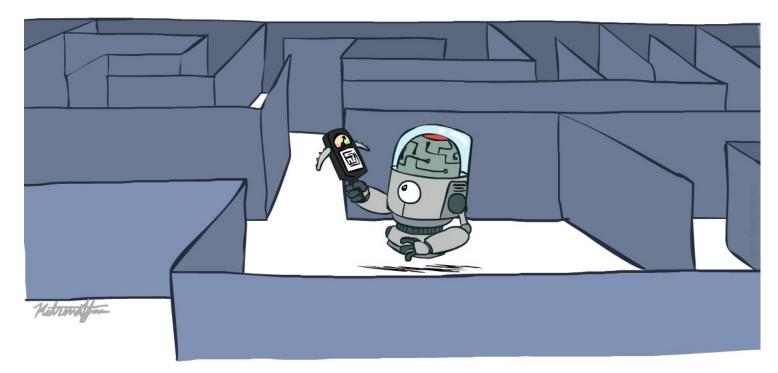
CSE 473: Artificial Intelligence

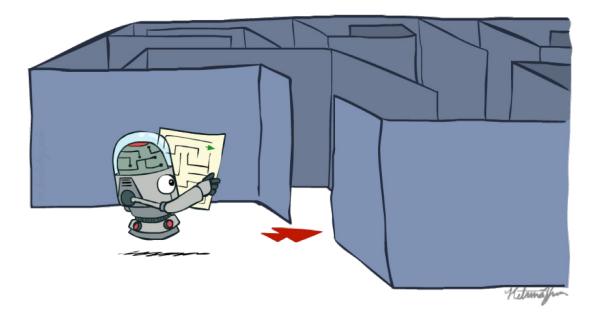
Informed Search



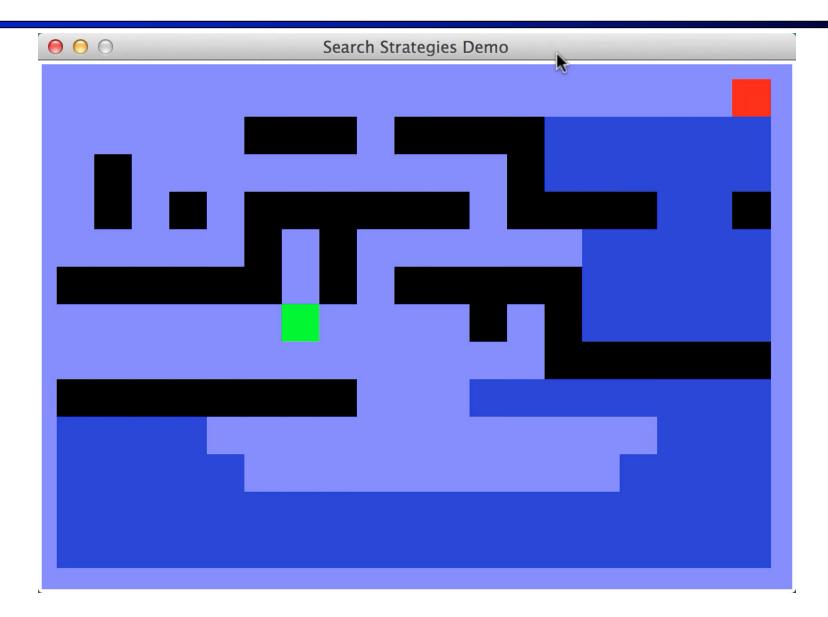
slides adapted from Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu And Hanna Hajishirzi, Jared Moore, Dan Weld

Recap: Search

- Search problem:
 - States (configurations of the world)
 - Actions and costs
 - Successor function (world dynamics)
 - Start state and goal test
- Search tree:
 - Nodes: represent plans for reaching states
- Search algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
 - Optimal: finds least-cost plans

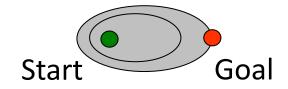


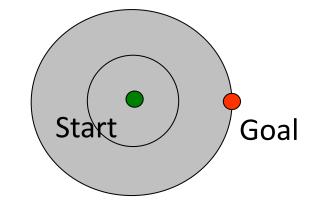
Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)



What we would like to have happen

Guide search towards the goal instead of all over the place





Informed

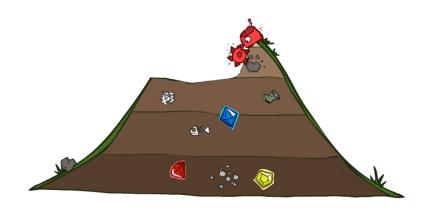
Uninformed

Up next: Informed Search

- Uninformed Search
 - DFS
 - BFS
 - UCS

Informed Search

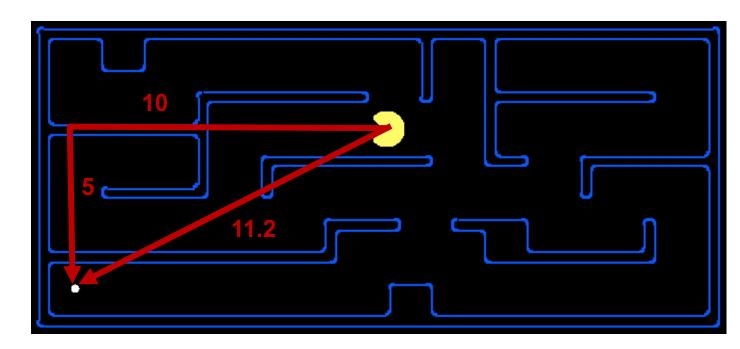
- Heuristics
- Greedy Search
- A* Search
- Graph Search

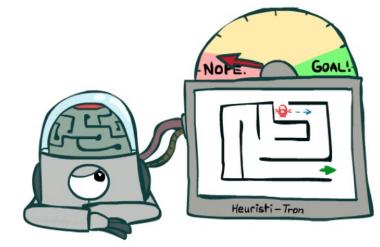


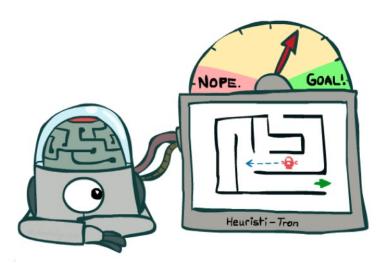


Search Heuristics

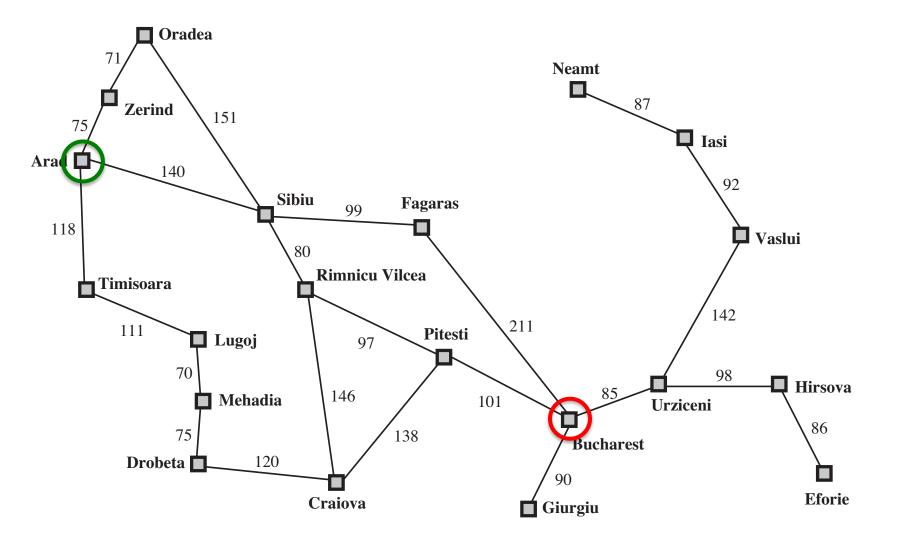
- A heuristic is:
 - A function that *estimates* how close a state is to a goal
 - Designed for a particular search problem
 - Pathing?
 - Examples: Manhattan distance, Euclidean distance for pathing



