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Reminder: elementary probability

§ Basic laws: 0 £ P(w) £ 1      åw ÎW P(w) = 1
§ Events: subsets of W : P(A) = åw Î A P(w)
§ Random variable X(w) has a value in each w

§ Distribution P(X) gives probability for each possible value x
§ Joint distribution P(X,Y) gives total probability for each combination x,y

§ Summing out/marginalization: P(X=x) = åy P(X=x,Y=y)
§ Conditional probability: P(X|Y) = P(X,Y)/P(Y)
§ Product rule: P(X|Y)P(Y)  =  P(X,Y)  =  P(Y|X)P(X)

§ Generalize to chain rule: P(X1,..,Xn)  =  Õi P(Xi | X1,..,Xi-1)



Bayes’ Nets: Big Picture



Bayes Nets: Big Picture

§ Bayes nets: a technique for describing              
complex joint distributions (models) using         
simple, conditional distributions
§ A subset of the general class of graphical models
§ Also called belief networks

§ Use local causality/conditional independence: 
§ the world is composed of many variables, 
§ each interacting locally with a few others



Bayes Nets

Part I: Representation

Part II: Independence

Part III: Exact inference

§ Enumeration (always exponential complexity)

§ Variable elimination (worst-case exponential 
complexity, often better)

§ Inference is NP-hard in general

Part IV: Approximate Inference



Graphical Model Notation

§ Nodes: variables (with domains)
§ Can be assigned (observed) or unassigned 

(unobserved)

§ Arcs: interactions
§ Indicate “direct influence” between variables
§ Formally: encode conditional independence 

(more on this later)

G

C1,1 C1,2 C3,3
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Weather



Example Bayes’ Net: Coin Flips

§ N independent coin flips

§ No interactions between variables: absolute independence

X1 X2 Xn



Conditional Independence: Traffic

§ What about this domain:

§ Traffic
§ Umbrella
§ Raining



Example Bayes’ Net: Traffic

§ Variables:
§ T: There is traffic
§ U: I’m holding my umbrella
§ R: It rains

U

R

T



Conditional Independence: Fire

§ What about this domain:

§ Fire
§ Smoke
§ Alarm



Example Bayes’ Net: Smoke alarm

§ Variables:
§ F: There is fire
§ S: There is smoke
§ A: Alarm sounds

F

S

A



Example Bayes’ Net: Car Insurance
SocioEconAge

GoodStudent ExtraCar

VehicleYear
YearsLicensed

DrivingSkill

DrivingBehavior

OwnCarDamage

PropertyCostLiabilityCostMedicalCost

OtherCost OwnCarCost

Theft

Ruggedness

Accident

SafetyFeatures

Airbag

CarValue

Garaged

AntiTheft

Cushioning

RiskAversion

Mileage

MakeModel

DrivingRecord



Why do conditional independence?-- Ghostbusters

§ A ghost is in the grid somewhere

§ Sensor readings tell how close a 
square is to the ghost
§ On the ghost: usually red
§ 1 or 2 away: mostly orange
§ 3 or 4 away: typically yellow
§ 5+ away: often green

§ Click on squares until confident 
of location, then “bust”



Video of Demo Ghostbusters with Probability

P(ghost is in this position given all of the evidence that we have seen so far)



Ghostbusters model

§ Variables and ranges: 
§ G (ghost location) in {(1,1),…,(3,3)}
§ Cx,y (color measured at square x,y) in

{red,orange,yellow,green}

§ Ghostbuster physics:
§ Uniform prior distribution over ghost location: P(G)
§ Sensor model: P(Cx,y | G) (depends only on distance to G)

§ E.g. P(C1,1 = yellow | G = (1,1) ) = 0.1

0.11 0.11 0.11

0.11 0.11 0.11

0.11 0.11 0.11



Ghostbusters model, contd.

§ P(G, C1,1 , … C3,3) has …
§ 9 x 49 = 2,359,296 entries!
§ |G|= 9 , |Ci,i| = 4; Grid squares times size of each

§ Ghostbuster independence:
§ Are C1,1 and C1,2 independent? 

§ E.g., does P(C1,1 = yellow) = P(C1,1 = yellow | C1,2 = orange) ?

§ Ghostbuster physics again:
§ P(Cx,y | G) depends only on distance to G

§ So P(C1,1 = yellow | G = (2,3) ) = P(C1,1 = yellow | G = (2,3), C1,2 = orange)
§ I.e., C1,1 is conditionally independent of C1,2 given G
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Ghostbusters model, contd.

