CSE 473: Introduction to Artificial Intelligence

Hanna Hajishirzi
 Uncertainty and Bayes Nets

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

Our Status in CSE473

- We're done with Search and planning
- We are done with learning to make decisions
- Probabilistic Reasoning
- Diagnosis
- Speech recognition
- Tracking objects
- Robot mapping
- Genetics
- Error correcting codes
- ... lots more!

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away: green

- Sensors are noisy, but we know P(Color | Distance)

$P($ red \| 3)	$P($ orange \| 3)	P (yellow \| 3)	$P($ green \| 3)
0.05	0.15	0.5	0.3

Video of Demo Ghostbuster

Uncertainty

- General situation:
- Observed variables (evidence): Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)

- Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)
- Model: Agent knows something about how the known variables relate to the unknown variables

- Probabilistic reasoning gives us a framework for

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
- $\mathrm{R}=\mathrm{Is}$ it raining?
- T = Is it hot or cold?
- $\mathrm{D}=$ How long will it take to drive to work?
- $\mathrm{L}=$ Where is the ghost?
- We denote random variables with capital letters
- Random variables have domains
- R in $\{$ true, false $\}$ (often write as $\{+r,-r\}$)
- T in \{hot, cold\}

- D in $[0, \infty)$
- L in possible locations, maybe $\{(0,0),(0,1), \ldots\}$

Probability Distributions

- Associate a probability with each outcome
- Temperature:
- Weather:

Probability Distributions

- Unobserved random variables have distributions

$P(T)$
T
hot
cold
0.5

- A distribution is a TABLE of probabilities of values

$P(W)$	
W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

- A probability (lower case value) is a single number
- Must have:

$$
\begin{aligned}
& P(W=\text { rain })=0.1 \\
& \quad \forall x P(X=x) \geq 0 \quad \sum_{x} P(X=x)=1
\end{aligned}
$$

Joint Distributions

- A joint distribution over a set of random variables:

$$
X_{1}, X_{2}, \ldots X_{n}
$$ specifies a real number for each assignment (or outcome):

$$
\begin{aligned}
& P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)
\end{aligned}
$$

- Must obey:

$$
\begin{aligned}
P\left(x_{1}, x_{2}, \ldots x_{n}\right) & \geq 0 \\
\sum_{\left(x_{1}, x_{2}, \ldots x_{n}\right)} P\left(x_{1}, x_{2}, \ldots x_{n}\right) & =1
\end{aligned}
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d ?
- For all but the smallest distributions, impractical to write out!

Events

- An event is a set E of outcomes

$$
P(E)=\sum_{\left(x_{1} \ldots x_{n}\right) \in E} P\left(x_{1} \ldots x_{n}\right)
$$

- From a joint distribution, we can calculate the probability of any event

$$
P(T, W)
$$

- Probability that it's hot AND sunny?
- Probability that it's hot?
- Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like $\mathrm{P}(\mathrm{T}=$ hot $)$

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

$$
P\left(X_{1}=x_{1}\right)=\sum_{x_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)
$$

Quiz: Marginal Distributions

Quiz: Marginal Distributions

Conditional Probabilities

- A simple relation between joint and conditional probabilities
- In fact, this is taken as the definition of a conditional probability

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

$P(T, W)$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$$
\begin{aligned}
& P(W=s \mid T=c)=\frac{P(W=s, T=c)}{P(T=c)}=\frac{0.2}{0.5}=0.4 \\
& \\
& =P(W=s, T=c)+P(W=r, T=c) \\
& =0.2+0.3=0.5
\end{aligned}
$$

Quiz: Conditional Probabilities

- $P(+x \mid+y)$?

$P(X, Y)$		
X	y	P
+x	+y	0.2
+x	-y	0.3
-x	+y	0.4
-x	-y	0.1

- $P(-x \mid+y)$?
- $P(-y \mid+x)$?

