CSE 473: Introduction to Artificial Intelligence

Hanna Hajishirzi Markov Decision Processes

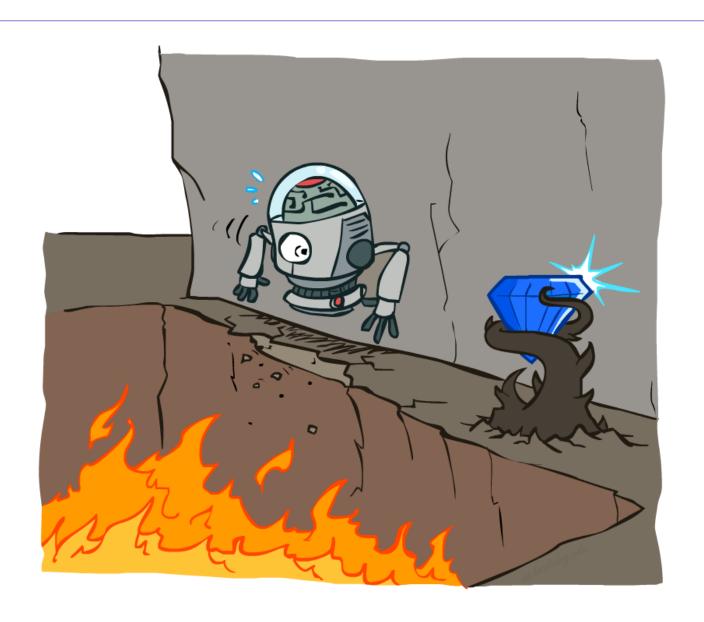
slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu
And Dan Weld, Luke Zettlemoyer

Review and Outline

Adversarial Games

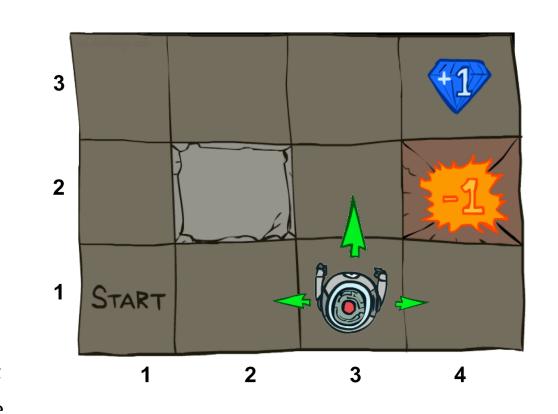
- Minimax search
- α-β search
- Evaluation functions
- Multi-player, non-0-sum
- Stochastic Games
 - Expectimax
 - Markov Decision Processes
 - Reinforcement Learning

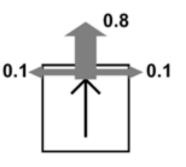
Non-Deterministic Search



Example: Grid World

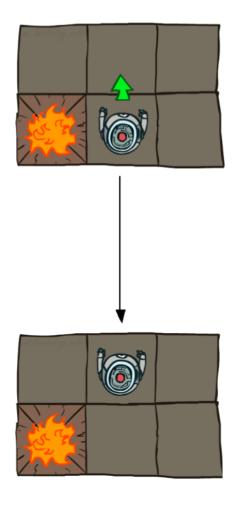
- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)





Grid World Actions

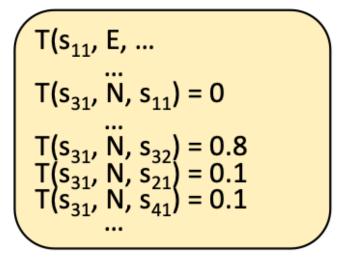
Deterministic Grid World

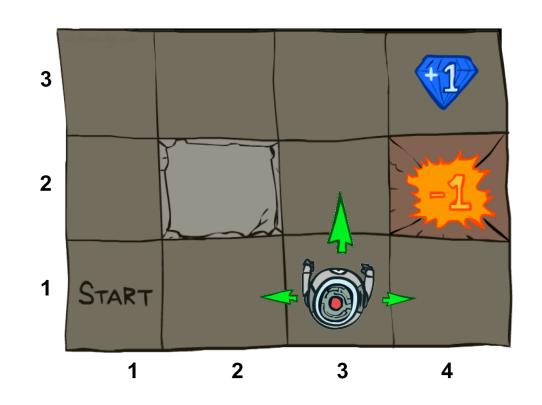


Stochastic Grid World

Markov Decision Processes

- An MDP is defined by:
 - \circ A set of states $s \in S$
 - \circ A set of actions $a \in A$
 - A transition function T(s, a, s')
 - \circ Probability that a from s leads to s', i.e., $P(s' \mid s, a)$
 - Also called the model or the dynamics



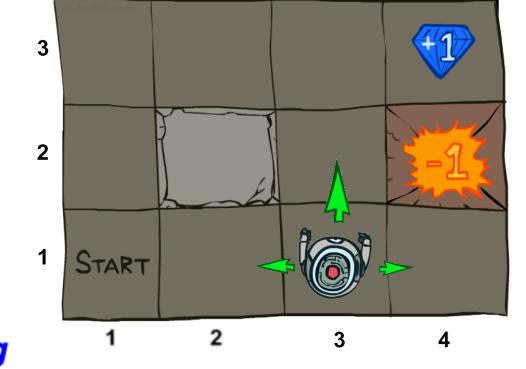


Tisa Big Table! 11 $X4 \times 11 = 484$ entries

For now, we give this as input to the agent

Markov Decision Processes

- An MDP is defined by:
 - \circ A set of states $s \in S$
 - \circ A set of actions $a \in A$
 - A transition function T(s, a, s')
 - \circ Probability that a from s leads to s', i.e., $P(s' \mid s, a)$
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')



$R(s_{32}, N, s_{33}) = -0.01$

$$R(s_{33}, E, s_{43}) = 0.99$$

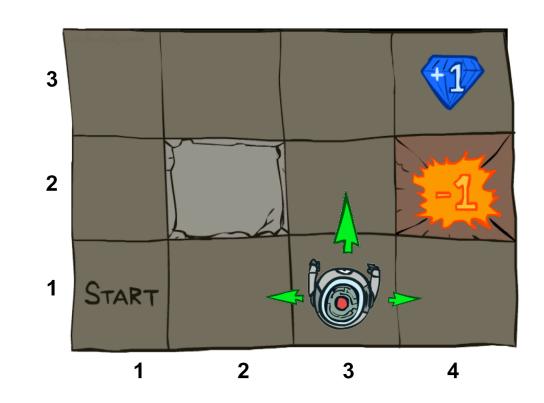
Cost of breathing

R is also a Big Table!

For now, we also give this to the agent

Markov Decision Processes

- An MDP is defined by:
 - \circ A set of states $s \in S$
 - \circ A set of actions $a \in A$
 - A transition function T(s, a, s')
 - \circ Probability that a from s leads to s', i.e., $P(s' \mid s, a)$
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state
- MDPs are non-deterministic search problems
 - One way to solve them is with expectimax search
 - We'll have a new tool soon



What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

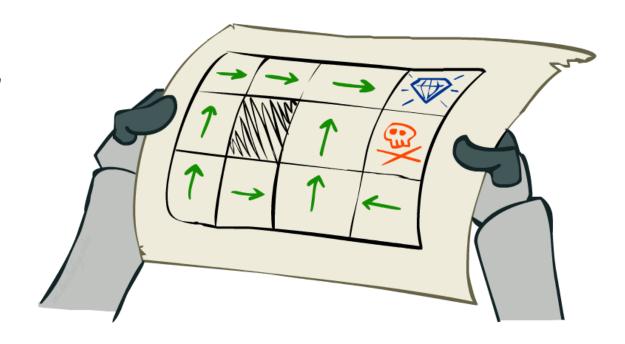
$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

• This is just like search, where the successor function could only depend on the current state (not the history)

Andrey Markov (1856-1922)

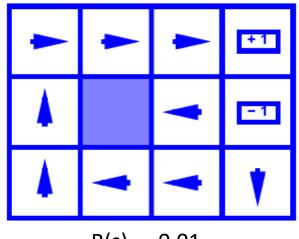
Policies

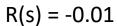
- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy $\pi^*: S \to A$
 - \circ A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent

