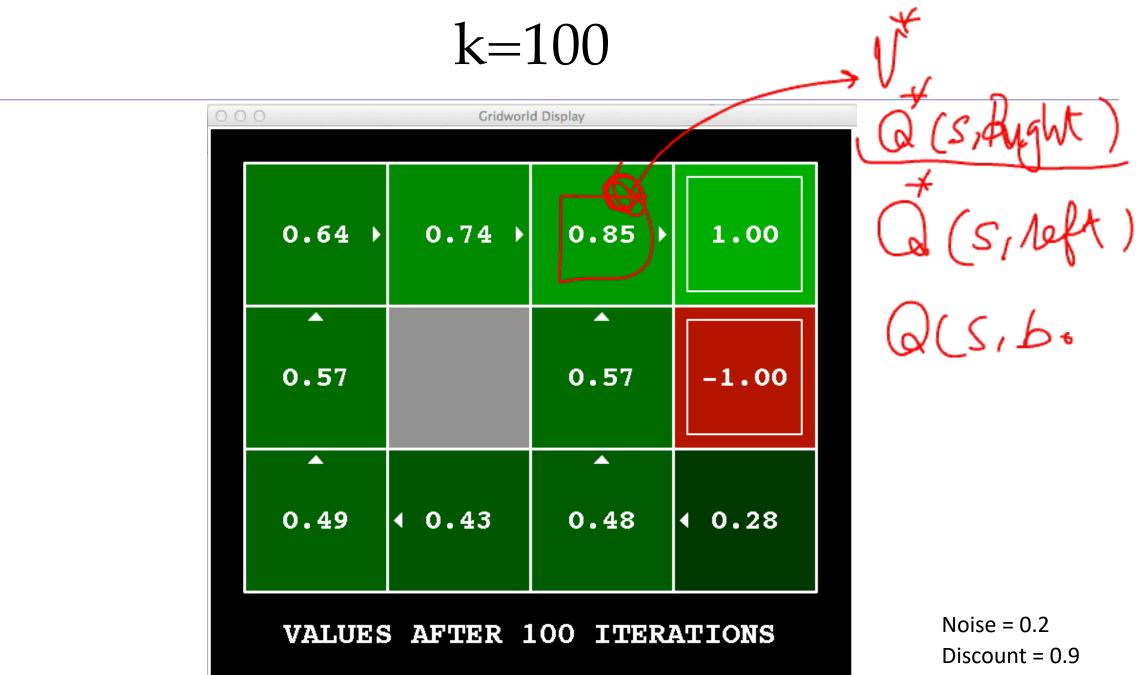
0 0	Gridworld Display			
ſ	0.63)	0.74 →	0.85)	1.00
	• 0.53		▲ 0.57	-1.00
	• 0.42	0.39)	• 0.46	∢ 0.26
	VALUE	S AFTER	8 ITERA	FIONS

00	Gridworld Display				
	0.64)	0.74 ▸	0.85)	1.00	
	• 0.55		• 0.57	-1.00	
	• 0.46	0.40 →	• 0.47	∢ 0.27	
	VALUES AFTER 9 ITERATIONS				

000	Gridworld Display		
0.64)	0.74 →	0.85 →	1.00
• 0.56		• 0.57	-1.00
• 0.48	∢ 0.41	• 0.47	∢ 0.27
VALUE	S AFTER	10 ITERA	TIONS

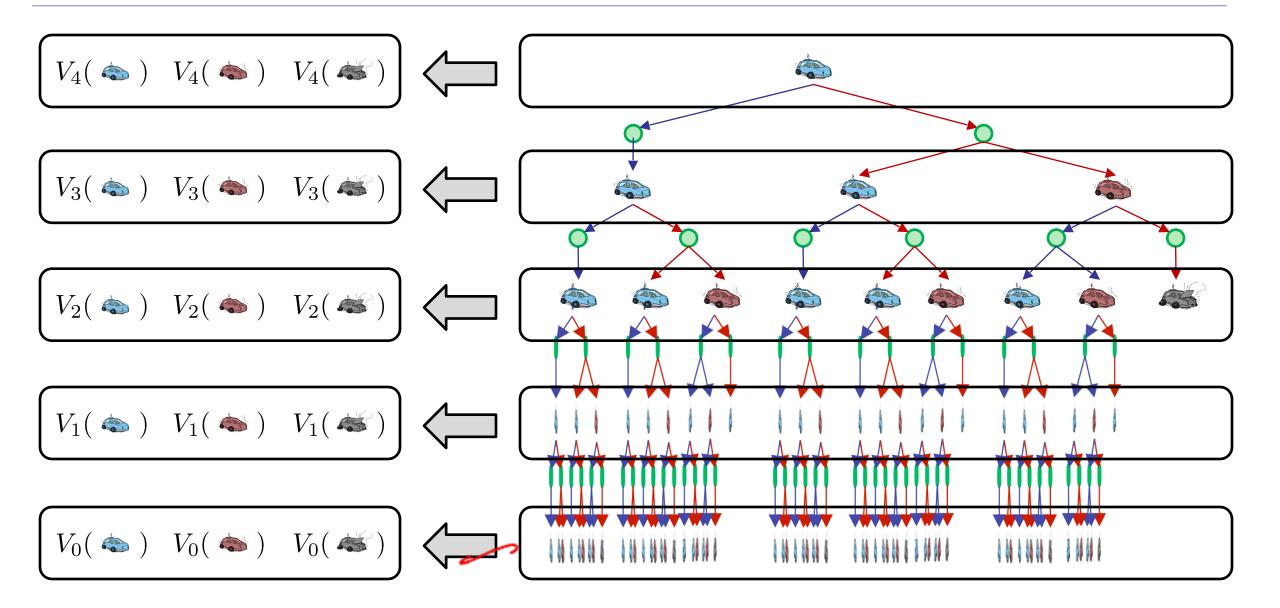
000		Gridworl	d Display	
	0.64)	0.74 ▸	0.85)	1.00
	•		• 0.57	-1.00
	• 0.48	◀ 0.42	• 0.47	◀ 0.27
	VALUE	S AFTER	11 ITERA	TIONS

O O O Gridworld Display				
0.64)	0.74 →	0.85)	1.00	
		^		
0.57		0.57	-1.00	
^		^		
0.49	0.42	0.47	∢ 0.28	
VALUES AFTER 12 ITERATIONS				