Quiz: Conditional Probabilities

- $P(+x \mid+y)$?
$P(X, Y)$
2/6=1/3

X	Y	P
$+x$	$+y$	0.2
$+x$	$-y$	0.3
$-x$	$+y$	0.4
$-x$	$-y$	0.1

- $P(-x \mid+y)$?
.4/.6=2/3
- $P(-y \mid+x)$?

$$
.3 / .5=.6
$$

Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions
Joint Distribution

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions
Joint Distribution

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

$$
P(T, W)
$$

$$
\begin{array}{rlr}
P(W=s \mid T=c) & =\frac{P(W=s, T=c)}{P(T=c)} \\
& =\frac{P(W=s, T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.2}{0.2+0.3}=0.4 \\
P(W=r \mid T=c) & =\frac{P(W=r, T=c)}{P(T=c)} \\
& =\frac{P(W \mid T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.3}{0.2+0.3}=0.6
\end{array} \begin{array}{|c|c|c|}
\hline \mathrm{W} & \mathrm{P} \\
\hline \text { sun } & 0.4 \\
\hline \text { rain } & 0.6 \\
\hline
\end{array}
$$

T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Normalization Trick

$$
\begin{aligned}
P(W=s \mid T=c) & =\frac{P(W=s, T=c)}{P(T=c)} \\
& =\frac{P(W=s, T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.2}{0.2+0.3}=0.4
\end{aligned}
$$

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities matching the evidence

$P(c, W)$

W	W	P
cold	sun	0.2
cold	rain	0.3

NORMALIZE the selection (make it sum to one)

$$
P(W \mid T=c)
$$

W	P
sun	0.4
rain	0.6

$$
\begin{aligned}
P(W=r \mid T=c) & =\frac{P(W=r, T=c)}{P(T=c)} \\
& =\frac{P(W=r, T=c)}{P(W=s, T=c)+P(W=r, T=c)} \\
& =\frac{0.3}{0.2+0.3}=0.6
\end{aligned}
$$

Normalization Trick

$P(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities matching the $\xrightarrow{\text { evidence }}$| T | W | P |
| :---: | :---: | :---: |
| cold | sun | 0.2 |
| cold | rain | 0.3 |

NORMALIZE the selection (make it sum to one)

$$
P(W \mid T=c)
$$

W	P
sun	0.4
rain	0.6

- Why does this work? Sum of selection is P (evidence)! ($\mathrm{P}(\mathrm{T}=\mathrm{c})$, here)

$$
P\left(x_{1} \mid x_{2}\right)=\frac{P\left(x_{1}, x_{2}\right)}{P\left(x_{2}\right)}=\frac{P\left(x_{1}, x_{2}\right)}{\sum_{x_{1}} P\left(x_{1}, x_{2}\right)}
$$

Quiz: Normalization Trick

- $P(X \mid Y=-y)$?

$P(X, Y)$	
X Y P $+x$ $+y$ 0.2 $+x$ $-y$ 0.3 $-x$ $+y$ 0.4 $-x$ $-y$ 0.1	

SELECT the joint probabilities matching the evidence

NORMALIZE the selection (make it sum to one)

Quiz: Normalization Trick

- $P(X \mid Y=-y) ?$

$P(X, Y)$	
X Y P $+x$ $+y$ 0.2 $+x$ $-y$ 0.3 $-x$ $+y$ 0.4 $-x$ $-y$ 0.1	

SELECT the joint probabilities matching the evidence

NORMALIZE the

selection

(make it sum to one)

X	P
+x	0.75
-x	0.25

To Normalize

- (Dictionary) To bring or restore to a

- Procedure:
- Step 1: Compute Z = sum over all entries
- Step 2: Divide every entry by Z
- Example 1

W	P			
sun	0.2			
Normalize rain 0.3			W	P
:---:	:---:			
sun	0.4			
rain	0.6			

- Example 2

T	W	P
hot	sun	20
hot	rain	5
cold	sun	10
cold	rain	15

Normalize	T	W	P
	hot	sun	0.4
$Z=50$	hot	rain	0.1
	cold	sun	0.2
	cold	rain	24.3

The Product Rule

- Sometimes have conditional distributions but want the joint

$$
P(y) P(x \mid y)=P(x, y) \quad \Longleftrightarrow P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

The Product Rule

$$
P(y) P(x \mid y)=P(x, y)
$$

- Example:

$P(W)$		$P(D \mid W)$			\langle	$P(D, W)$		
		D	W	P		D	W	P
R	P	wet	sun	0.1		wet	sun	
sun	0.8	dry	sun	0.9		dry	sun	
rain	0.2	wet	rain	0.7		wet	rain	
		dry	rain	0.3		dry	rain	

The Chain Rule

- More generally, can always write any joint distribution as an incremental product of conditional distributions

$$
\begin{aligned}
& P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right) \\
& P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
\end{aligned}
$$

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful."
- George E. P. Box

- What do we do with probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)

Independence

Independence

- Two variables are independent if:

$$
\forall x, y: P(x, y)=P(x) P(y)
$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$
\forall x, y: P(x \mid y)=P(x)
$$

- We write:

$$
X \Perp Y
$$

- Independence is a simplifying modeling assumption

- Empirical joint distributions: at best "close" to independent
- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?