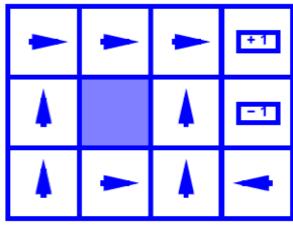


Optimal policy when R(s, a, s') = -0.4 for all non-terminals s

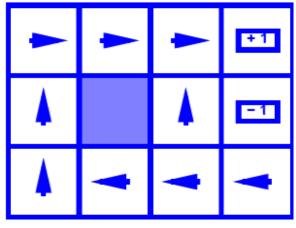
Optimal Policies



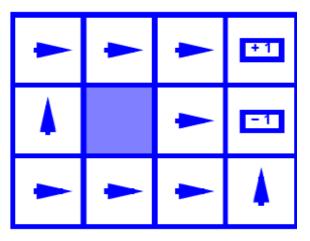




$$R(s) = -0.4$$



R(s) = -0.03



R(s) = -2.0

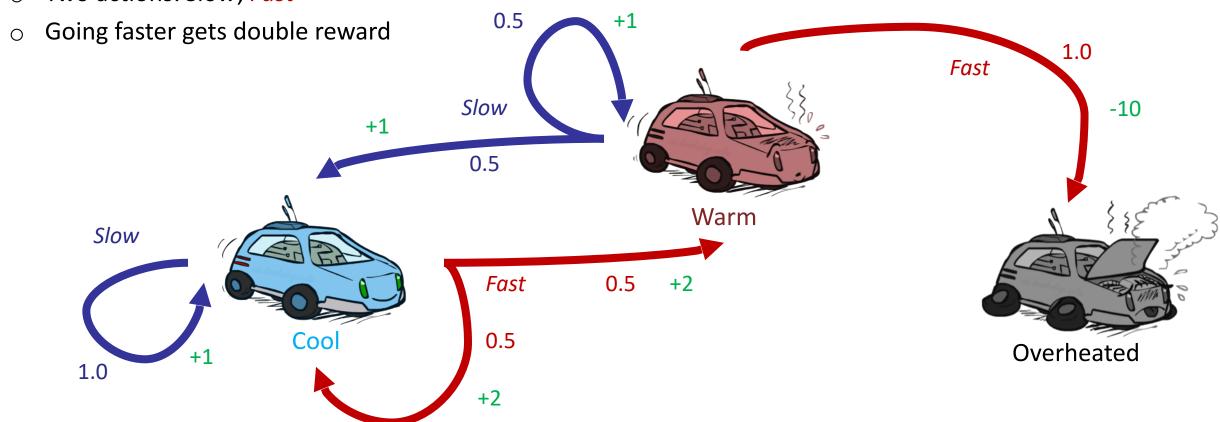
Example: Racing

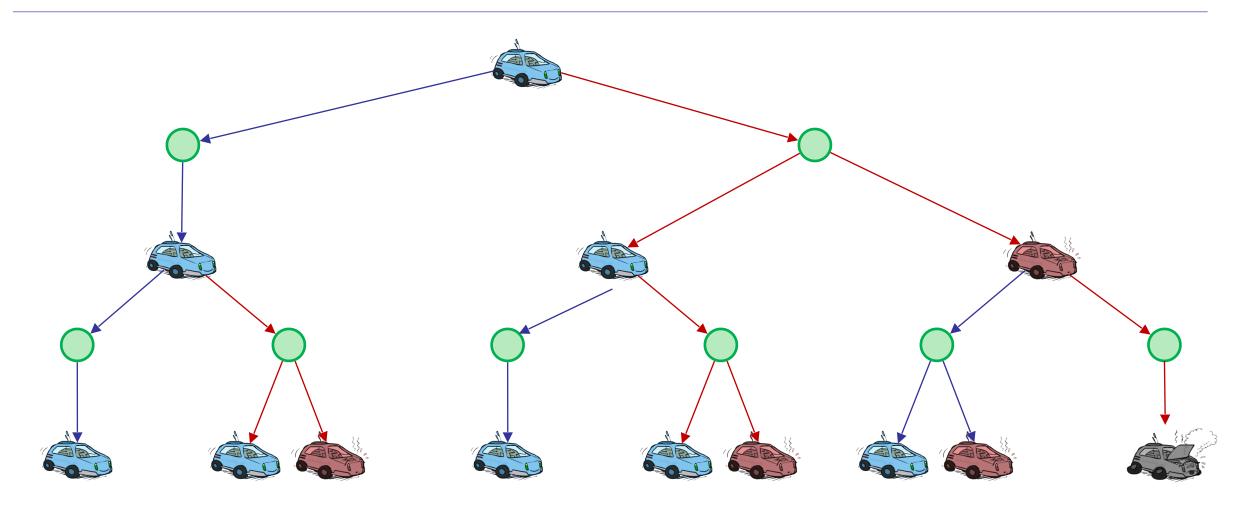
Example: Racing

A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

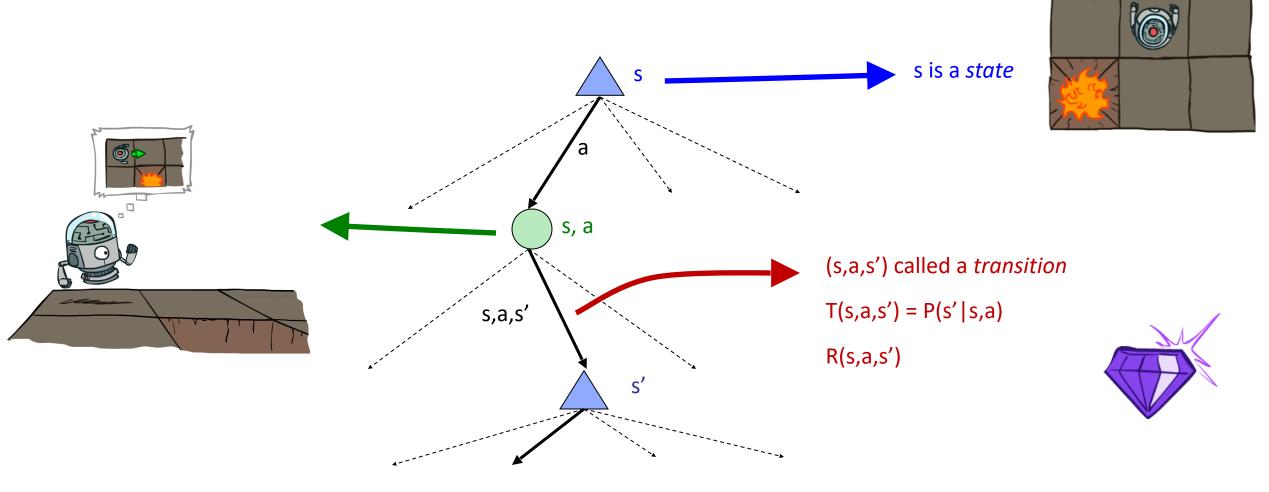
Two actions: Slow, Fast



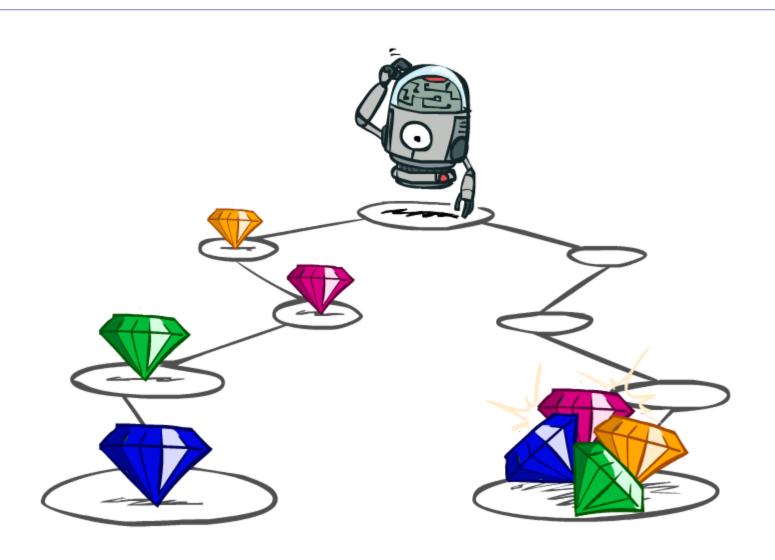


MDP Search Trees

Each MDP state projects an expectimax-like search tree



Utilities of Sequences



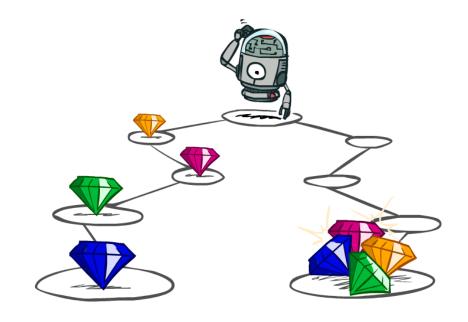
Utilities of Sequences

What preferences should an agent have over reward sequences?

More or less?[1, 2, 2] or [2, 3, 4]

[0, 0, 1] or [1, 0, 0]

• Now or later?



Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

Output How to discount?

 Each time we descend a level, we multiply in the discount once

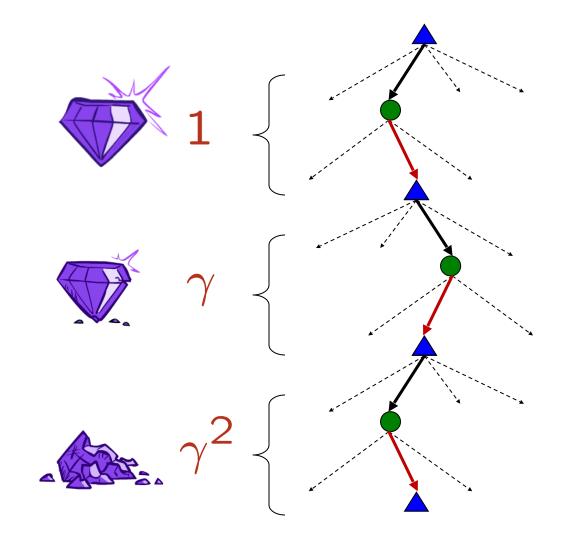
• Why discount?