§ Apply the chain rule to decompose the joint probability model:
P(G, C1,1 , … C3,3) = P(G) P(C1,1 | G) P(C1,2 | G, C1,1) P(C1,3 | G, C1,1, C1,2) … P(C3,3 | G, C1,1, …, C3,2)

§ Now simplify using conditional independence:
P(G, C1,1 , … C3,3) = P(G) P(C1,1 | G) P(C1,2 | G) P(C1,3 | G) … P(C3,3 | G)

§ I.e., conditional independence properties of ghostbuster physics simplify the probability 
model from exponential to quadratic in the number of squares
§ |P(Ci,i | G)| = 4 x 9 rather than |P(C3,3 | G, C1,1, …, C3,2)| = 4 x 9 x 48

§ In total: 9 + 9 x (4 x 9) = 333 entries, before was 9 x 49 = 2,359,296 entries

§ This is called a Naïve Bayes model:
§ One discrete query variable (often called the class or category variable)
§ All other variables are (potentially) evidence variables
§ Evidence variables are all conditionally independent given the query variable



Ghostbusters Full Joint

G

C1,1 C1,2 C3,2 C3,3Ci,j… …



Ghostbusters Naïve Bayes

G

C1,1 C1,2 C3,2 C3,3Ci,j… …



Bayes Net Syntax and Semantics



Bayes’ Net Syntax
§ A set of nodes, one per variable Xi

§ A directed, acyclic graph

§ A conditional distribution for each node 
given its parent variables in the graph
§ CPT (conditional probability table)

each row is a distribution for child given values of 
its parents

Bayes net = Topology (graph) + Local Conditional Probabilities

G P(C1,1 | G)

g y o r

(1,1) 0.01 0.1 0.3 0.59

(1,2) 0.1 0.3 0.5 0.1

(1,3) 0.3 0.5 0.19 0.01

…

P(G)
(1,1) (1,2) (1,3) …

0.11 0.11 0.11 …
G

C1,1 C1,2 C3,3



Example: Alarm Network

Burglary Earthquake

Alarm

John 
calls

Mary 
calls

P(B)

true false

0.001 0.999

B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

A P(J|A)

true false

true 0.9 0.1

false 0.05 0.95

P(E)

true false

0.002 0.998

A P(M|A)

true false

true 0.7 0.3

false 0.01 0.99

Factor size of each CPT:

d Õ di 

Parent range sizes: d1,…,dk
Child range size: d 

Each table row must sum to 1

2 2

2^3 = 8

2^2 = 4 2^2 = 4



General formula for sparse BNs

§ Suppose
§ n variables
§ Maximum range size is d
§ Maximum number of parents is k

§ Full joint distribution has size O(dn)
§ Bayes net has size O(n .dk)

§ Linear scaling with n as long as causal structure is local

§ Often O(n .dk) << O(dn)



Bayes net global semantics

§ Bayes nets encode joint distributions as product of 
conditional distributions on each variable:

P(X1,..,Xn)  =  Õi P(Xi | Parents(Xi))



P(B)

true false

0.001 0.999

Example
P(b,¬e, a, ¬j, ¬m) =

B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

A P(J|A)

true false

true 0.9 0.1

false 0.05 0.95

P(E)

true false

0.002 0.998

A P(M|A)

true false

true 0.7 0.3

false 0.01 0.99

P(b) P(¬e) P(a|b,¬e) P(¬j|a) P(¬m|a) 

=.001 x .998 x .94 x .1 x .3
=.000028 

Burglary Earthquake

Alarm

John 
calls

Mary 
calls



B E P(A|B,E)

true false

true true 0.95 0.05

true false 0.94 0.06

false true 0.29 0.71

false false 0.001 0.999

A P(J|A)

true false

true 0.9 0.1

false 0.05 0.95

P(E)

true false

0.002 0.998

A P(M|A)

true false

true 0.7 0.3

false 0.01 0.99

P(B)

true false

0.001 0.999

Example: Your turn
P(B, e, a, j, m) =

P(B) P(e) P(a|B,e) P(j|a) P(m|a) 

=<.001,.999> x .002 x <.95, .29> x .9 x .7 
=< .001 * .002 *.95 *.9 * .7 , 

.999 * .002 * .29 * .9 *.7>
= <.00000120, .000365>

Burglary Earthquake

Alarm

John 
calls

Mary 
calls



Question

§ Which of the following does a Bayes’ net model explicitly?
§ The joint probability distribution?
§ The conditional probability distribution?

§ Is one of the following more expressive than the other?
§ The joint probability distribution
§ The conditional probability distribution

§ Why do we use Bayes’ nets?



Summary

§ Independence and conditional independence are 
important forms of probabilistic knowledge

§ Bayes net encode joint distributions efficiently by 
taking advantage of conditional independence
§ Global joint probability = product of local conditionals

§ Next: more on independence
§ Then: how to answer queries, i.e., compute 

conditional probabilities of queries given evidence



Bayes Nets

Part I: Representation

Part II: Independence

Part III: Exact inference

§ Enumeration (always exponential complexity)

§ Variable elimination (worst-case exponential 
complexity, often better)

§ Inference is NP-hard in general

Part IV: Approximate Inference



Conditional independence in BNs

§ Compare the Bayes net global semantics
P(X1,..,Xn)  =  Õi P(Xi | Parents(Xi))

with the chain rule identity
P(X1,..,Xn)  =  Õi P(Xi | X1,…,Xi-1)

§ Assume (without loss of generality) that X1,..,Xn sorted in topological order according to 
the graph (i.e., parents before children), so Parents(Xi) Í X1,…,Xi-1

§ So the Bayes net asserts conditional independences P(Xi | X1,…,Xi-1) = P(Xi | Parents(Xi))
§ To ensure these are valid, choose parents for node Xi that “shield” it from other predecessors



Conditional independence semantics

§ Every variable is conditionally independent of its non-descendants given its parents
§ Conditional independence semantics <=> global semantics

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j



Markov blanket

§ A variable’s Markov blanket consists of parents, children, children’s other parents
§ Every variable is conditionally independent of all other variables given its Markov blanket

. . .