Living reward = 0

Computing Time-Limited Values



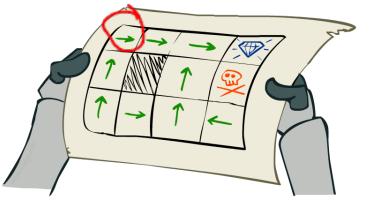
Recap: MDPs

• Search problems in uncertain environments

• Model uncertainty with transition function T(S,q,s')• Assign utility to states. How? Using reward functions R(S,q,s')

• Decision making and search in MDPs <-- Find a sequence of actions that maximize expected sum of rewards

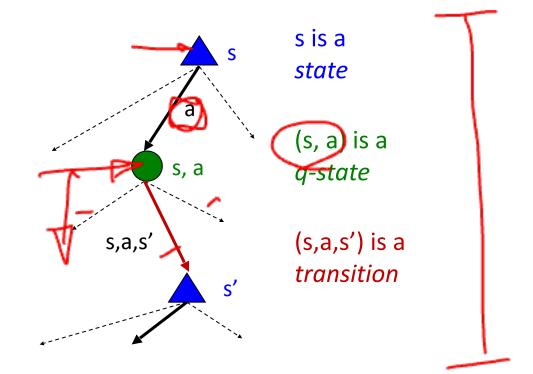
• Solving MDPs: Finding the best policy or mapping of actions to states



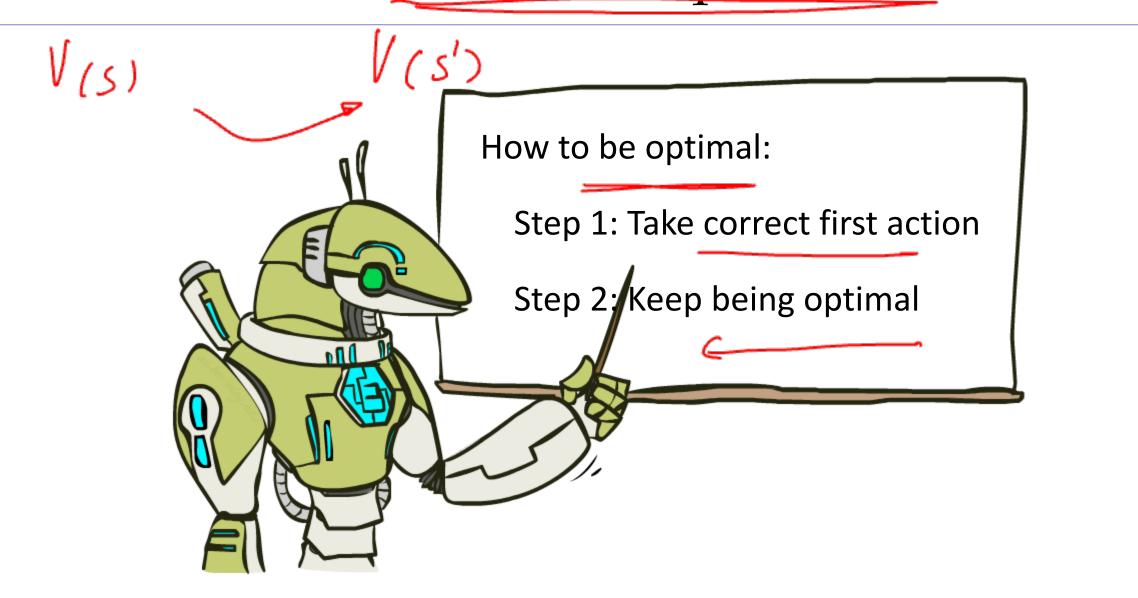
Optimal Quantities

- The value (utility) of a state s:
 - V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q^{*}(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:

 $\pi^*(s) = optimal action from state s$



The Bellman Equations



The Bellman Equations

= Max

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

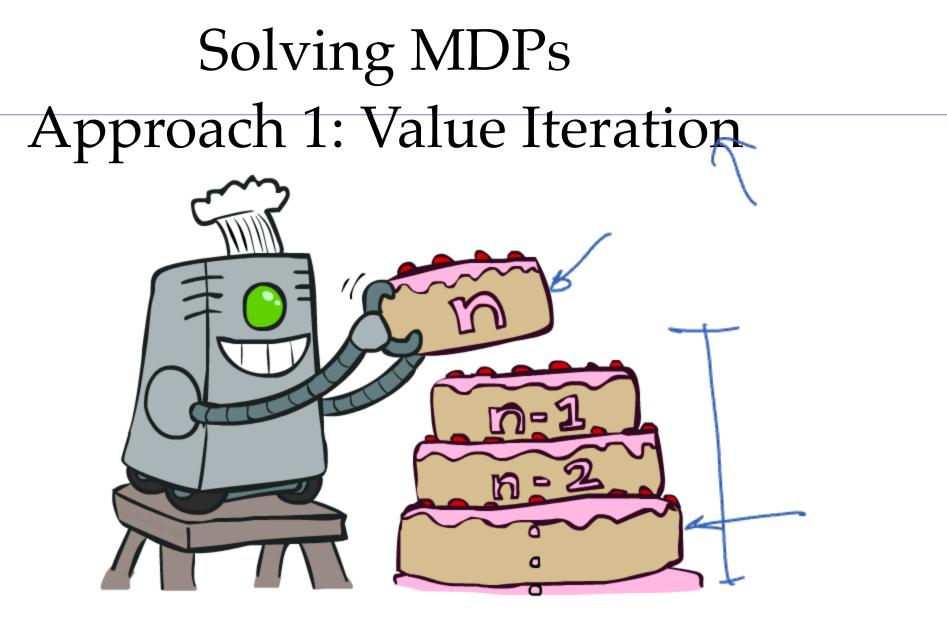
$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$O \text{ Thes} V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$



O steps a Value Iteration

 $\max_{a} \sum T(s, a, s')$

• Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero

 $R(s, a, s') + \gamma V_k(s')$

 \circ Given vector of V_k(s) values, do one ply of expectimax from each state:

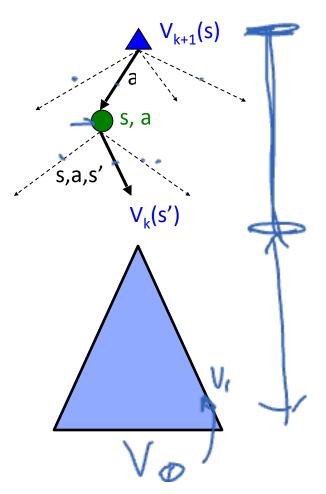
Repeat until convergence

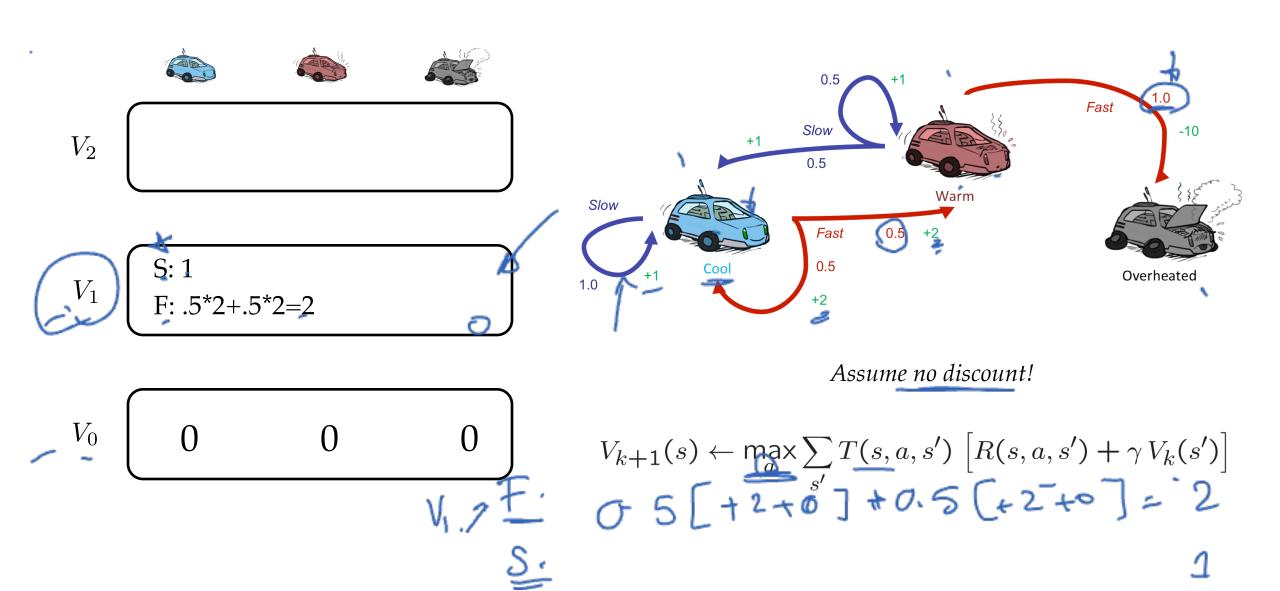
• Complexity of each iteration: O(S²A)

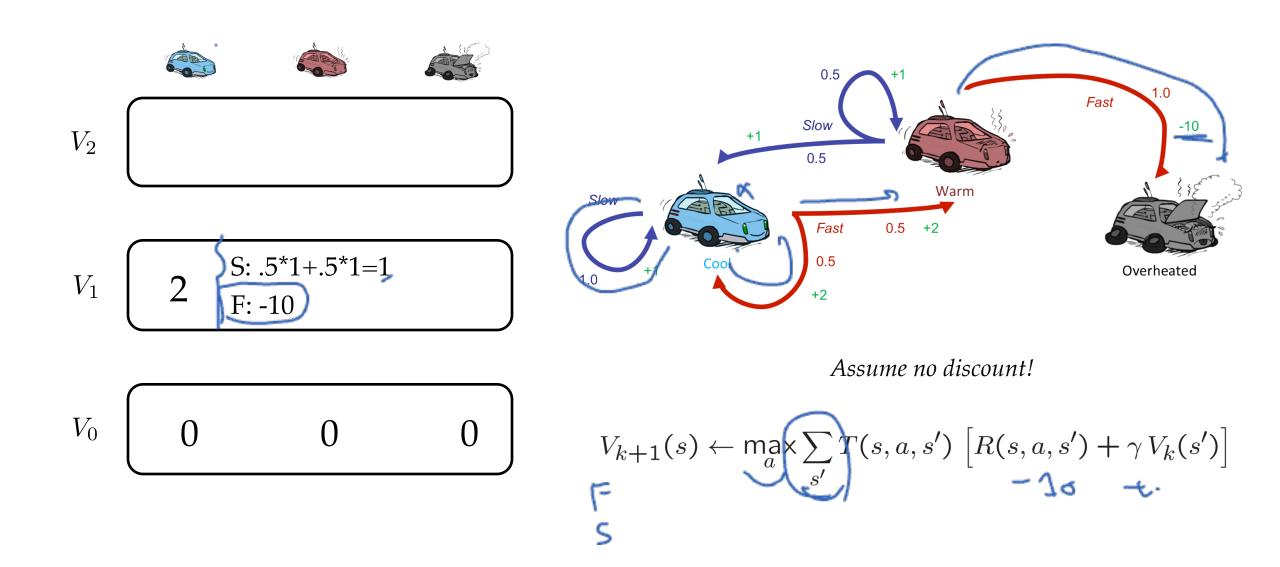
• Theorem: will converge to unique optimal values