- Think of it as a gamma chance of ending the process at every step
- Also helps our algorithms converge

• Example: discount of 0.5

$$\circ$$
 U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

$$\circ$$
 U([1,2,3]) < U([3,2,1])

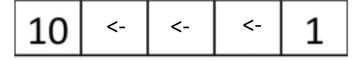


Quiz: Discounting

• Given:

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic

• Quiz 1: For $\gamma = 1$, what is the optimal policy?



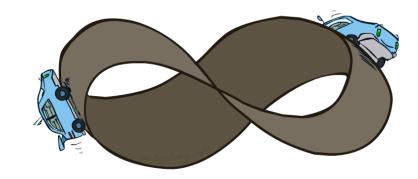
• Quiz 2: For $\gamma = 0.1$, what is the optimal policy?

Quiz 3: For which γ are West and East equally good when in state d?

$$1\gamma=10 \gamma^3$$

Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Policy π depends on time left
 - Discounting: use $0 < \gamma < 1$

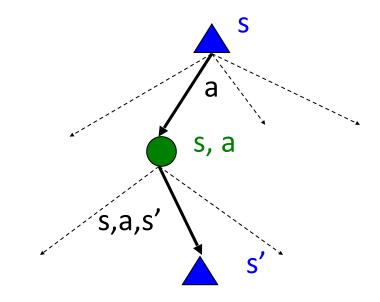


$$U([r_0, \dots r_\infty]) = \sum_{t=0}^\infty \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

 Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

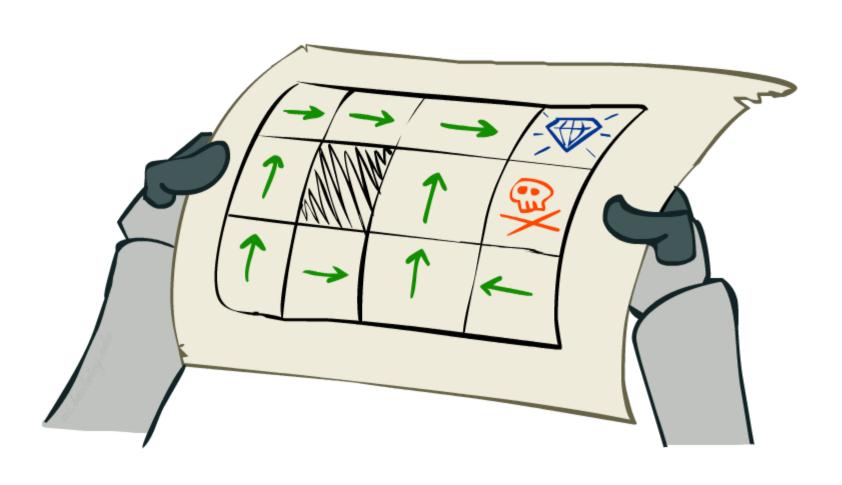
Recap: Defining MDPs

- Markov decision processes:
 - Set of states S
 - o Start state s₀
 - Set of actions A
 - \circ Transitions P(s' | s,a) (or T(s,a,s'))
 - \circ Rewards R(s,a,s') (and discount γ)



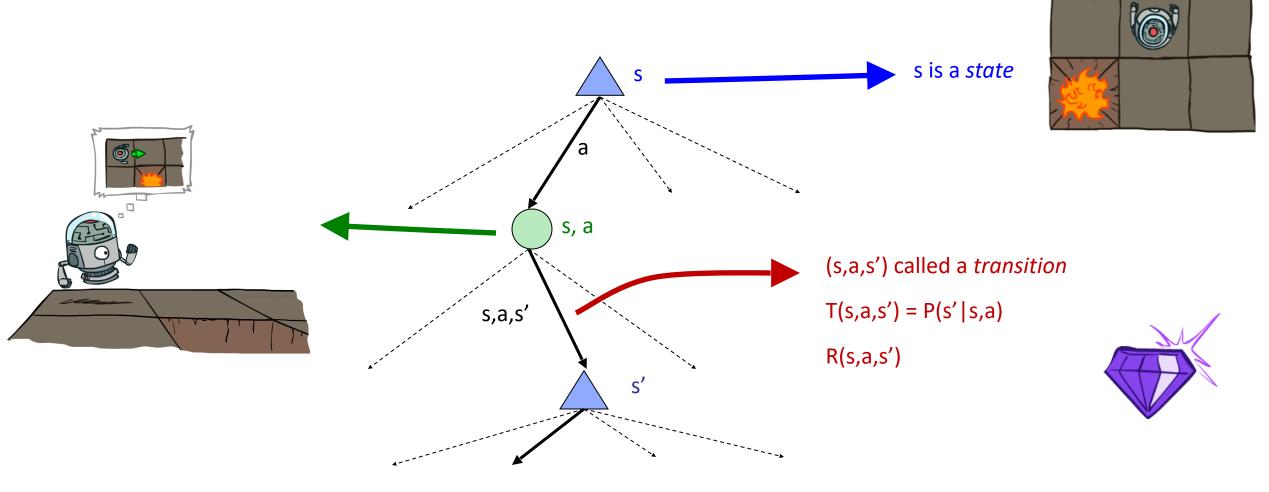
- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

Solving MDPs



MDP Search Trees

Each MDP state projects an expectimax-like search tree



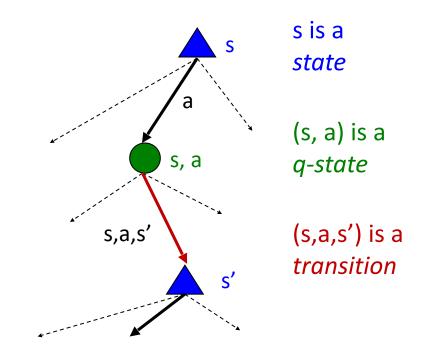
Optimal Quantities

The value (utility) of a state s:

V*(s) = expected utility starting in s and acting optimally

The value (utility) of a q-state (s,a):

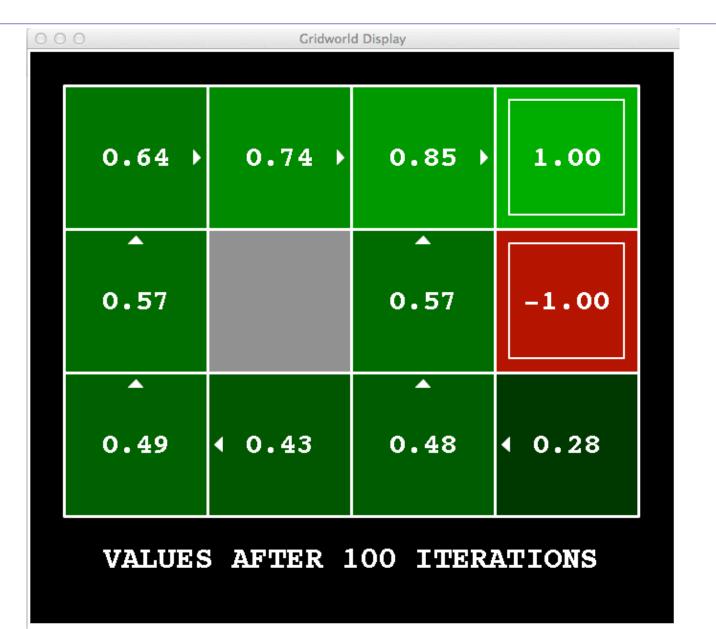
Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally



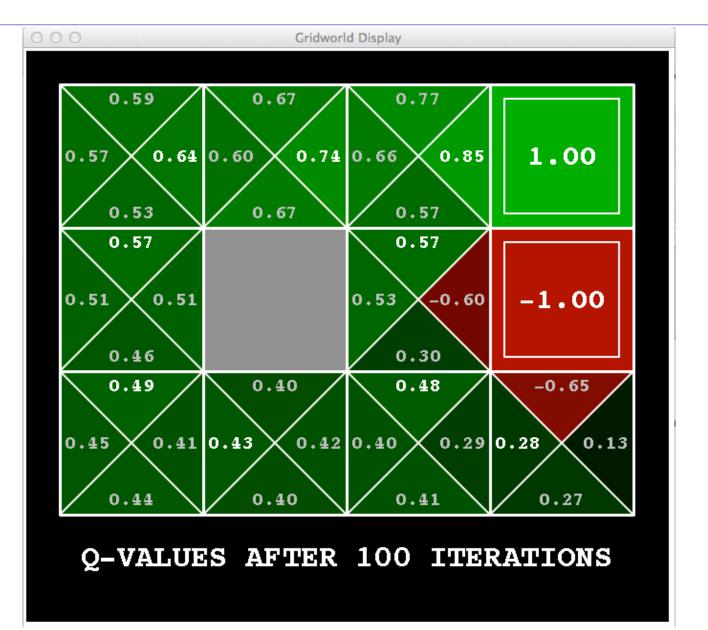
The optimal policy:

 $\pi^*(s)$ = optimal action from state s

Snapshot of Demo – Gridworld V Values



Snapshot of Demo – Gridworld Q Values



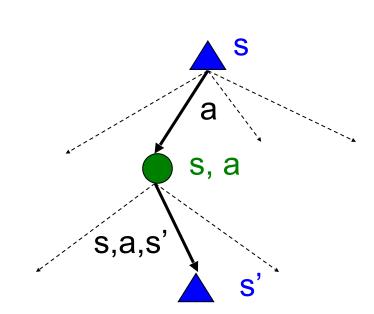
Values of States (Bellman Equations)

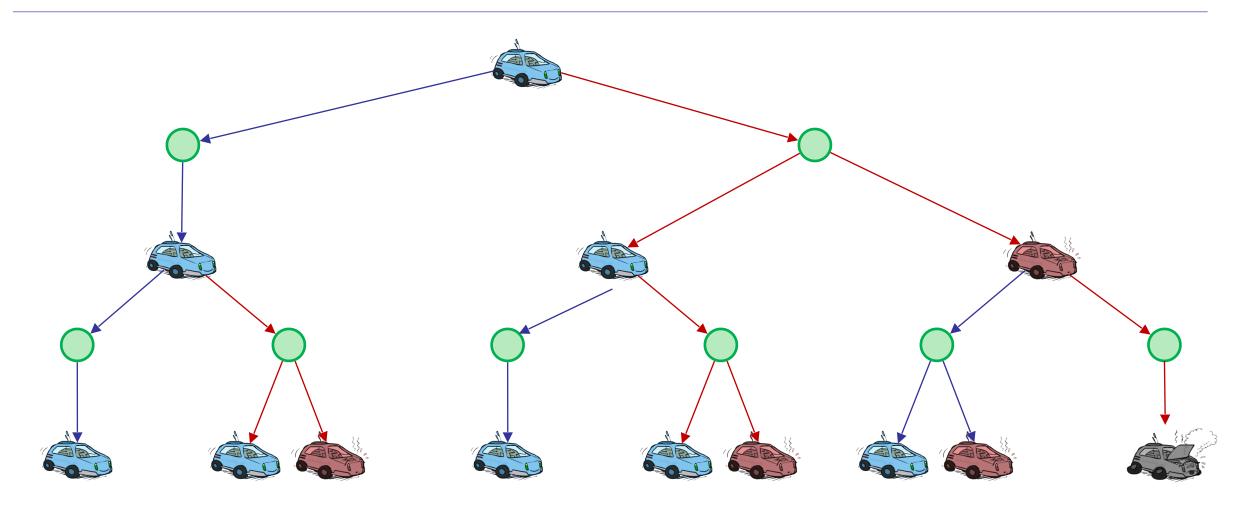
- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!
- Recursive definition of value:

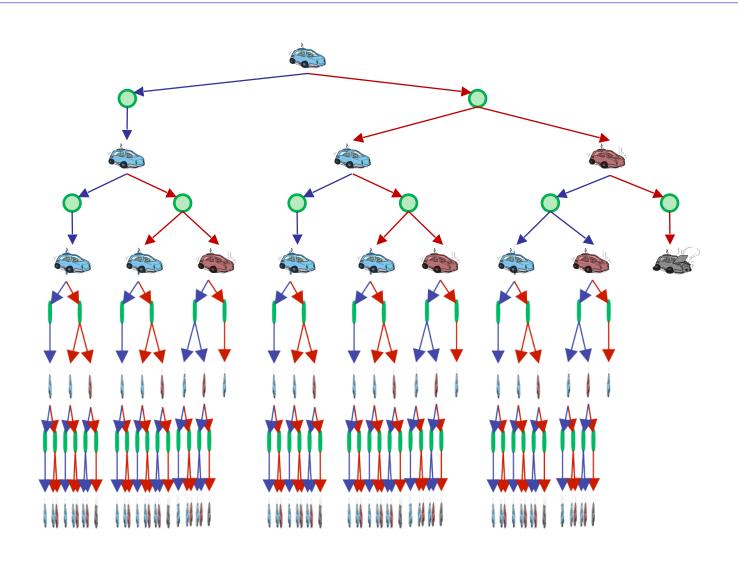
$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

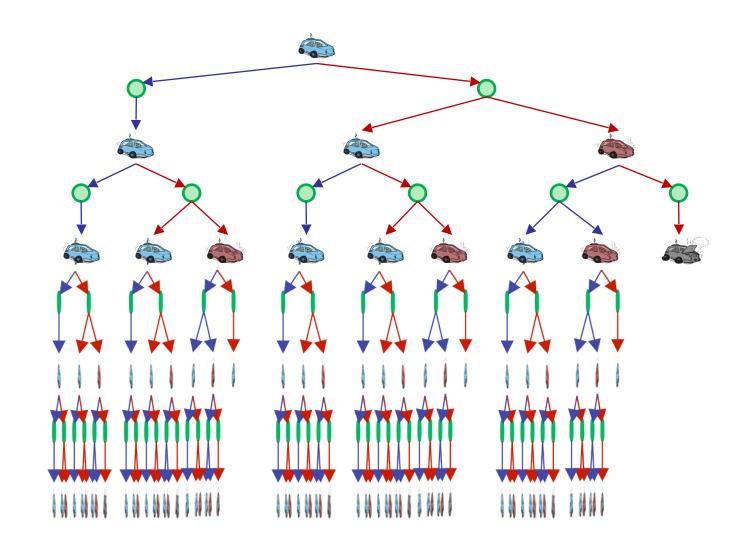
$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$





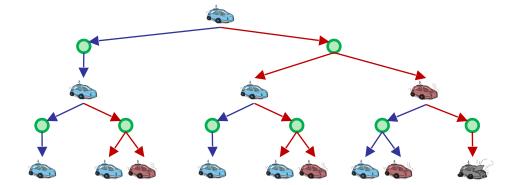


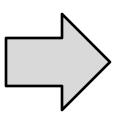
- We're doing way too much work with expectimax!
- Problem: States are repeated
 - Idea quantities: Only compute needed once
- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don't matter if $\gamma < 1$

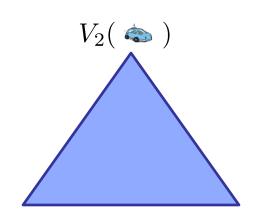


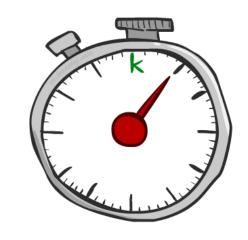
Time-Limited Values

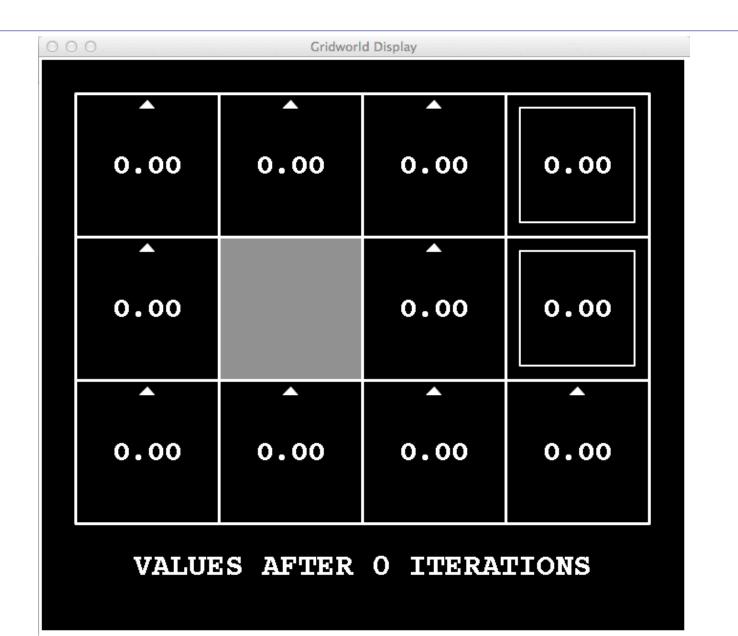
- Key idea: time-limited values
- Operation $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it's what a depth-k expectimax would give from