. . .U1 Um

Yn

Znj

Y1

Z1j
X



Reminder: Conditional Independence

§ X and Y are independent if

§ X and Y are conditionally independent given Z

§ (Conditional) independence is a property of a distribution

§ Example: 



Example

§ Conditional independence assumptions directly from simplifications in chain rule:

§ Additional implied conditional independence assumptions?

X Y Z W

P (x, y, z, w) = P (x)P (y|x)P (z|y)P (w|z)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

P (x, y, z, w) = P (x)P (y|x)P (z|x, y)P (w|x, y, z)
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Example

§ Conditional independence assumptions directly from simplifications in chain rule:

§ Additional implied conditional independence assumptions?

X Y Z W

X ?? Z|Y
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W ?? {X,Y }|Z
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W ?? X|Y
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Independence in a Bayes’ Net

§ Important question about a Bayes’ Net:
§ Are two nodes independent given certain evidence?
§ If yes, can prove using algebra (tedious in general)
§ If no, can prove with a counter-example
§ Example:

§ Question: are X and Z necessarily independent?
§ Answer: no.  Example: low pressure causes rain, which causes traffic.
§ X can influence Z, Z can influence X (via Y)
§ Addendum: they could be independent: how?

X Y Z



D-separation: Outline



D-separation: Outline

§ Study independence properties for triples
§ Why triples?

§ Analyze complex cases in terms of member triples

§ D-separation: a condition / algorithm for answering such 
queries



Causal Chains

§ This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

§ Guaranteed X independent of Z ?  
§ No!

§ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

§ Example:

§ Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

§ In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1



Causal Chains

§ This configuration is a “causal chain” § Guaranteed X independent of Z given Y?

§ Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Common Causes

§ This configuration is a “common cause” § Guaranteed X independent of Z ?  
§ No!

§ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

§ Example:

§ Project due causes both forums busy 
and lab full 

§ In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy Z: Lab full



Common Cause

§ This configuration is a “common cause” § Guaranteed X and Z independent given Y?

§ Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy Z: Lab full



Common Effect

§ Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

§ Are X and Y independent?

§ Yes: the ballgame and the rain cause traffic, but 
they are not correlated

§ Proof:
X: Raining Y: Ballgame

P (x, y) =
X

z

P (x, y, z)

=
X

z

P (x)P (y)P (z|x, y)

= P (x)P (y)
X

z

P (z|x, y)

= P (x)P (y)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



Common Effect

§ Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

§ Are X and Y independent?

§ Yes: the ballgame and the rain cause traffic, but 
they are not correlated

§ (Proved previously)

§ Are X and Y independent given Z?

§ No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

§ This is backwards from the other cases

§ Observing an effect activates influence between 
possible causes.

X: Raining Y: Ballgame



The General Case



The General Case

§ General question: in a given BN, are two variables independent 
(given evidence)?

§ Solution: analyze the graph

§ Any complex example can be broken
into repetitions of the three canonical cases



Reachability

§ Recipe: shade evidence nodes, look 
for paths in the resulting graph

§ Attempt 1: if two nodes are not
connected* they are conditionally 
independent
§ *There does not exist an undirected path 

between them, excluding those blocked 
by a shaded node.

§ Almost works, but not quite
§ Where does it break?
§ Answer: the v-structure at T doesn’t count 

as a link in a path unless “active”

R

T

B

D

L



Active / Inactive Paths

§ Question: Are X and Y conditionally independent given 
evidence variables {Z}?
§ Yes, if X and Y “d-separated” by Z
§ Consider all (undirected) paths from X to Y
§ No active paths = independence!

§ A path is active if each triple is active:
§ Causal chain: A ->  B -> C where B is unobserved (either direction)
§ Common cause: A <- B -> C where B is unobserved
§ Common effect: (aka v-structure)

A -> B <- C where B or one of its descendants is observed

§ All it takes to block a path is a single inactive segment

Active Triples Inactive Triples



§ Query:

§ Check all (undirected!) paths between        and 
§ If one or more active, then independence not guaranteed

§ Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

D-Separation

Xi �� Xj |{Xk1 , ..., Xkn}

Xi �� Xj |{Xk1 , ..., Xkn}

?

Xi �� Xj |{Xk1 , ..., Xkn}



def d-separated(first, second):
for path in paths(first, second):

path_active = True
for triple in path:

if not active(triple):
path_active = False 
break

if path_active:
return False

return True 



Example: which assumptions apply?

Yes R

T

B

T’



Example: which assumptions apply?

R

T

B

D

L

T’

Yes

Yes

Yes



Example: which assumptions apply?

§ Variables:
§ R: Raining
§ T: Traffic
§ D: Roof drips
§ S: I’m sad

§ Questions:

T

S

D

R

Yes