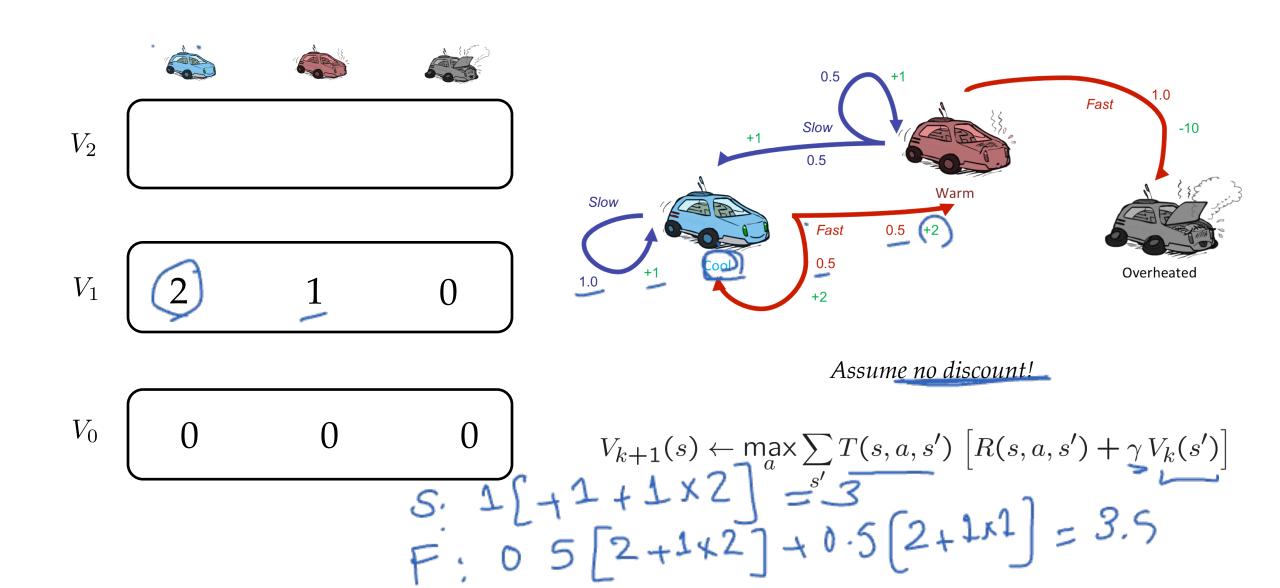
• Basic idea: approximations get refined towards optimal values

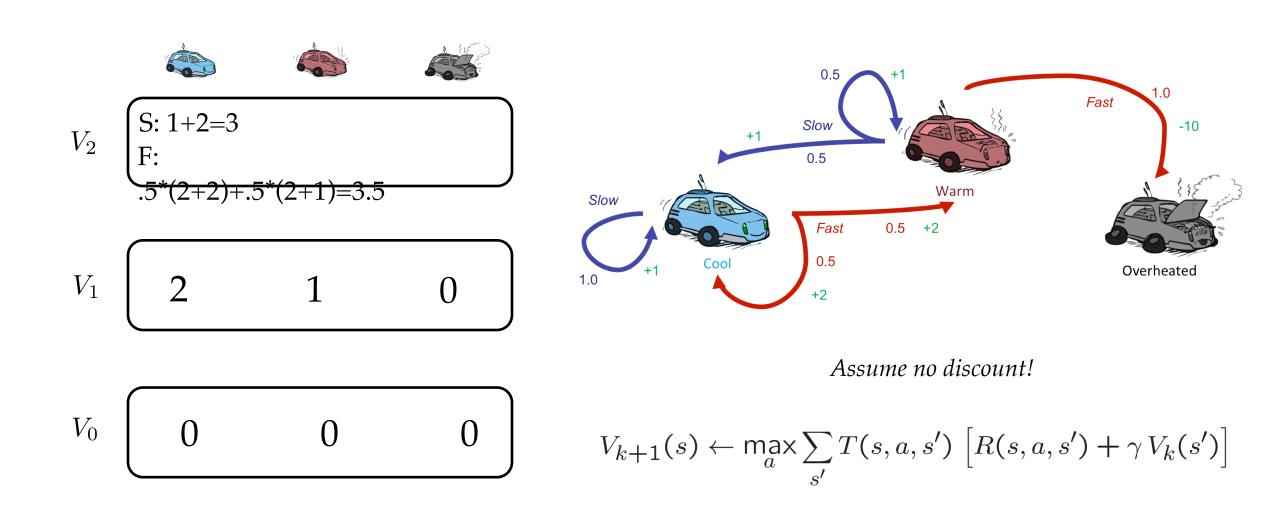
• Policy may converge long before values do

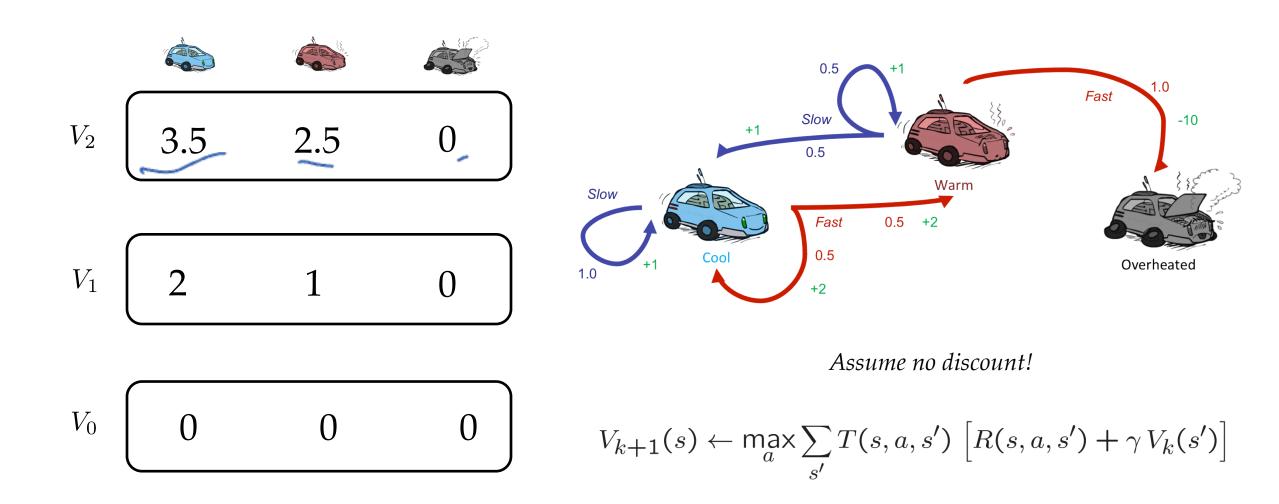












Value Iteration

• Bellman equations characterize the optimal values:

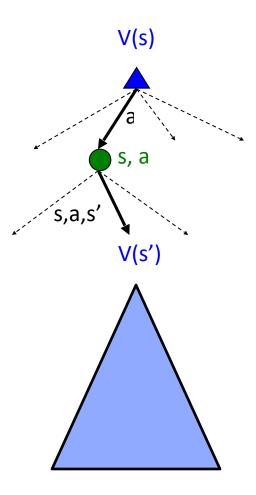
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

• Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

 $_{\odot}\,$ Value iteration is just a fixed point solution method

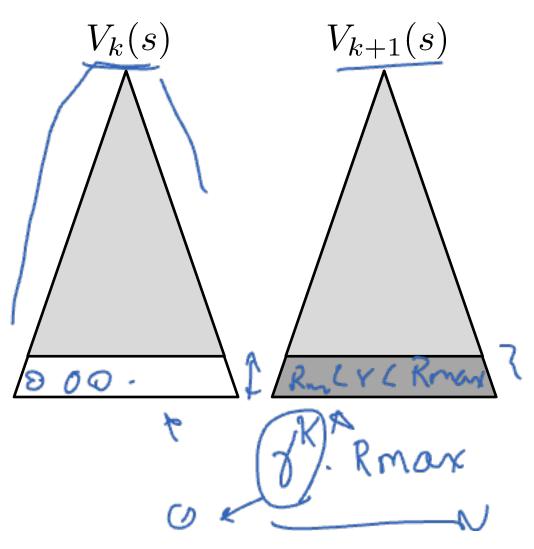
 $_{\rm O}$... though the V_k vectors are also interpretable as time-limited values



Convergence*

 ϵ

- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - $_{
 m O}$ Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - $_{\rm O}~$ The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - $_{\odot}$ That last layer is at best all R_M
 - O It is at worst R
 - $_{\odot}~$ But everything is discounted by γ^k that far out
 - $_{\text{O}}~$ So V_{k} and V_{k+1} are at most γ^{k} max $|\,R\,|$ different
 - o So as k increases, the values converge



Outcome of Value Iteration?

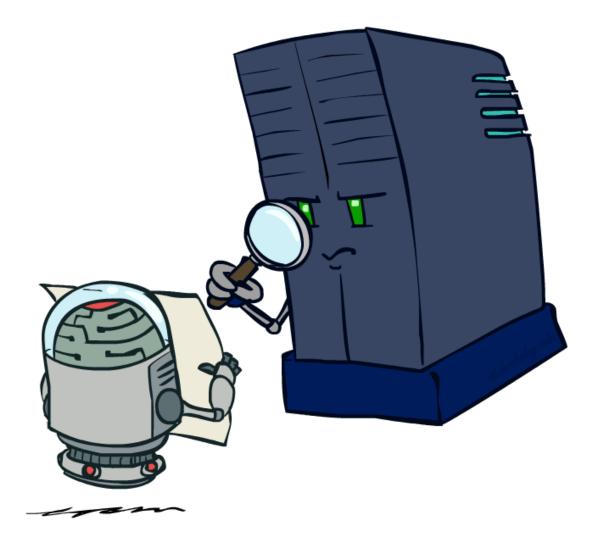
Compute Values for Policies

Compute Actions from Values

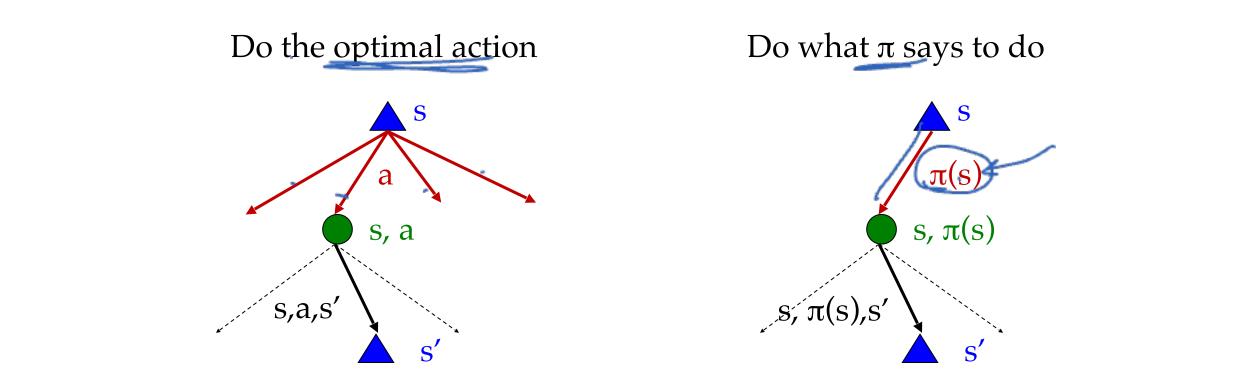
Directly search for policies



Policy Evaluation



Fixed Policies

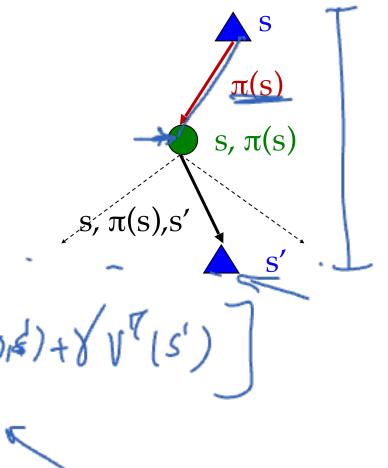


- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy π(s), then the tree would be simpler only one action per state
 ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

 Another basic operation: compute the <u>utility of a state s</u> under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy π : $\nabla^{\pi}(s) =$ expected total discounted rewards starting in s and following π

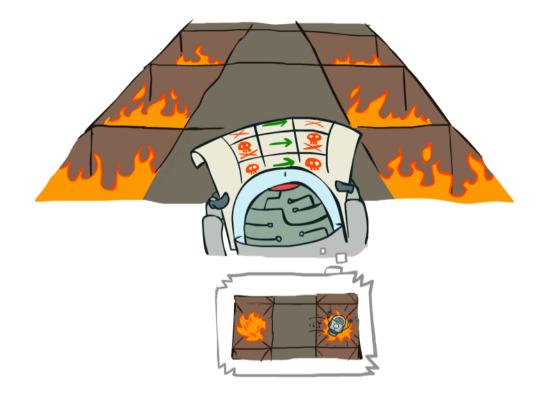


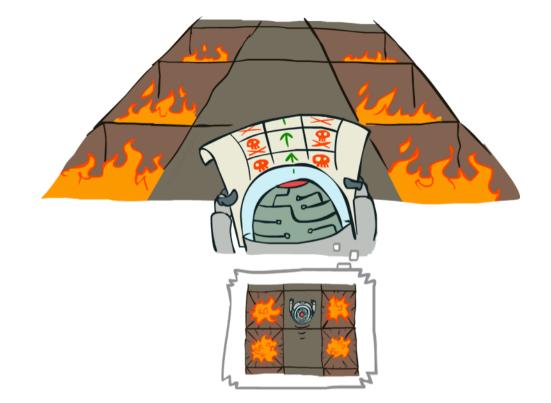
• Recursive relation (one-step look-ahead / Bellman $(s, \pi(s), s') + Y'(s')$ equation): $V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$