Example: Independence?

$P_{1}(T, W)$		
T	W	P
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

$P(T)$	
T	P
hot	0.5
cold	0.5

$P_{2}(T, W)$		
T	W	P
hot	sun	0.3
hot	rain	0.2
cold	sun	0.3
cold	rain	0.2

$P(W)$

W	P
sun	0.6
rain	0.4

Example: Independence

- N fair, independent coin flips:

$P\left(X_{1}\right)$	$P\left(X_{2}\right)$		$P\left(X_{n}\right)$				
H	0.5						
T	0.5				\quad	H	0.5
:---	:---						
T	0.5						

Conditional Independence

Conditional Independence

- P (Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- $\mathrm{P}(+$ catch | +toothache, +cavity) $=\mathrm{P}(+$ catch | +cavity)
- The same independence holds if I don't have a cavity:
- P(+catch | +toothache, -cavity) = P(+catch| -cavity)
- Catch is conditionally independent of Toothache given Cavity:

- P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
- P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
- P(Toothache, Catch | Cavity) $=\mathrm{P}$ (Toothache | Cavity) P(Catch | Cavity)
- One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

$$
X \Perp Y \mid Z
$$

if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

or, equivalently, if and only if

$$
\forall x, y, z: P(x \mid z, y)=P(x \mid z)
$$

Conditional Independence

- What about this domain:
- Traffic
- Umbrella
- Raining
- What about this domain:
- Fire
- Smoke
- Alarm

Conditional Independence

- What about this domain:
- Traffic
- Umbrella
- Raining

Conditional Independence

- What about this domain:
- Fire
- Smoke
- Alarm

Conditional Independence and the Chain Rule

- Chain rule:

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots
$$

- Trivial decomposition:
$P($ Traffic, Rain, Umbrella $)=$ P (Rain) P (Traffic|Rain) P (Umbrella|Rain, Traffic)
- With assumption of conditional independence:

$P($ Traffic, Rain, Umbrella $)=$
$\quad P($ Rain $) P($ Traffic \mid Rain $) P($ Umbrella \mid Rain $)$
- We can represent joint distributions by multiplying these simpler local distributions.
- Bayes'nets / graphical models help us express conditional independence assumptions

Bayes'Nets: Big Picture

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time

- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- For about 10 min , we'll be vague about how these interactions are specified

Example Bayes' Net: Insurance

Example Bayes' Net: Car

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- Indicate "direct influence" between variables
- Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct
 causation (in general, they don't!)

Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence

Example: Traffic

- Variables:
- R: It rains
- T: There is traffic
- Model 1: independence

- Why is an agent
- Model 2: rain causes traffic

Example: Traffic II

- Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combinatinn $\stackrel{f}{P}\left(\underset{X}{X} \mid a_{1} \ldots a_{n}\right)$.

$$
P\left(X \mid A_{1} \ldots A_{n}\right)
$$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- Example:

$$
\begin{aligned}
& P(\text { +cavity, +catch, -toothache }) \\
& =\mathrm{P} \text { (-toothache } \mid+ \text { cavity }) \mathrm{P}(+ \text { catch } \mid+ \text { cavity }) \mathrm{P}(+ \text { cavity })
\end{aligned}
$$

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X , one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the releva

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

Probabilities in BNs

- Why are we guaranteed that setting

$$
\begin{aligned}
& \qquad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right) \\
& \text { results in a proper joint distribution ? }
\end{aligned}
$$

- Chain rule (valid for all distributions):
- Assume conditional independences:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)
$$

$$
P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

\rightarrow Consequenra.