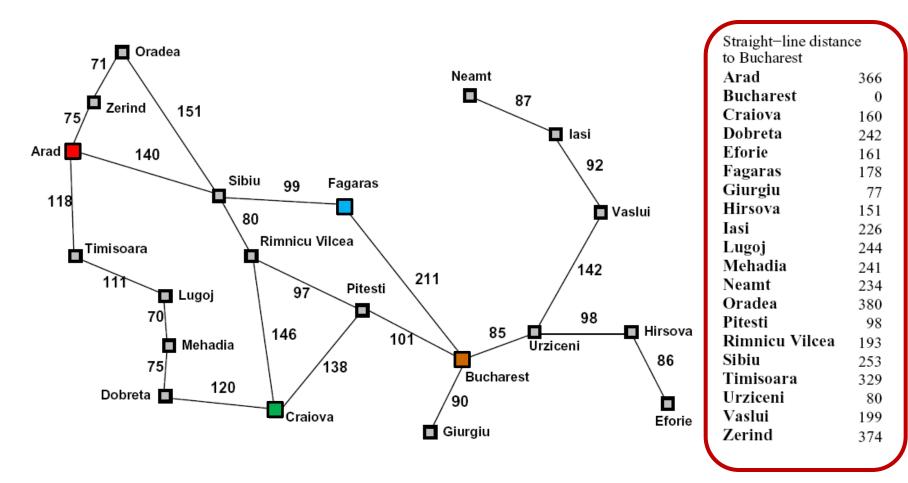




Example: route-finding in Romania

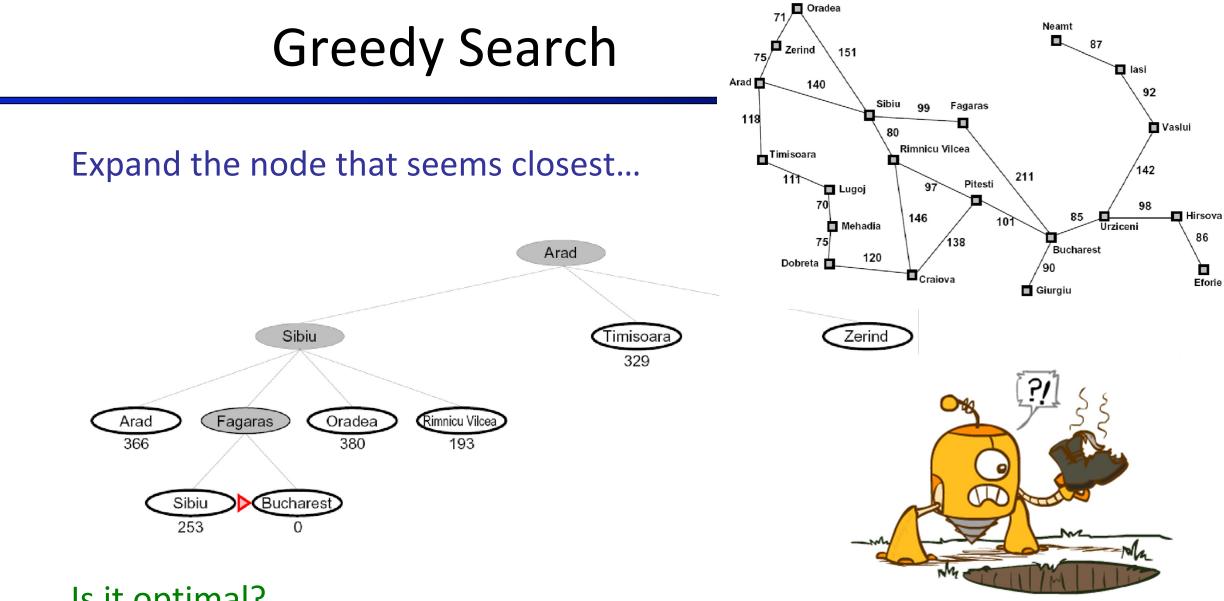


Example: Heuristic Function



h(x)

Greedy Search



Is it optimal?

No. Resulting path to Bucharest is not the shortest!

Greedy Search

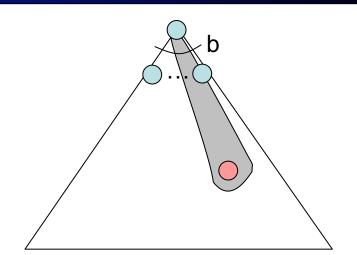
Strategy: expand a node that you think is closest to a goal state

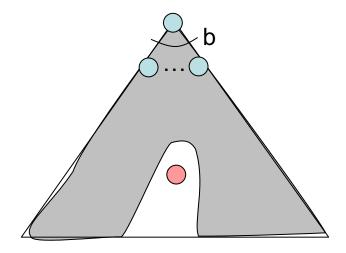
 Heuristic: estimate of distance to nearest goal for each state

A common case:

Best-first takes you straight to the (wrong) goal

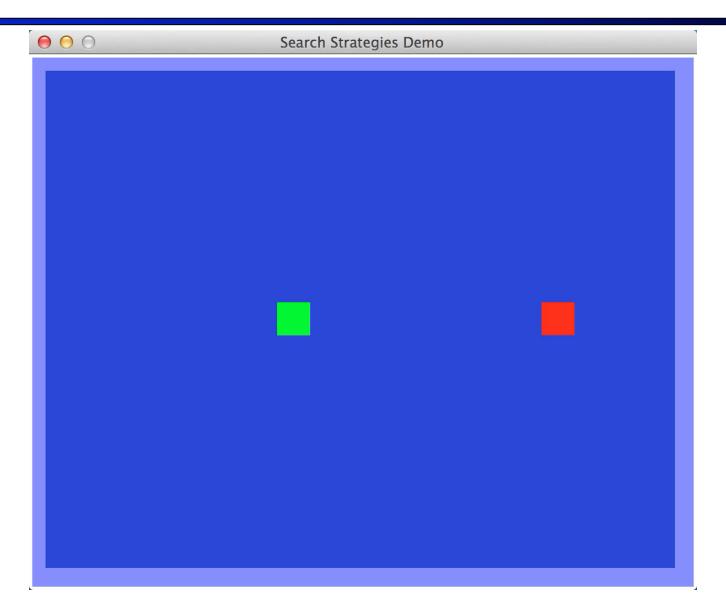
Worst-case: like a badly-guided DFS



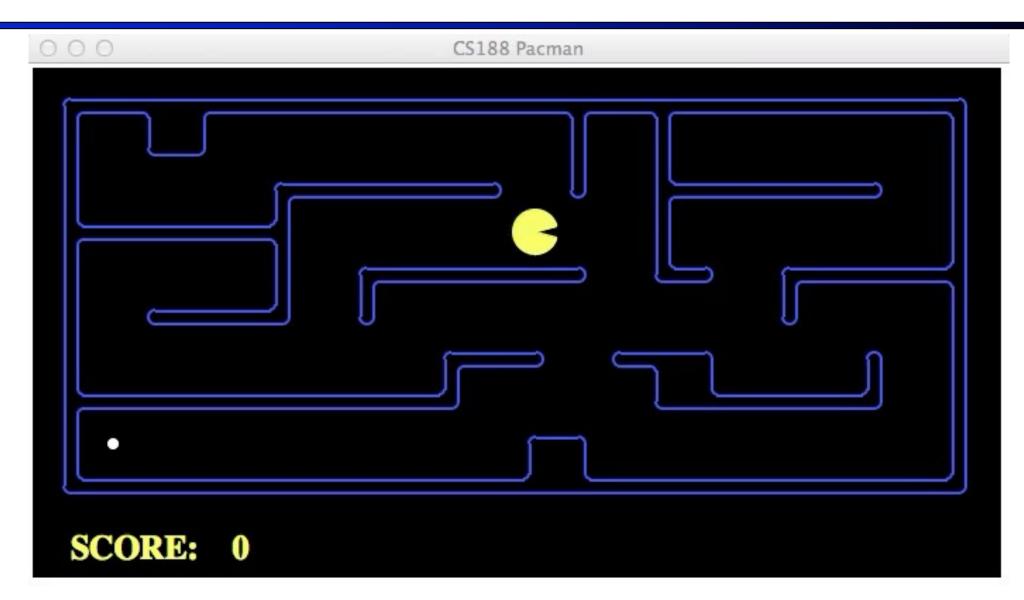


python pacman.py --layout smallMaze --pacman=GreedyAgent python pacman.py --layout smallMaze --pacman=SearchAgent -a fn=dfs