Example: Policy Evaluation

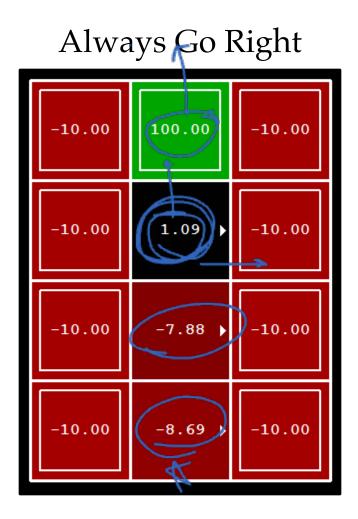
Always Go Right

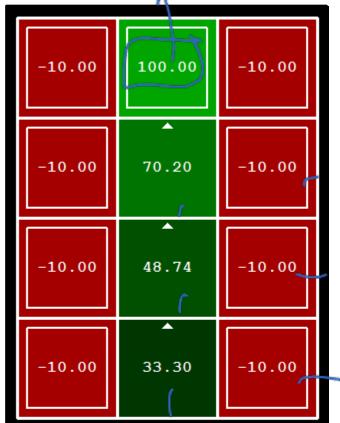
Always Go Forward 🧹





Example: Policy Evaluation





Policy Evaluation

 $\pi(s)$

s, $\pi(s)$

(́π(s),s

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

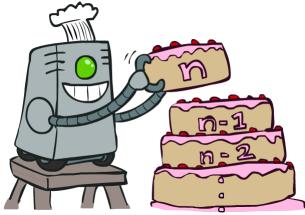
• Efficiency: O(S²) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)

Solving MDPs

- Finding the best policy \rightarrow mapping of actions to states
- So far, we have talked about two methods
 - Policy evaluation: computes the value of a **fixed** policy

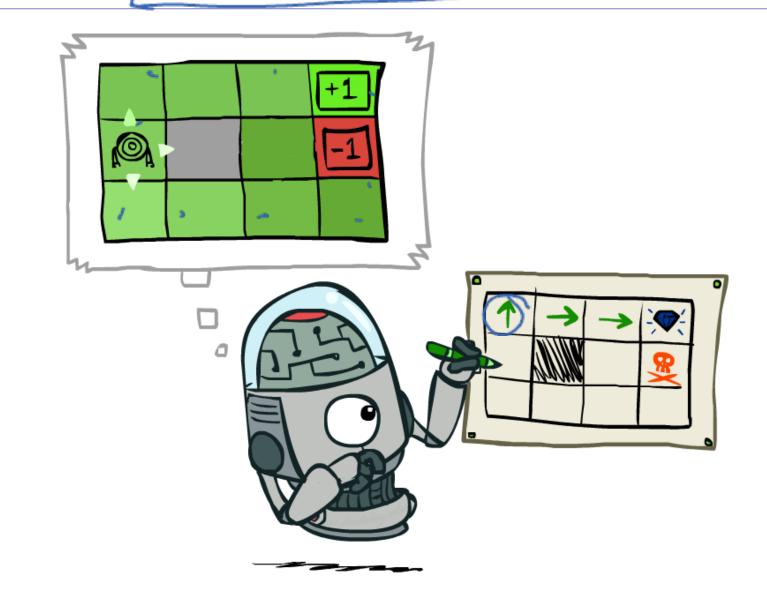
• Value iteration: computes the optimal values of states

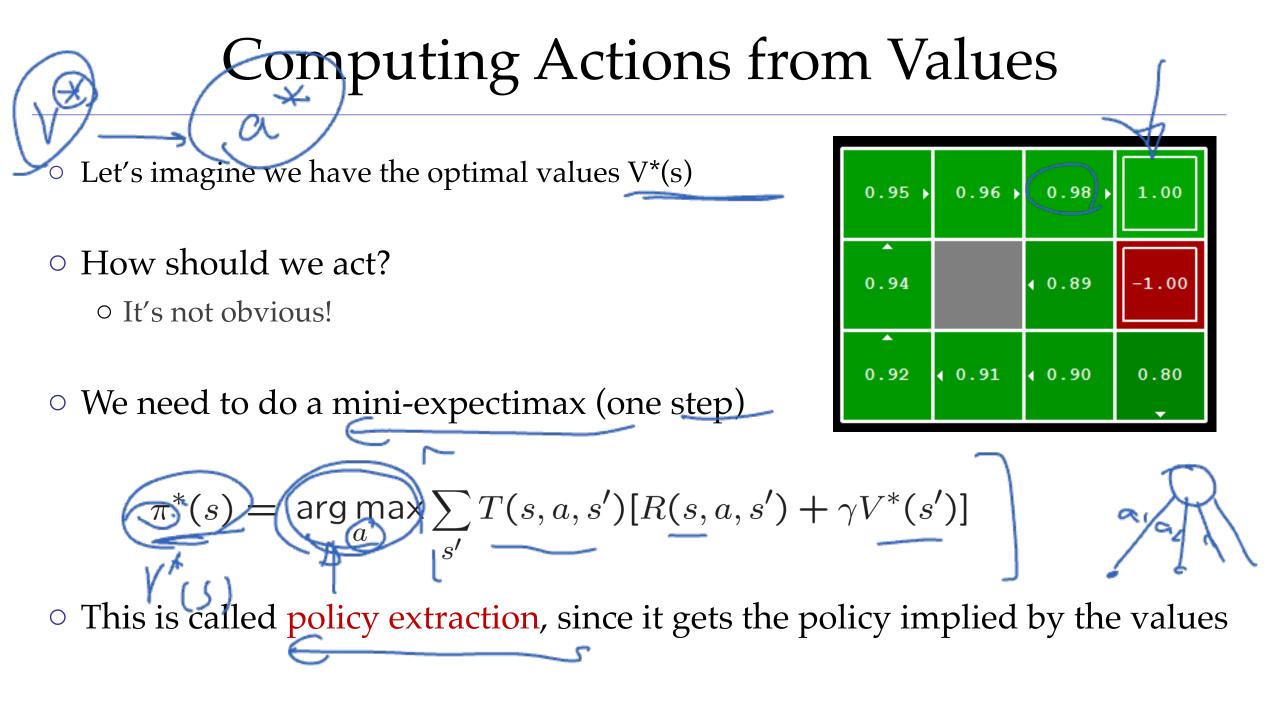


Let's think...