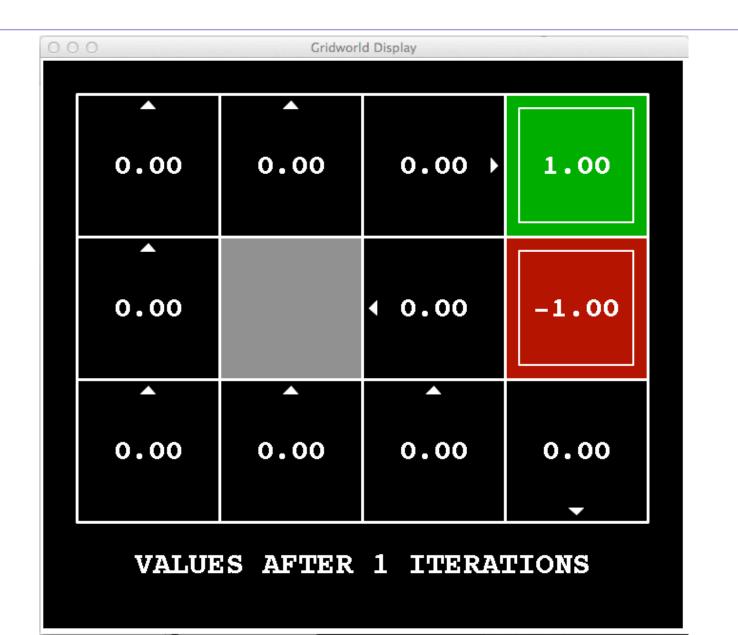


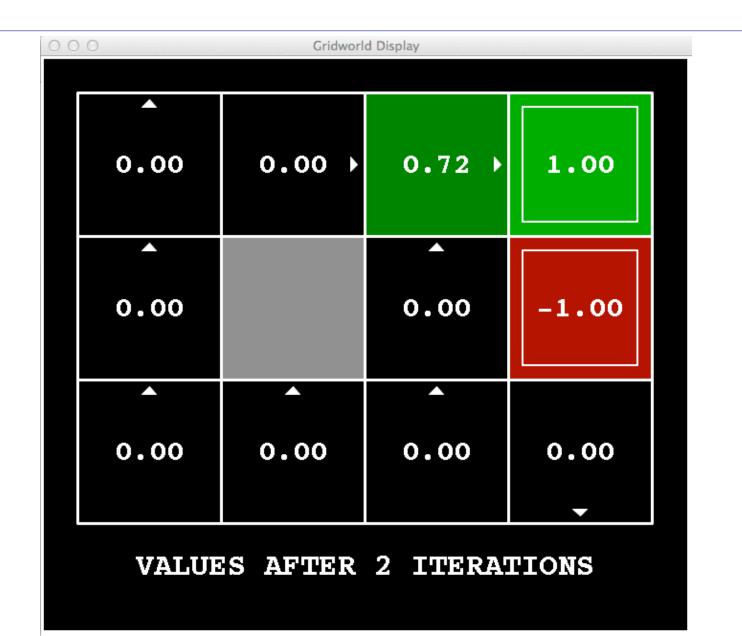




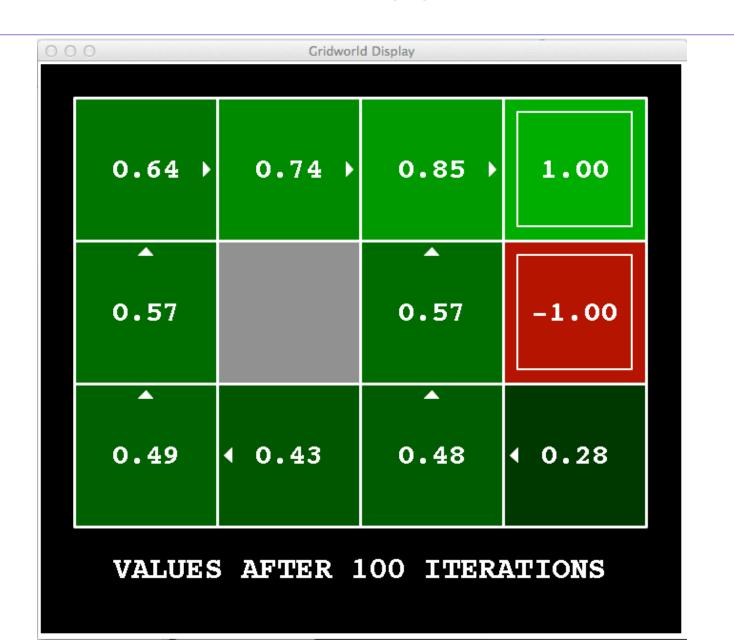




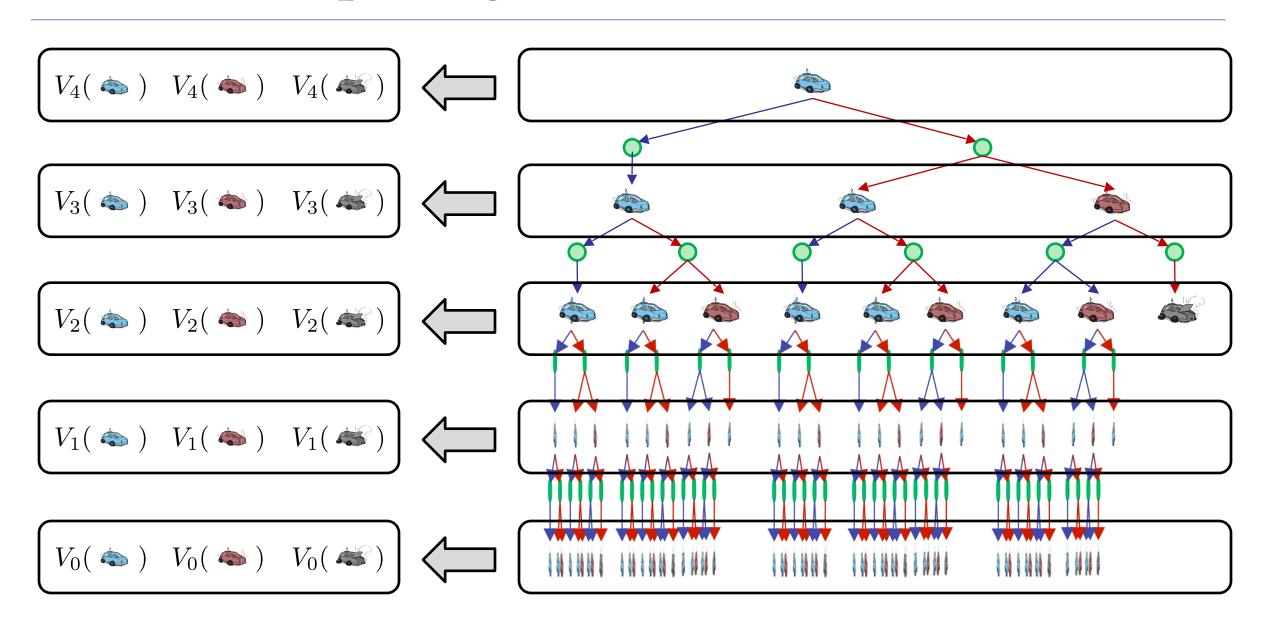




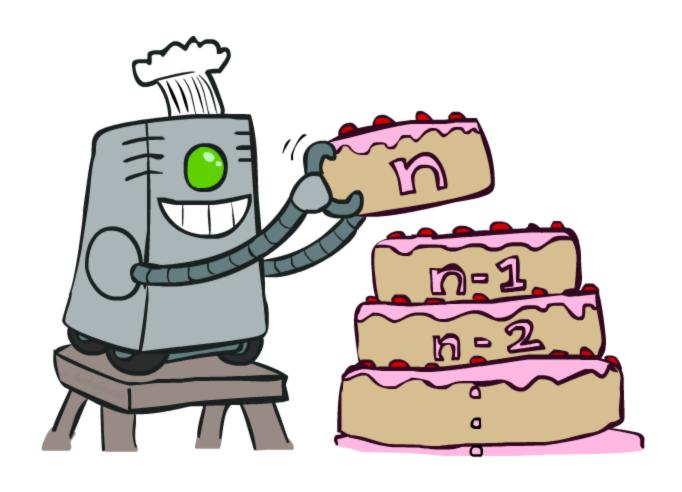
k = 100



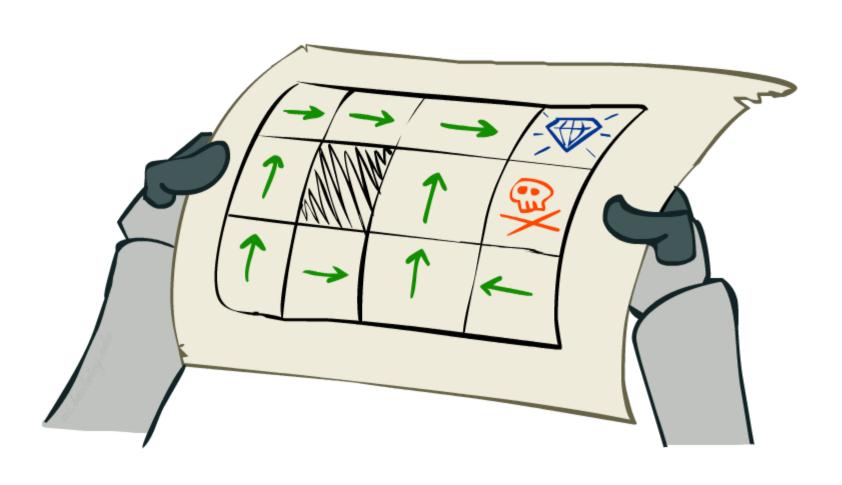
Computing Time-Limited Values



Value Iteration



Solving MDPs

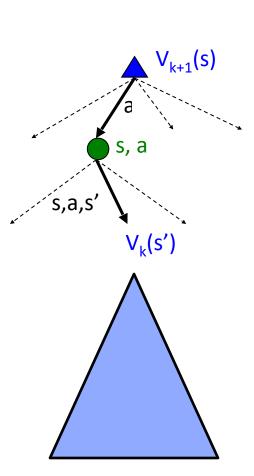


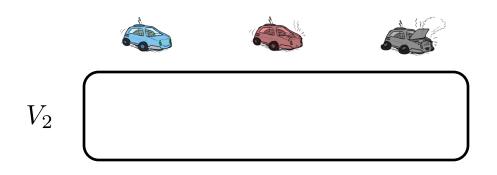
Value Iteration

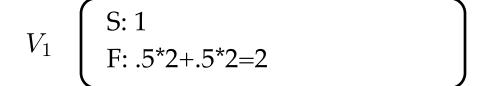
- \circ Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- \circ Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