Video of Demo Contours Greedy (Empty)



Video of Demo Contours Greedy (Pacman Small Maze)



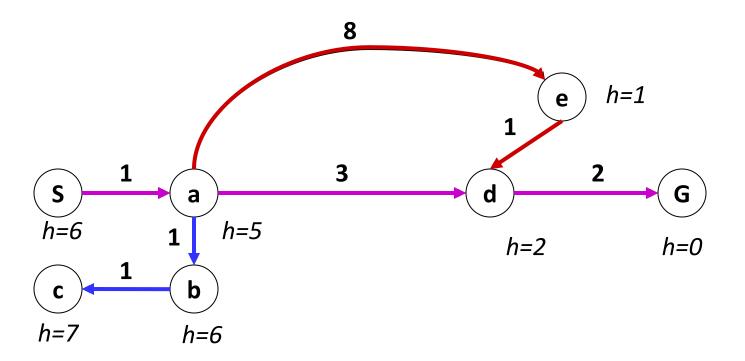
A* Search

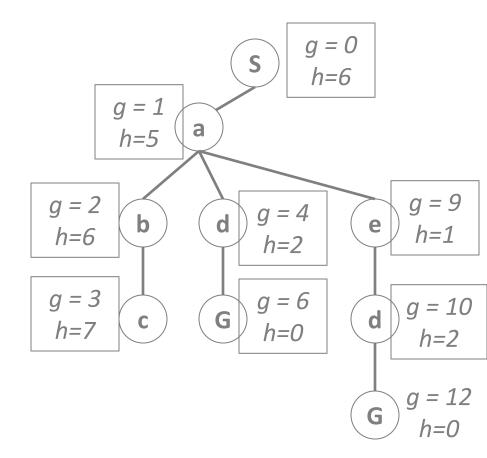
A^{*}: the core idea

- Expand a node n most likely to be on the optimal path
- Expand a node n s.t. the cost of the best solution through n is optimal
- Expand a node *n* with lowest value of $g(n) + h^*(n)$
 - g(n) is the cost from root to n
 - h^{*}(n) is the optimal cost from n to the closest goal
- We seldom know h^{*}(n) but might have a heuristic approximation h(n)
- A^* = tree search with priority queue ordered by g(n) + h(n)

Combining UCS and Greedy

Uniform-cost orders by path cost, or *backward cost* g(n) Greedy orders by goal proximity, or *forward cost* h(n)



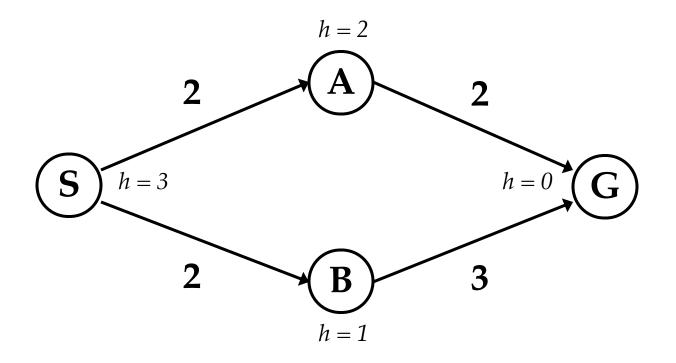


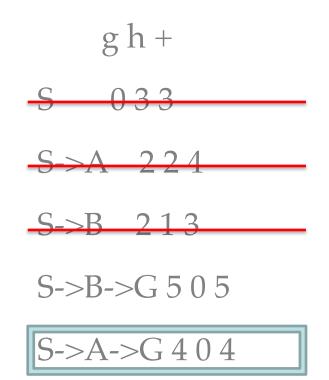
A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

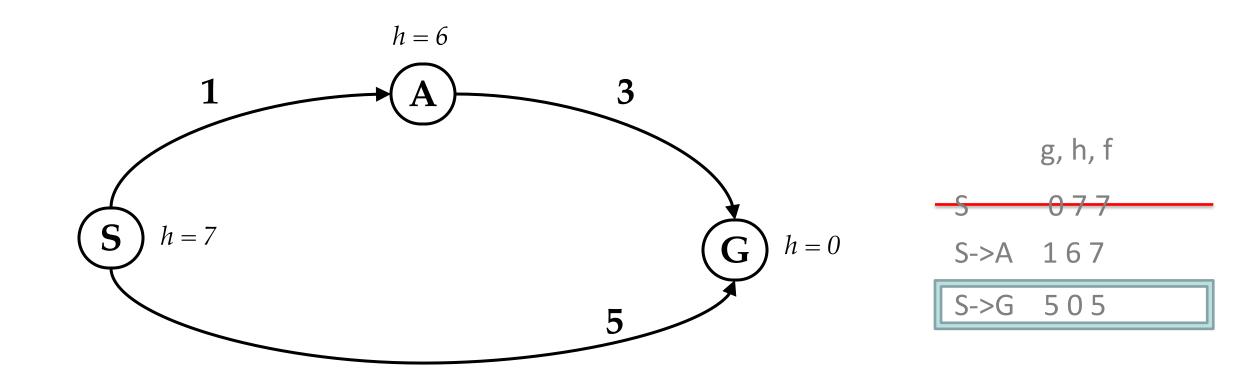
Should we stop when we enqueue a goal?





No: only stop when we dequeue a goal

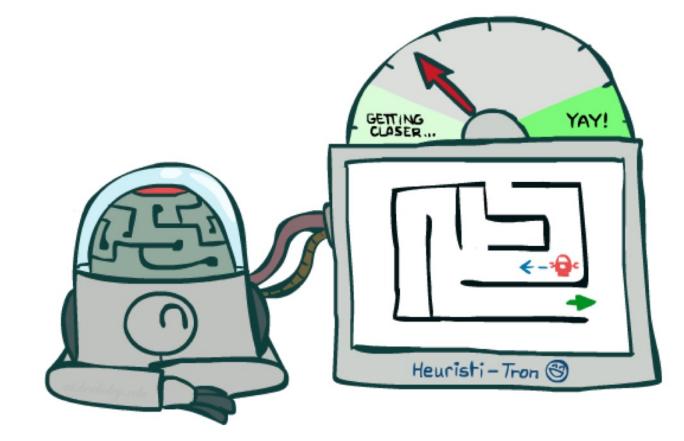
Is A* Optimal?



What went wrong?

- Actual bad goal cost < estimated good goal cost</p>
- We need estimates to be less than actual costs!