- Take a minute, think about value iteration and policy evaluation
 - Write down the biggest questions you have about them.

Policy Extraction



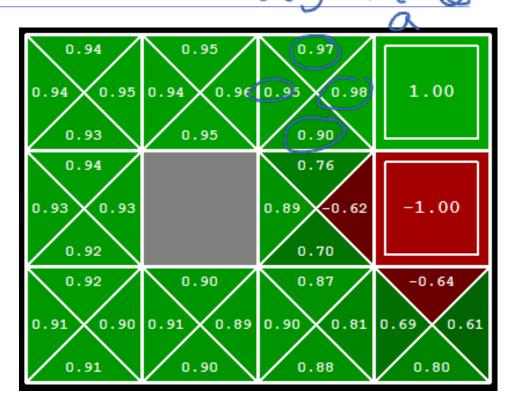


Computing Actions from Q-Values

• Let's imagine we have the optimal q-values:

• How should we act?

• Completely trivial to decide! $\pi^*(s) = \underset{a}{\arg \max} Q^*(s, a)$



• Important lesson: actions are easier to select from q-values than values!

Recap: MDPs and Bellman Updates

- Markov decision processes:
 Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions P(s' | s,a) (or T(s,a,s'))

• Rewards R(s,a,s) (and discount in

Bellman Equations

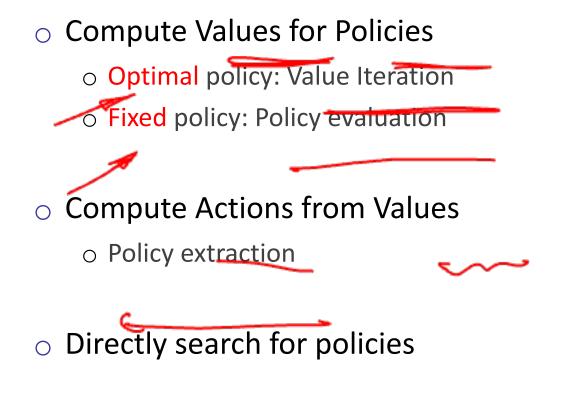
How to be optimal: Step 1: Take correct first action

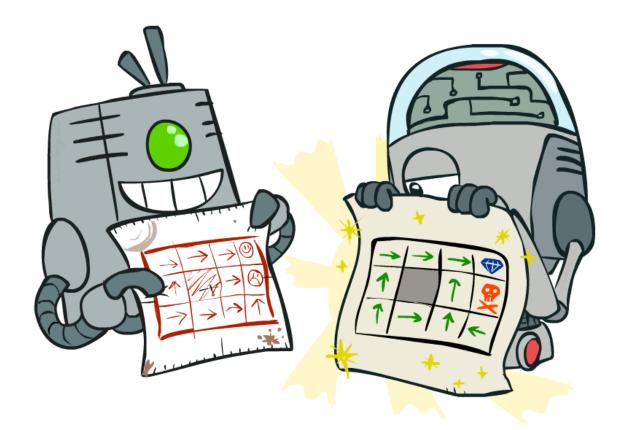
s,a,s

s.a

Step 2: Keep being optimal

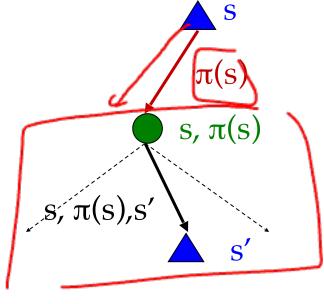
Recap: Computations





Recap: Computing values for policies

- · Compute values for a fixed policy: policy walnesh
 - $V_0^{\pi}(s) = 0$ $V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$
- Compute values for <u>optimal policy</u>: Value 11-ev $V_0(s) = 0$ $V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$



Computing Actions from Values

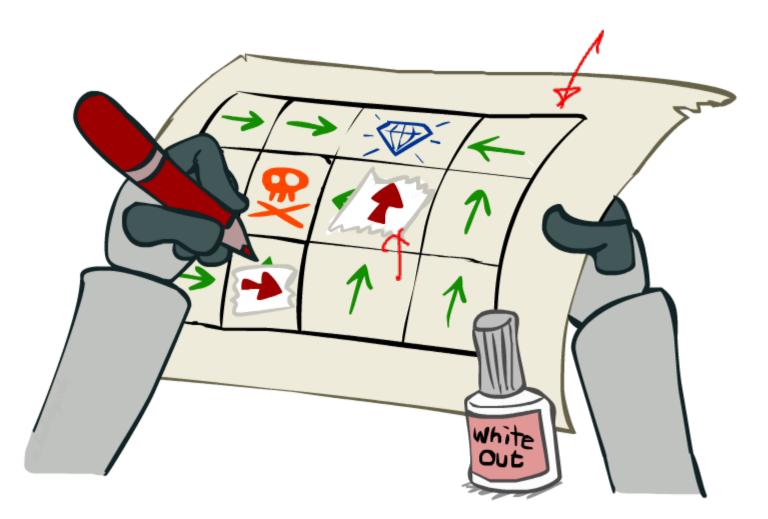
- Let's imagine we have the optimal values V*(s)
- How should we act?
 It's not obvious!
- We need to do a mini-expectimax (one step)