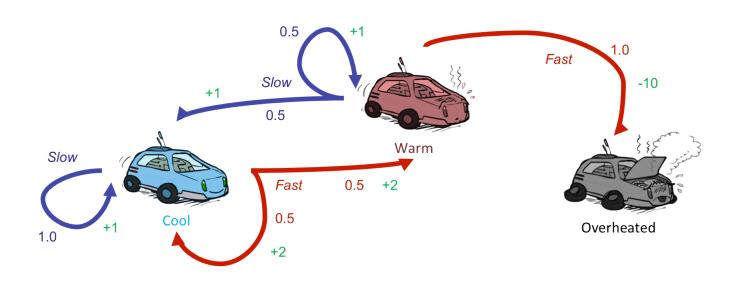
- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 - Policy may converge long before values do





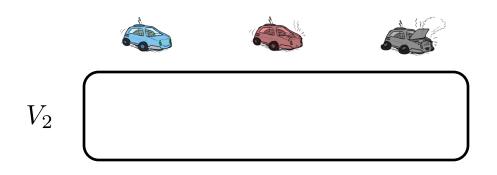


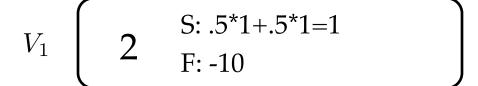




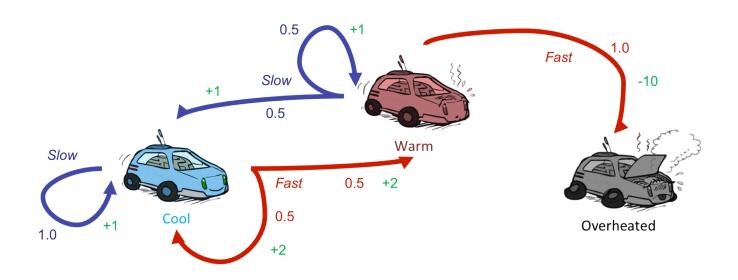
Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$



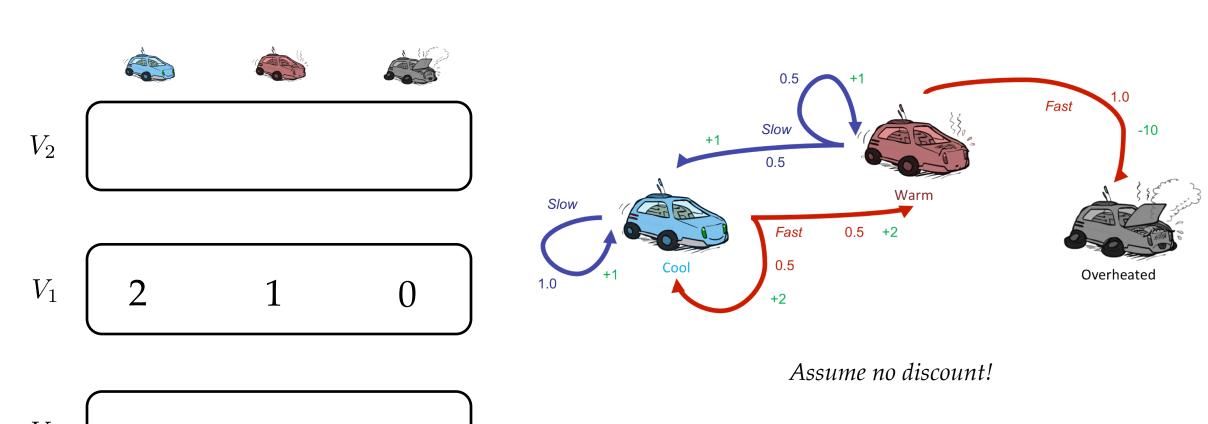




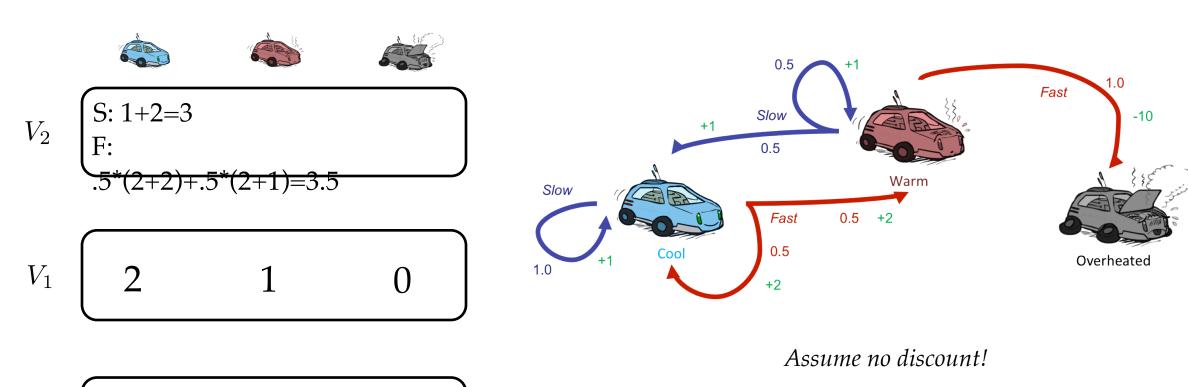


Assume no discount!

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

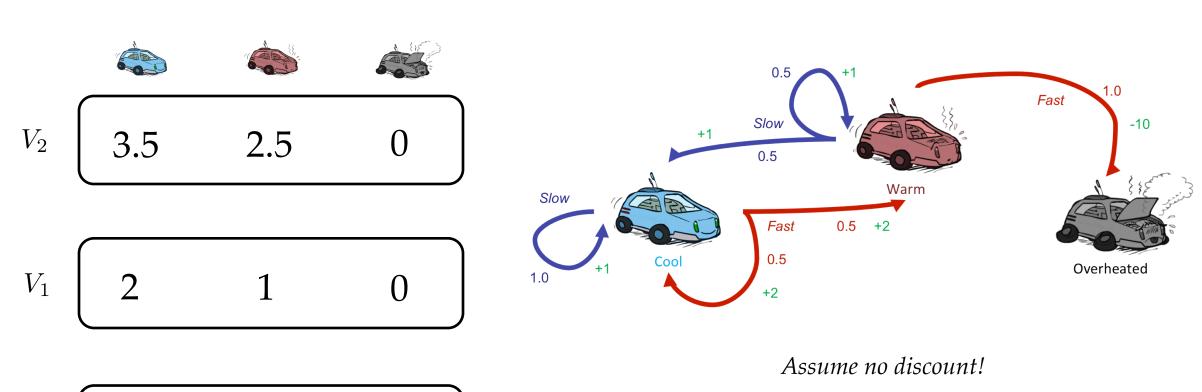


$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$



$$V_0$$
 0 0 0

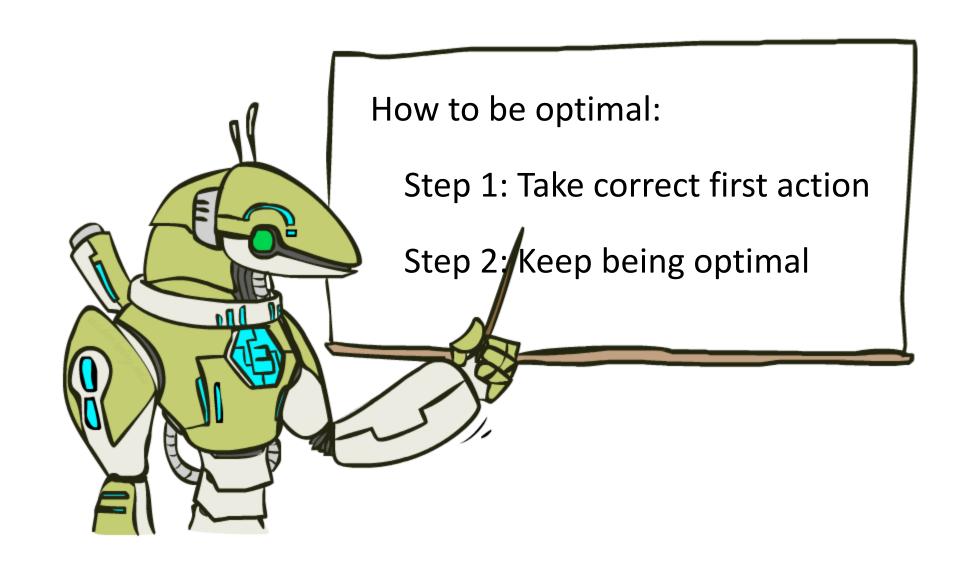
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$



$$V_0 \left[\begin{array}{ccc} 0 & 0 & 0 \end{array} \right]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