Admissible Heuristics



Idea: Admissibility

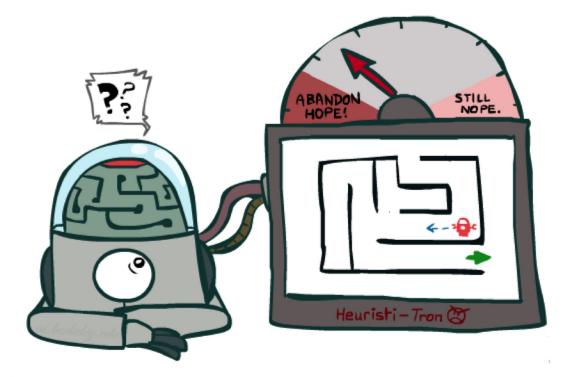


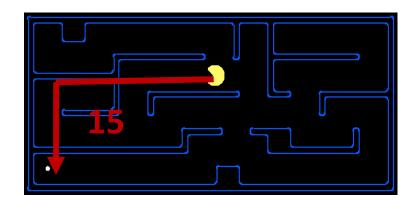
 Image: Construction of the second second

Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the frontier Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Admissible Heuristics

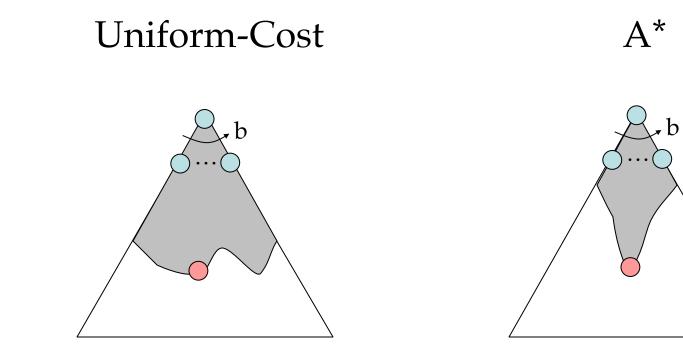
- A heuristic *h* is *admissible* (optimistic) if:
 - $0 \leq h(n) \leq h^*(n)$

where $h^*(n)$ is the true cost to a nearest goal



Finding good, cheap admissible heuristics is the key to success

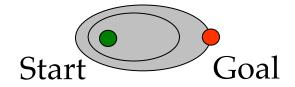
Properties of A*

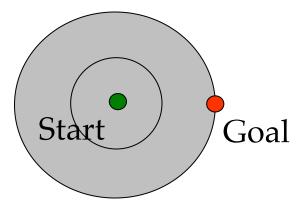


UCS vs A* Contours

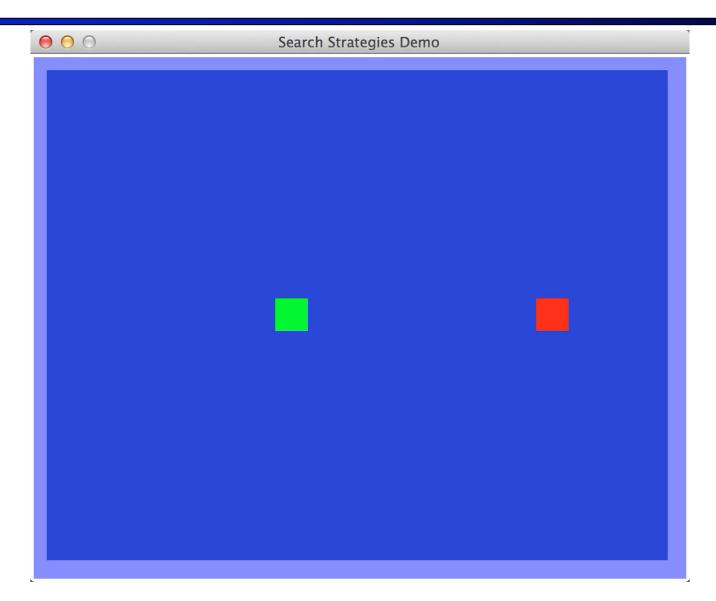
 Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

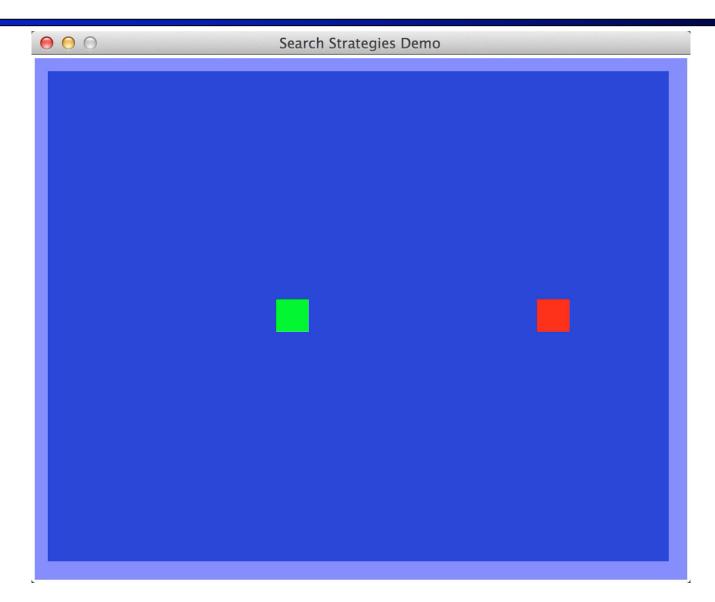




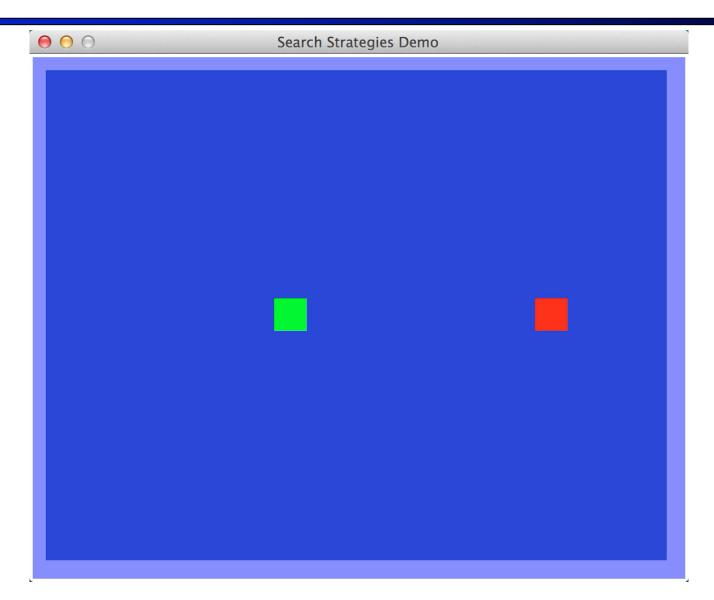
Video of Demo Contours (Empty) -- UCS



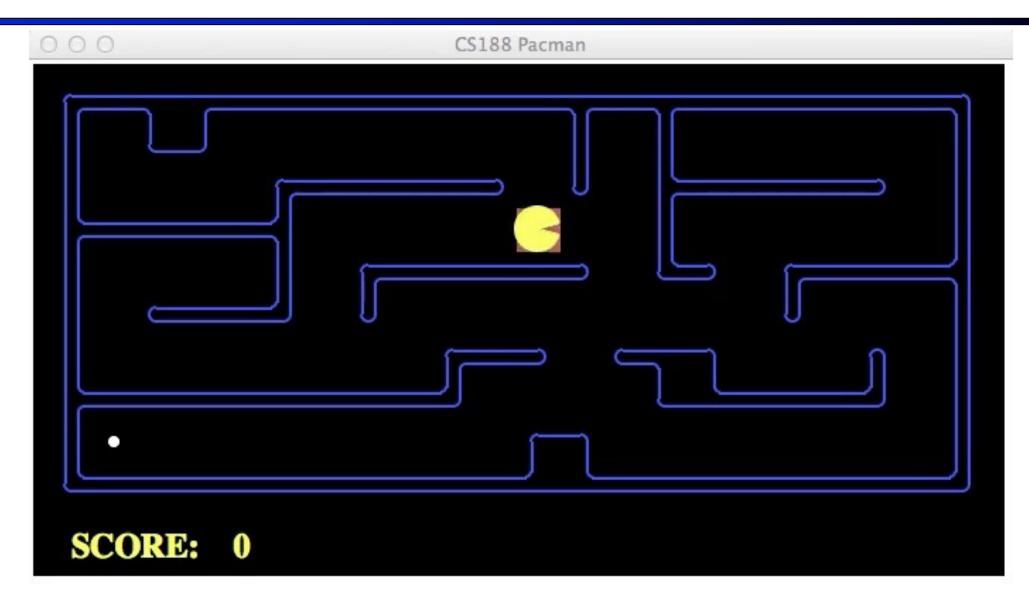
Video of Demo Contours (Empty) -- Greedy



Video of Demo Contours (Empty) – A*



Which Algorithm?