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- Not every BN can represent every joint distribution
- The topology enforces certain conditional independencies

Example: Coin Flips

$$
P(h, h, t, h)=\mathrm{P}(\mathrm{~h}) \mathrm{P}(\mathrm{~h}) \mathrm{P}(\mathrm{t}) \mathrm{P}(\mathrm{~h})
$$

Example: Traffic

$$
P(+r,-t)=\mathrm{P}(+\mathrm{r}) \mathrm{P}(-t \mid+\mathrm{r})=1 / /^{*} 1 / 4
$$

Example: Alarm Network

Example: Traffic

- Causal direction

$P P(T, R)$

$+r$	$+t$	$3 / 16$
$+r$	$-t$	$1 / 16$
$-r$	$+t$	$6 / 16$
$-r$	$-t$	$6 / 16$

Example: Reverse Traffic

- Reverse causality?

$P(T, R)$

$+r$	+t	$3 / 16$
+r	-t	$1 / 16$
-r	+t	$6 / 16$
-r	-t	$6 / 16$

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain (especially if
 variables are missing)
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independence

$$
P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Bayes' Rule

- Two ways to factor a joint distribution over two variables:

$$
P(x, y)=P(x \mid y) P(y)=P(y \mid x) P(x)
$$

- Dividing, we get:

$$
P(x \mid y)=\frac{P(y \mid x)}{P(y)} P(x)
$$

- Why is this at all helpful?
- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Foundation of many systems we'll see later (e.g. ASR, MT)

- In the running for most important Al equation!

Inference with Bayes' Rule

- Example: Diagnostic probability from causal probability:

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause }) P(\text { cause })}{P(\text { effect })}
$$

- Example:
- M : meningitis, S: stiff neck

$$
\left.\begin{array}{l}
P(+m)=0.0001 \\
P(+s \mid+m)=0.8 \\
P(+s \mid-m)=0.01
\end{array}\right\} \begin{aligned}
& \text { Example } \\
& \text { givens }
\end{aligned}
$$

$P(+m \mid+s)=\frac{P(+s \mid+m) P(+m)}{P(+s)}=\frac{P(+s \mid+m) P(+m)}{P(+s \mid+m) P(+m)+P(+s \mid-m) P(-m)}=\frac{0.8 \times 0.0001}{0.8 \times 0.0001+0.01 \times 0.999}$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

- Given:
$P(W)$

R	P
sun	0.8
rain	0.2

$P(D \mid W)$

D	W	P
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

- What is $P(W \mid d r y)$?

Quiz: Bayes' Rule

- Given:

$P(W)$
R
sun
rain

$P(D \mid W)$
D
W
wet
dry
sun
sun
wet
dry
rain
rain

- What is $P(W \mid d r y)$?

$$
\begin{aligned}
& P(\text { sun } \mid \text { dry }) \sim P(\text { dry } \mid \text { sun }) P(\text { sun })=.9^{*} .8=.72 \\
& P(\text { rain } \mid \text { dry }) \sim P(\text { dry } \mid \text { rain }) P(\text { rain })=.3^{*} .2=.06 \\
& P(\text { sun } \mid \text { dry })=12 / 13 \\
& P(\text { rain } \mid \text { dry })=1 / 13
\end{aligned}
$$

Ghostbusters, Revisited

- Let's say we have two distributions:
- Prior distribution over ghost location: P(G)
- Let's say this is uniform
- Sensor reading model: $P(R \mid G)$
- Given: we know what our sensors do
- $R=$ reading color measured at $(1,1)$
- E.g. $P(R=$ yellow $\mid G=(1,1))=0.1$
- We can calculate the posterior distribution $P(G \mid r)$ over ghost locations given a reading using Bayes' rule:

$$
P(g \mid r) \propto P(r \mid g) P(g)
$$

0.11	0.11	0.11
0.11	0.11	0.11
0.11	0.11	0.11

0.17	0.10	0.10
0.09	0.17	0.10
<0.01	0.09	0.17

Video of Demo Ghostbusters with Probability

Uncertainty Summary

- Conditional probability

$$
P(x \mid y)=\frac{P(x, y)}{P(y)}
$$

- Product rule

$$
P(x, y)=P(x \mid y) P(y)
$$

- Chain rule $\quad P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots$

$$
=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

- X, Y independent if and only if: $\quad \forall x, y: P(x, y)=P(x) P(y)$
- X and Y are conditionally independent given Z if and only if:

$$
\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

BN lecture

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the releva

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