The Bellman Equations

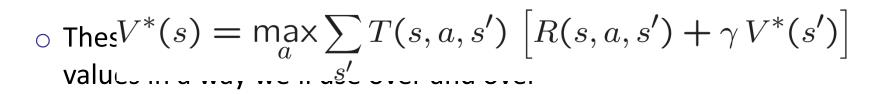


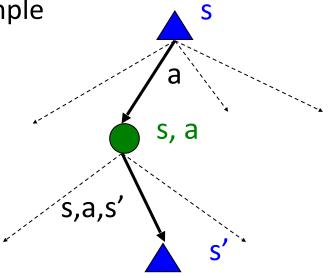
The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$





Value Iteration

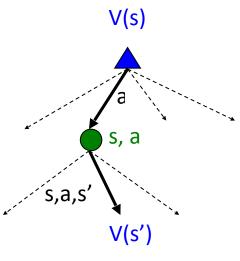
Bellman equations characterize the optimal values:

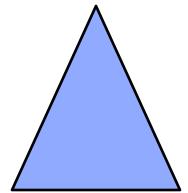
$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

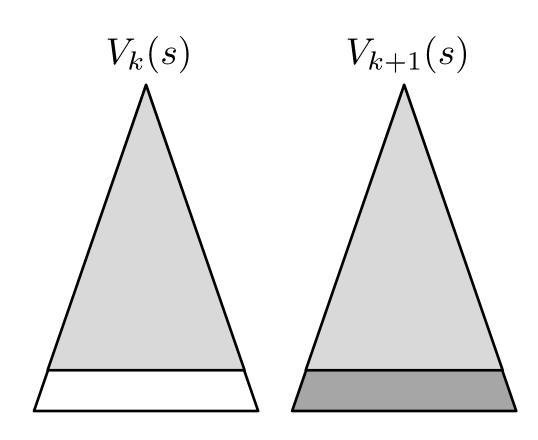
○ ... though the V_k vectors are also interpretable as time-limited values



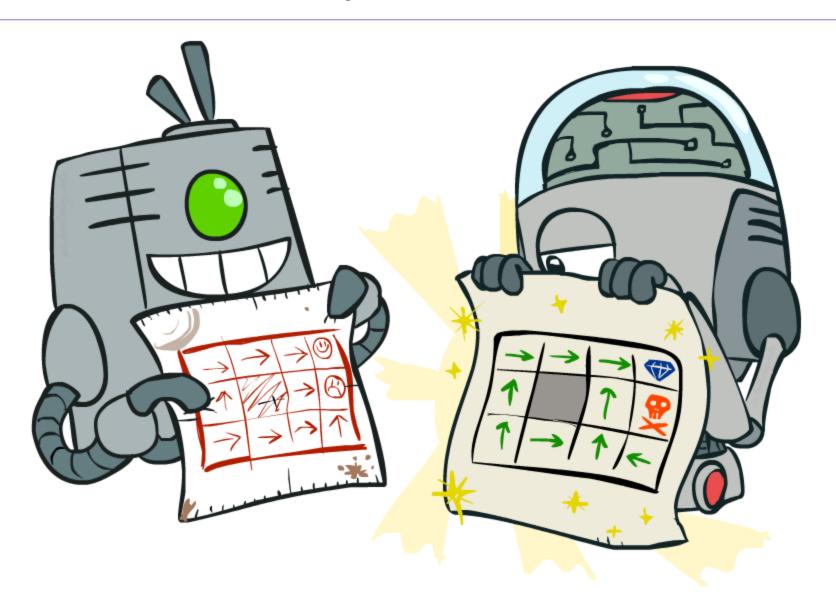


Convergence*

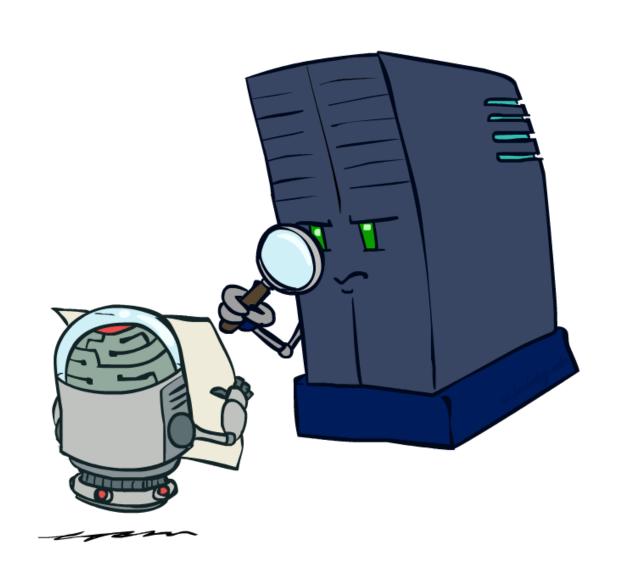
- $_{\circ}$ How do we know the V_{k} vectors are going to converge?
- Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - $_{\circ}$ Sketch: For any state V_{k} and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - $_{\odot}$ The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - $_{
 m O}$ That last layer is at best all R $_{
 m MAX}$
 - O It is at worst R_{MIN}
 - o But everything is discounted by γ^k that far out
 - \circ So V_k and V_{k+1} are at most γ^k max |R| different
 - So as k increases, the values converge



Policy Methods

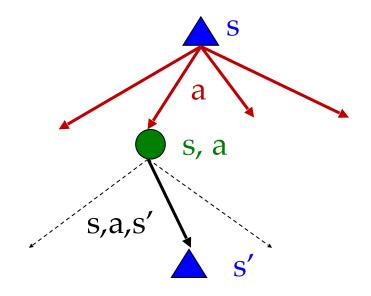


Policy Evaluation

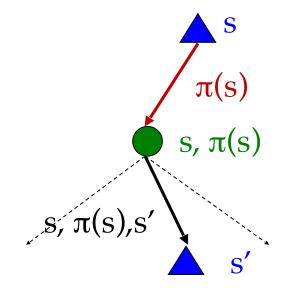


Fixed Policies

Do the optimal action



Do what π says to do

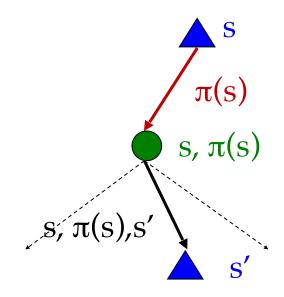


- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(s)$, then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π :

 $V^{\pi}(s) = \text{expected total discounted rewards starting in } s$ and following π

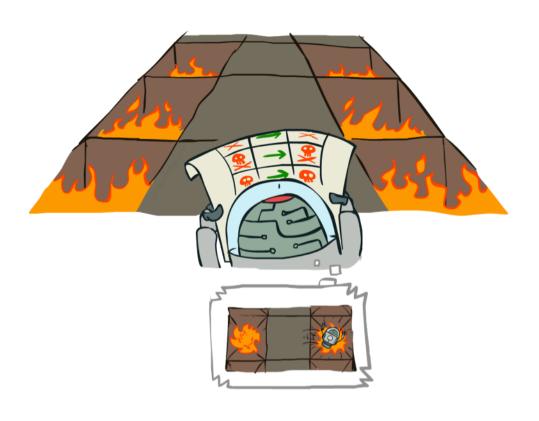


Recursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Example: Policy Evaluation

Always Go Right



Example: Policy Evaluation

Always Go Right

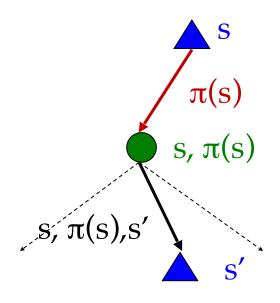
Always Go Forward

Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$



- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Recap: MDPs

- Search problems in uncertain environments
 - Model uncertainty with transition function
 - Assign utility to states. How? Using reward functions

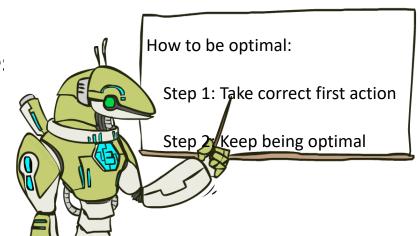
- Decision making and search in MDPs <-- Find a sequence of actions that maximize expected sum of rewards
 - Value of a state
 - Q-Value of a state
 - Policy for a state

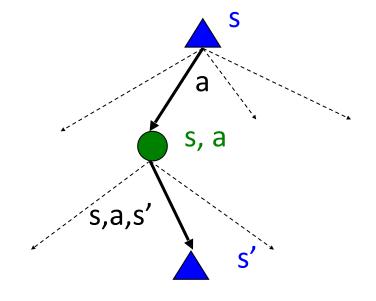
The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives one-step lookahead relationship amongst optimal utility value:

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

o Thes $V^*(s) = \max_a \sum_s T(s,a,s') \left[R(s,a,s') + \gamma V^*(s') \right]$ value, ..., ..., ..., ...