Summary



Greedy

Uniform Cost

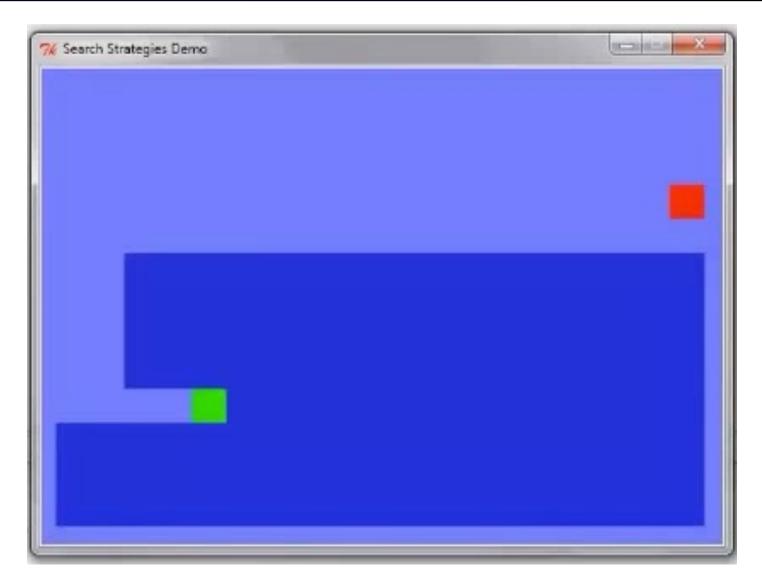
A*: Summary

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible (optimistic) heuristics
- Heuristic design is key: often use relaxed problems



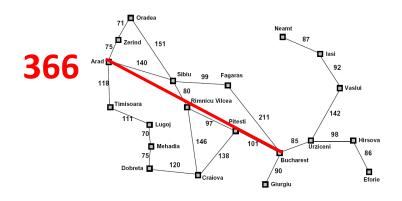
Video of Demo Empty Water Shallow/Deep – Guess Algorithm

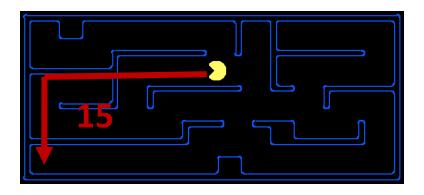


Creating Heuristics

Creating Admissible Heuristics

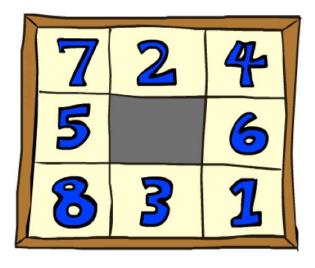
- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available





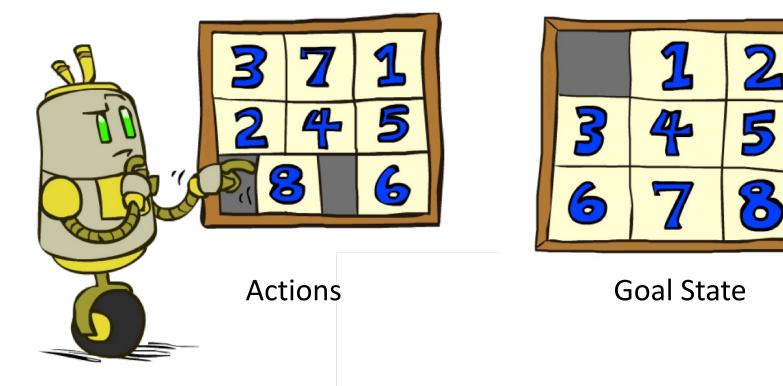
Inadmissible heuristics are often useful too

Example: 8 Puzzle



Start State

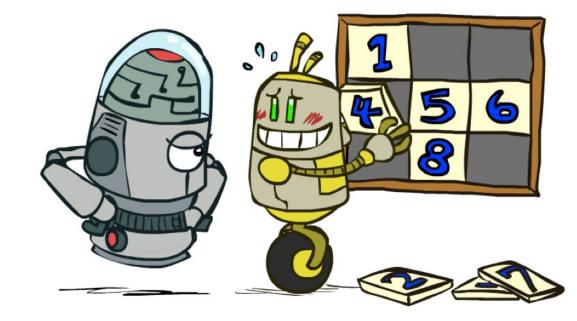
- What are the states?
- How many states?
- What are the actions?
- What are the step costs?

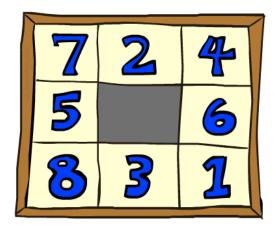


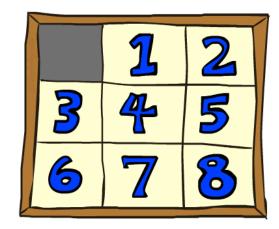
Admissible heuristics?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8







Start State

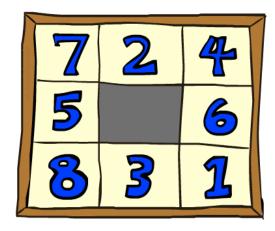
Goal State

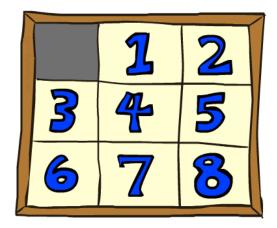
	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
UCS	112	6,300	3.6 x 10 ⁶	
A*TILES	13	39	227	

Statistics from Andrew Moore

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- Why is it admissible?
- h(start) = 3 + 1 + 2 + ... = 18





Start State

Goal State

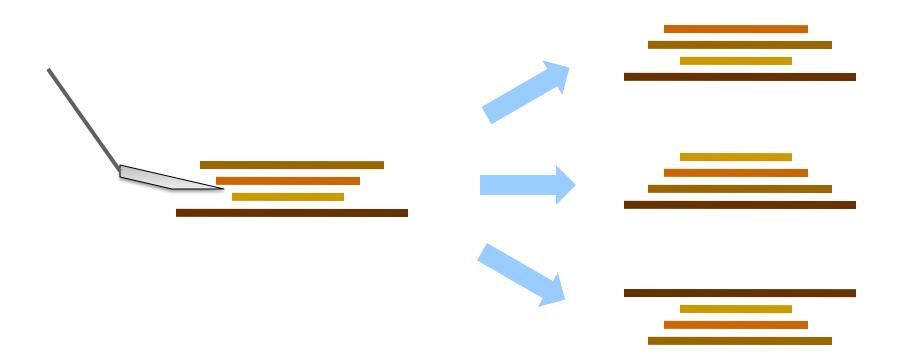
	Average nodes expanded when the optimal path has		
	4 steps	8 steps	12 steps
A*TILES	13	39	227
A*MANHATTAN	12	25	73

8 Puzzle III

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Example: Pancake Problem



Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

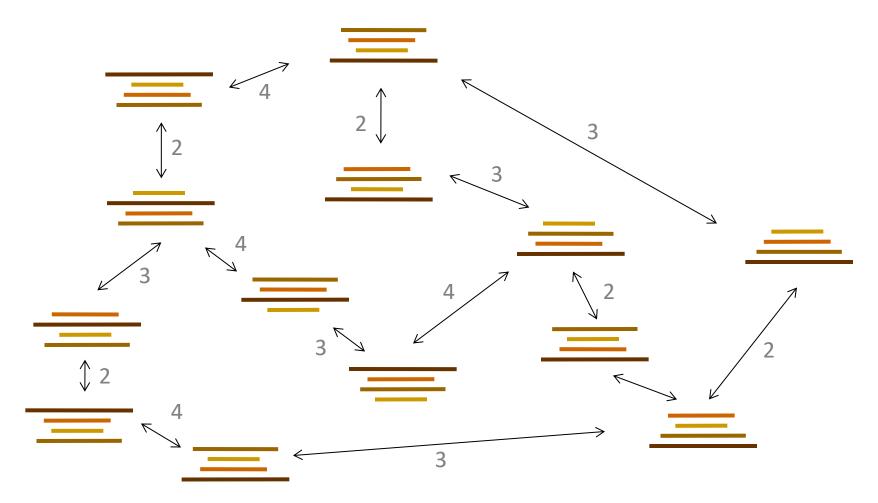
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

For a permutation σ of the integers from 1 to *n*, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \leq (5n+5)/3$, and that $f(n) \geq 17n/16$ for *n* a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2 - 1 \leq g(n) \leq 2n + 3$.