			N
0.95 ♪	0.96 ♪	0.98 •	1.00
▲ 0.94		∢ 0.89	-1.00
▲ 0.92	∢ 0.91	∢ 0.90	0.80

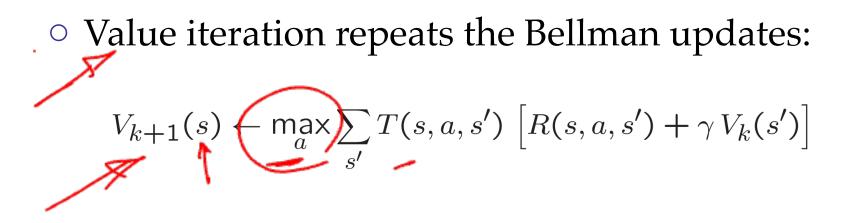
$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

• This is called **policy extraction**, since it gets the policy implied by the values

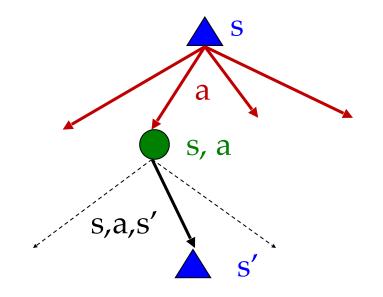
Policy Iteration



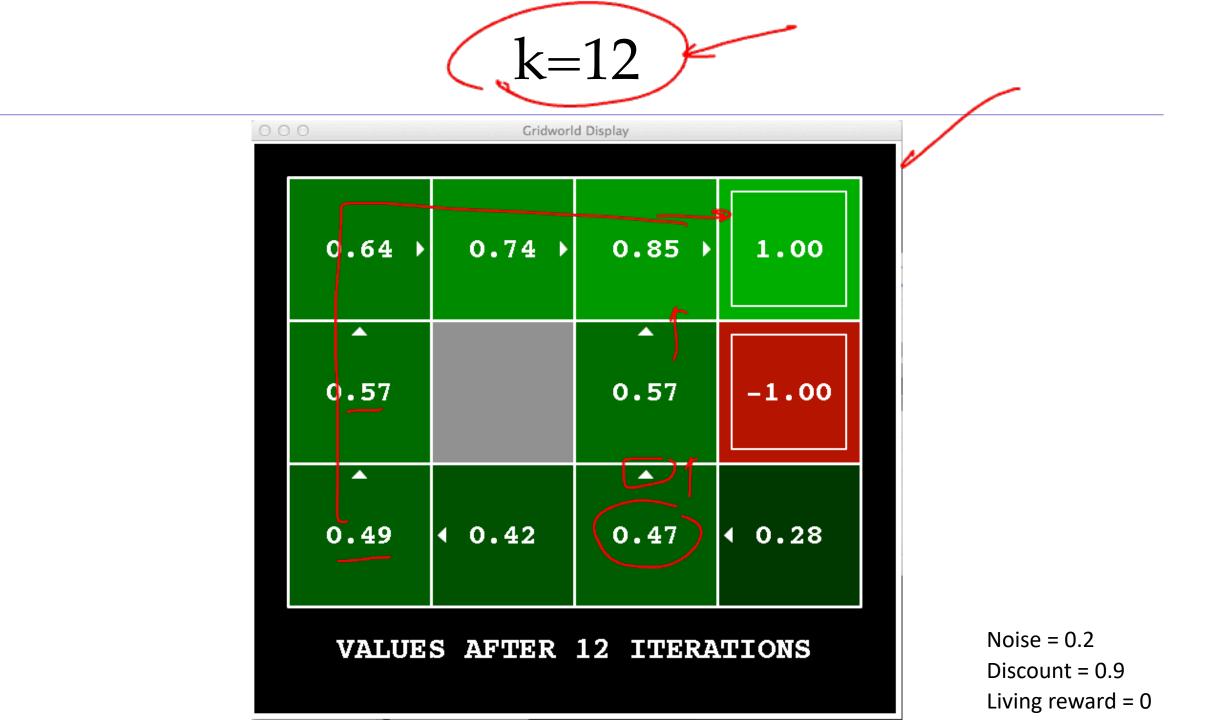
Problems with Value Iteration



• Problem 1: It's slow – $O(S^2A)$ per iteration



 Problem 2: The "max" at each state rarely changes, policy often converges long before the values



k=100

Gridworld Display						
	0.64 →	0.74 →	0.85)	1.00		
	• 0.57		• 0.57	-1.00		
	• 0.49	∢ 0.43	0.48	∢ 0.28		
	VALUES AFTER 100 ITERATIONS					

Noise = 0.2 Discount = 0.9 Living reward = 0

Policy Iteration fixed poly

• Alternative approach for optimal values: Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values • Repeat steps until policy converges iter in Step: Mi () Step2: update • This is policy iteration

- It's still optimal!
- Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation: • Iterate until values converge: $V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$
- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

• Both value iteration and policy iteration compute the same thing (all optimal values)

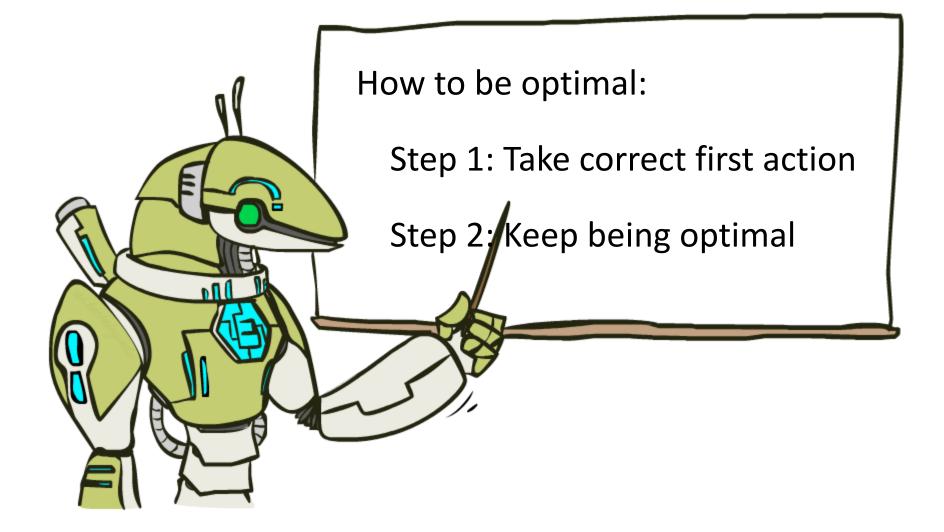
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:

- palicy evaluation
- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)

• Softh are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether the plug in a fixed policy or max over actions



Next Topic: Reinforcement Learning!