Solving MDPs

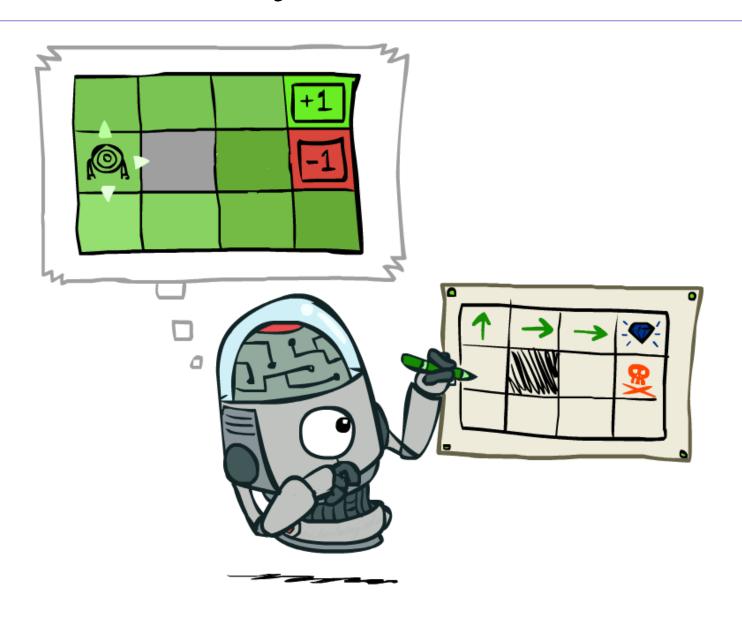
- Finding the best policy → mapping of actions to states
- So far, we have talked about two methods
 - Policy evaluation: computes the value of a **fixed** policy

• Value iteration: computes the **optimal** values of states

Let's think...

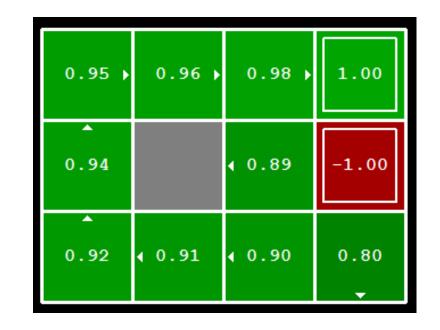
- Take a minute, think about value iteration and policy evaluation
 - Write down the biggest questions you have about them.

Policy Extraction



Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one step)



$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

• This is called policy extraction, since it gets the policy implied by the values

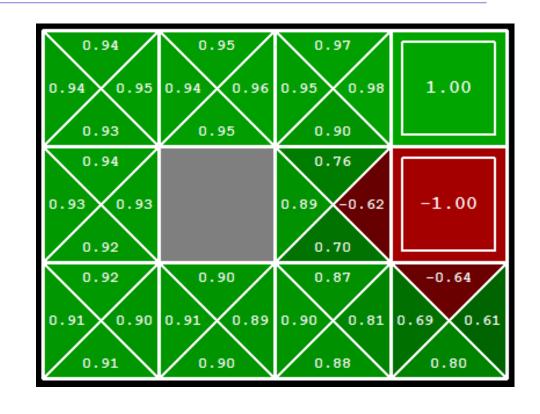
Computing Actions from Q-Values

Let's imagine we have the optimal q-values:

• How should we act?

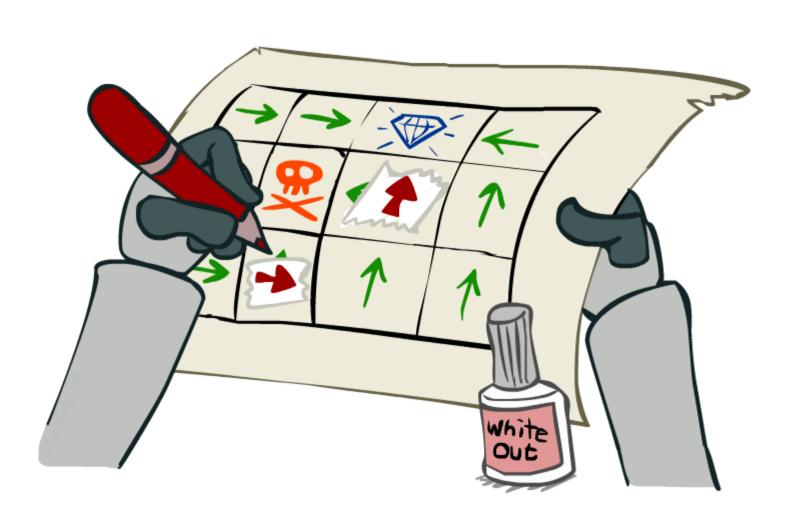
• Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$



 \circ Important lesson: actions are easier to select from q-values than values!

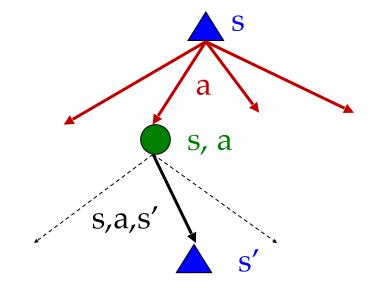
Policy Iteration



Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

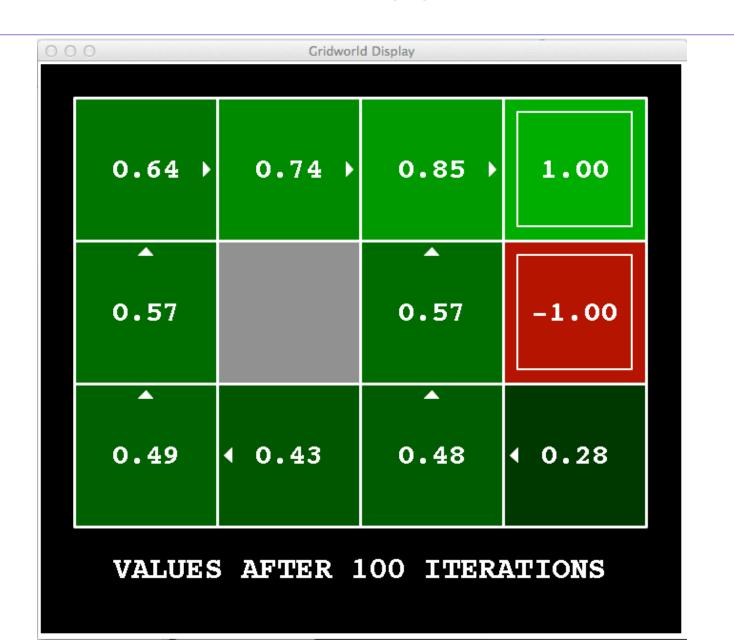


○ Problem 1: It's slow – O(S²A) per iteration

• Problem 2: The "max" at each state rarely changes

Problem 3: The policy often converges long before the values

k = 100



Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- \circ Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

• In value iteration:

- Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:

- We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

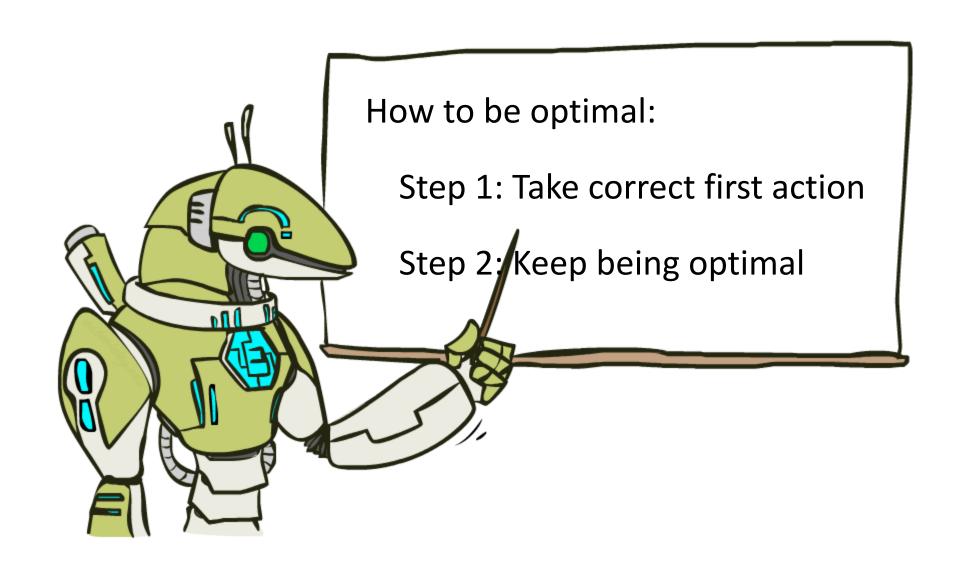
So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

The Bellman Equations



Next Topic: Reinforcement Learning!