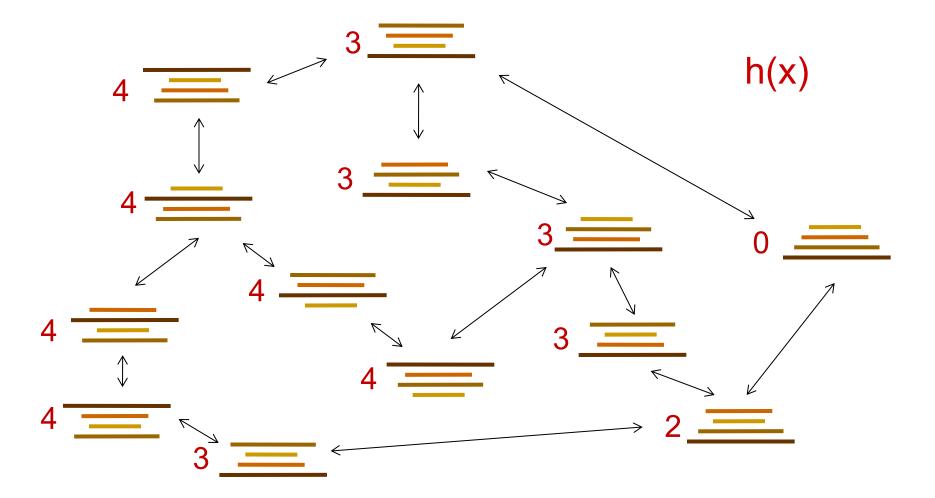
Example: Pancake Problem

State space graph with costs as weights



Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place



Combining heuristics

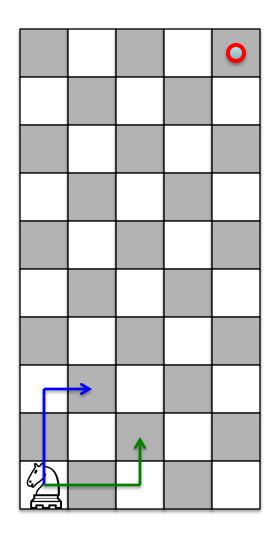
• Dominance: $h_1 \ge h_2$ if

 $\forall n \ h_1(n) \geq h_2(n)$

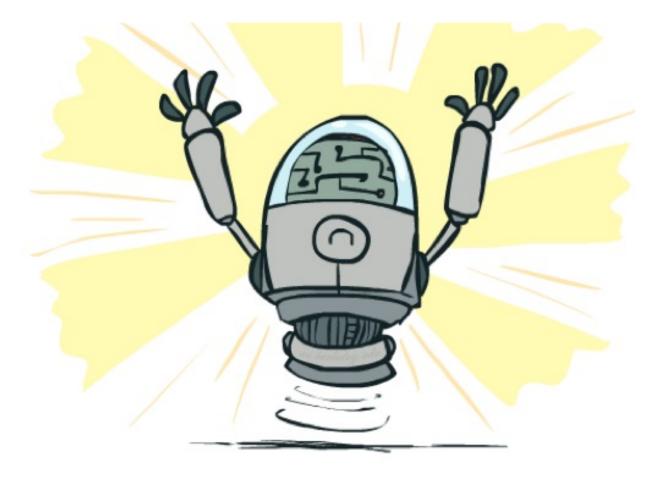
- Roughly speaking, larger value is better as long as both are admissible
- The zero heuristic is pretty bad (what does A* do with h=0?)
- The exact heuristic is pretty good, but usually too expensive!
- What if we have two heuristics, neither dominates the other?
 - Form a new heuristic by taking the max of both:

 $h(n) = \max(h_1(n), h_2(n))$

- Max of admissible heuristics is admissible and dominates both!
- Example: number of knight's moves to get from A to B
 - h1 = (Manhattan distance)/3 (rounded up to correct parity)
 - h2 = (Euclidean distance)/V5 (rounded up to correct parity)
 - h3 = (max x or y shift)/2 (rounded up to correct parity)



Optimality of A* Tree Search



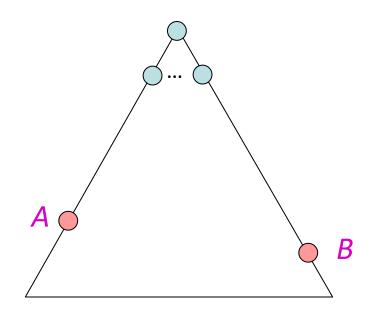
Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- *h* is admissible

Claim:

• A will be chosen for expansion before **B**



Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the frontier
- Some ancestor *n* of *A* is on the frontier, too (maybe *A* itself!)
- Claim: *n* will be expanded before *B*
 - 1. f(n) is less than or equal to f(A)

f(n) = g(n) + h(n) Definition $f(n) \le g(A)$ Adding g(A) = f(A) h =

Definition of f-cost Admissibility of hh = 0 at a goal

В

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the frontier
- Some ancestor *n* of *A* is on the frontier, too (maybe *A* itself!)
- Claim: *n* will be expanded before *B*
 - 1. f(n) is less than or equal to f(A)
 - 2. f(A) is less than f(B) -

g(A) < g(B)f(A) < f(B)

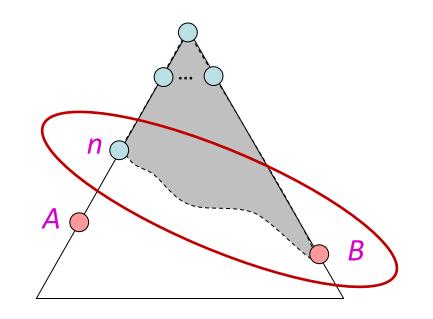
Suboptimality of *B*

h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the frontier
- Some ancestor *n* of *A* is on the frontier, too (maybe *A* itself!)
- Claim: *n* will be expanded before *B*
 - 1. f(n) is less than or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* is expanded before *B* —
- All ancestors of A are expanded before B
- A is expanded before B
- A* tree search is optimal

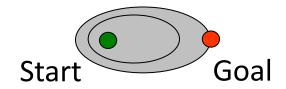


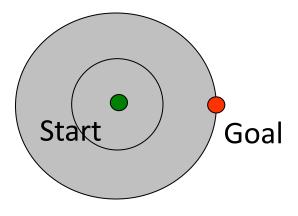
 $f(n) \leq f(A) < f(B)$

UCS vs A* Contours

 Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality





What do each of these functions measure?

- h(n)
- h*(n)
- g(n)
- g*(n)

f(n) (from A*)

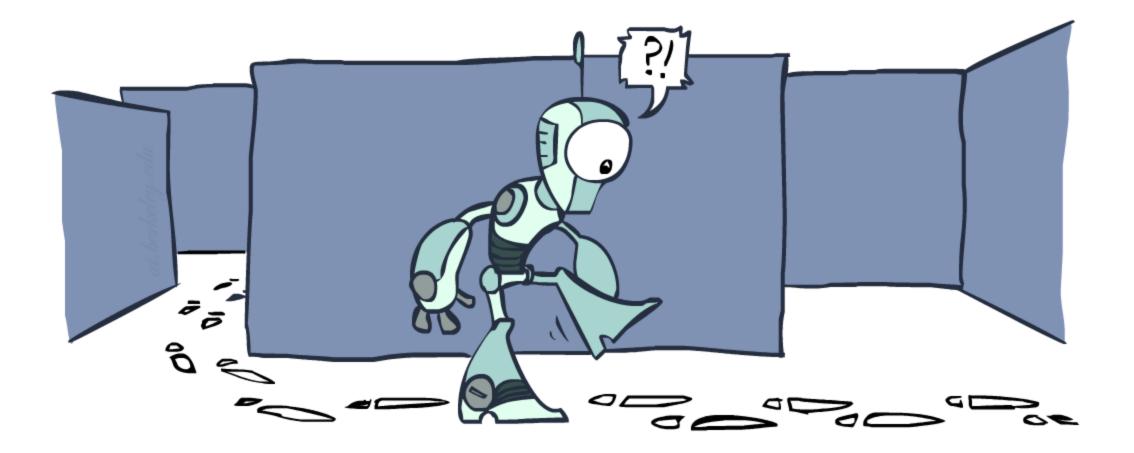
Comparison

Greedy (h)

Uniform Cost (g)

A* (g+h)

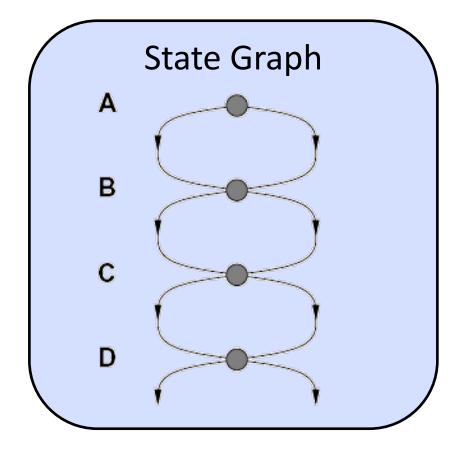
Optimality of A* Graph Search

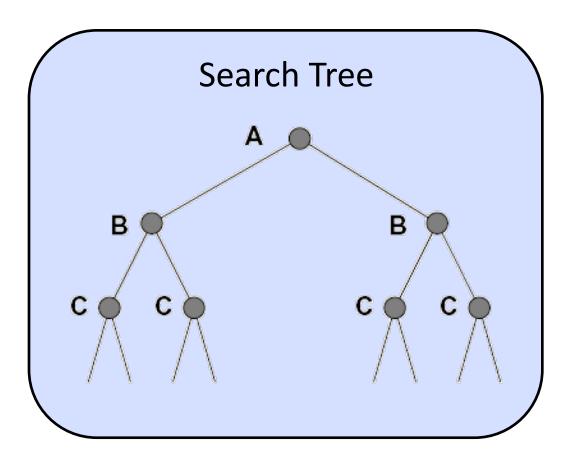


This part is a bit technical...

Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work.

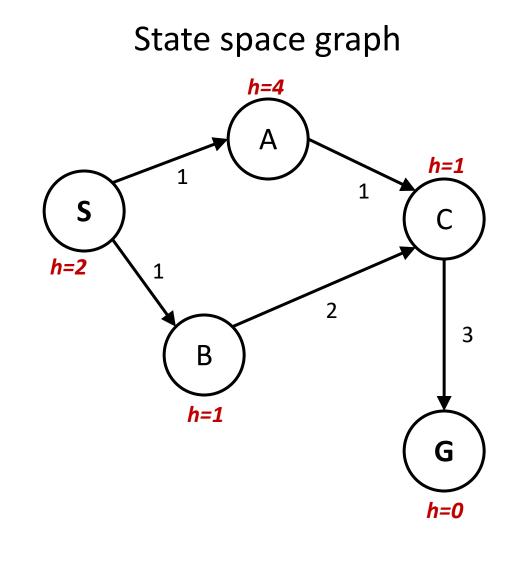


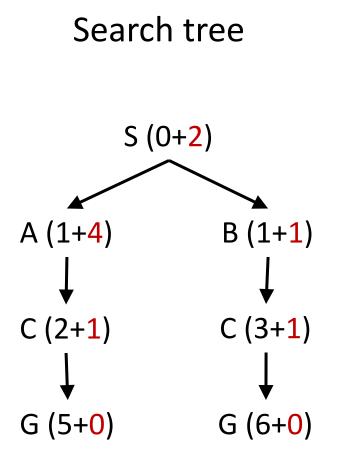


Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

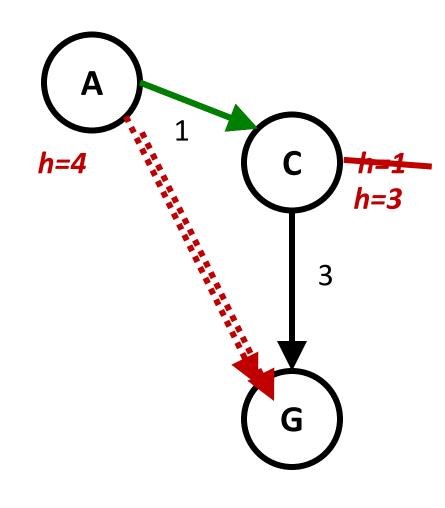
A* Graph Search Gone Wrong?





Simple check against expanded set blocks C Fancy check allows new C if cheaper than old but requires recalculating C's descendants

Consistency of Heuristics



- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal

$h(A) \le h^*(A)$

Consistency: heuristic "arc" cost ≤ actual cost for each arc
h(A) - h(C) ≤ c(A,C)

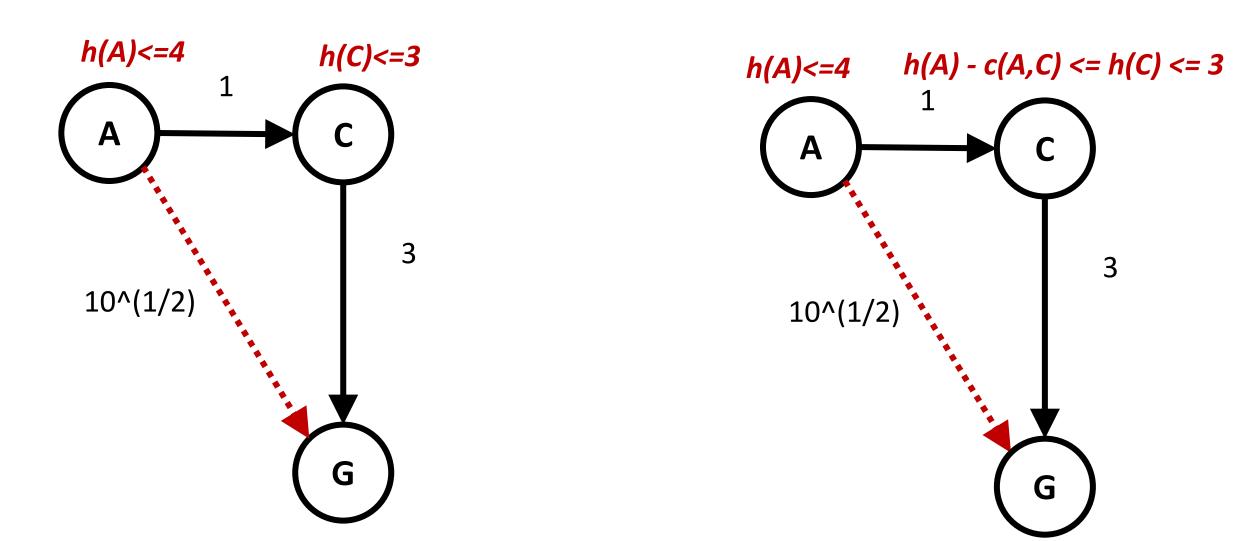
or $h(A) \le c(A,C) + h(C)$ (triangle inequality)

- Consequences of consistency:
 - The *f* value along a path never decreases:

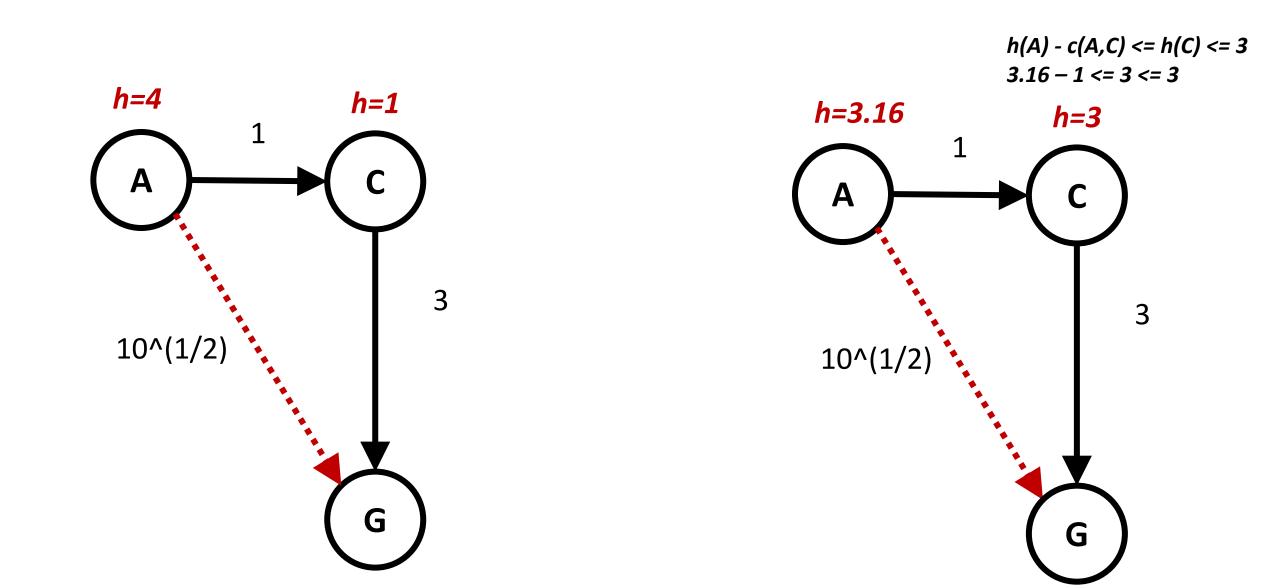
 $h(A) \le c(A,C) + h(C) \implies g(A) + h(A) \le g(A) + c(A,C) + h(C)$

A* graph search is optimal

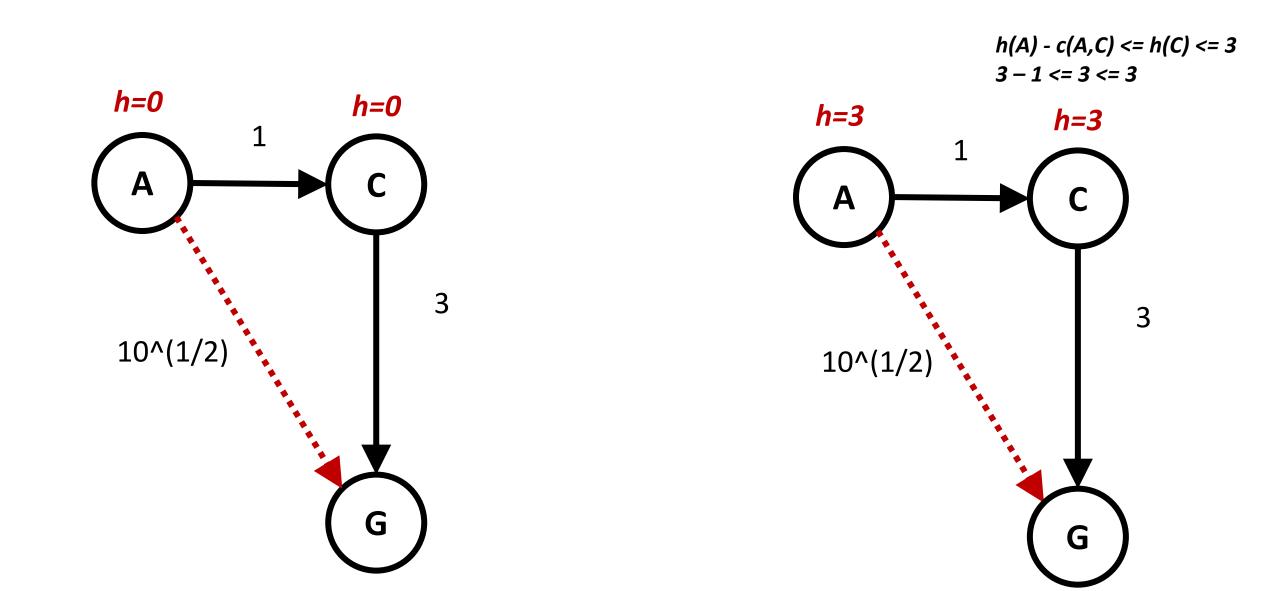
Admissibility and Consistency Constraints



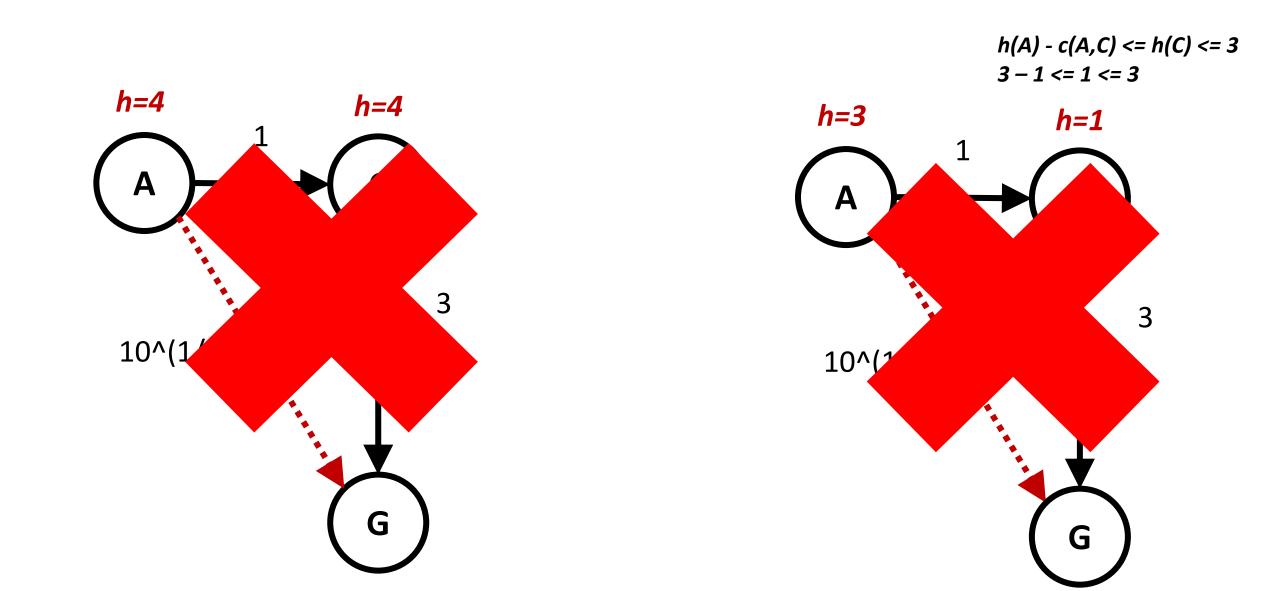
Admissible? Consistent?



Admissible? Consistent?

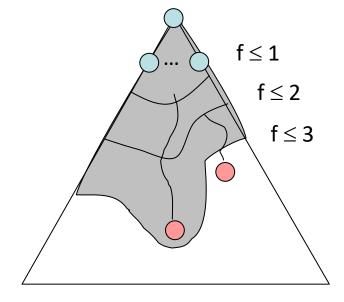


Admissible? Consistent?



Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: In tree search, A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal



Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
- Graph search:
 - A* optimal if heuristic is consistent
- Consistency implies admissibility
- Most natural admissible heuristics tend to be consistent, especially if from relaxed problems
 - For admissible but inconsistent heuristics see https://www.aaai.org/Papers/AAAI/2007/AAAI07-192.pdf

