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Uncertainty

§ The real world is rife with uncertainty!
§ E.g., if I leave for SEA 60 minutes before my flight, will arrive in time?

§ Problems:
§ partial observability (road state, other drivers’ plans, etc.)
§ noisy sensors (radio traffic reports, Google maps)
§ immense complexity of modelling and predicting traffic, security line, etc.
§ lack of knowledge of world dynamics (will tire burst? need COVID test?)

§ Combine probability theory + utility theory -> decision theory
§ Maximize expected utility : a* = argmaxa ås P(s | a) U(s)



Inference in Ghostbusters

§ A ghost is in the grid 
somewhere

§ Sensor readings tell how 
close a square is to the 
ghost
§ On the ghost: red
§ 1 or 2 away: orange
§ 3 or 4 away: yellow
§ 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

§ Sensors are noisy, but we know P(Color(x,y) | DistanceFromGhost(x,y))



Basic laws of probability

§ Begin with a set W of possible worlds
§ E.g., 6 possible rolls of a die, {1, 2, 3, 4, 5, 6}

§ A probability model assigns a number P(w) to each world w
§ E.g., P(1) = P(2) = P(3) = P(5) = P(5) = P(6) = 1/6. 

§ These numbers must satisfy
§ 0 £ P(w) £ 1

§ åw ÎW P(w) = 1
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Basic laws contd.

§ An event is any subset of W
§ E.g., “roll < 4” is the set {1,2,3}
§ E.g., “roll is odd” is the set {1,3,5}

§ The probability of an event is the sum of probabilities over its worlds
§ P(A) = åw Î A P(w)
§ E.g., P(roll < 4) = P(1) + P(2) + P(3) = 1/2

§ De Finetti (1931):
§ anyone who bets according to probabilities that violate these laws can be 

forced to lose money on every set of bets
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Random Variables
§ A random variable (usually denoted by a capital letter) is some aspect 

of the world about which we (may) be uncertain
§ Formally a deterministic function of w

§ The range of a random variable is the set of possible values
§ Odd = Is the dice roll an odd number? ® {true, false} 

§ e.g. Odd(1)=true, Odd(6) = false
§ often write the event Odd=true as odd, Odd=false as ¬odd

§ T = Is it hot or cold? ® {hot, cold}
§ D = How long will it take to get to the airport? ® [0, ¥)
§ LGhost = Where is the ghost? ® {(0,0), (0,1), …}

§ The probability distribution of a random variable X gives the 
probability for each value x in its range (probability of the event X=x)
§ P(X=x) = å {w: X(w)=x} P(w)
§ P(x) for short (when unambiguous)
§ P(X) refers to the entire distribution (think of it as a vector or table)



Probability Distributions

§ Associate a probability with each value; sums to 1

§ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

§ Weather: 

P(T) P(W) P(T,W)

§ Joint distribution

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00



Making possible worlds

§ In many cases we 
§ begin with random variables and their domains
§ construct possible worlds as assignments of values to all variables

§ E.g., two dice rolls Roll1 and Roll2
§ How many possible worlds?
§ What are their probabilities?

§ Size of distribution for n variables with range size d?
§ For all but the smallest distributions, cannot write out by hand!

dn



Probabilities of events

§ The Probability of an event is the sum of probabilities 
of its worlds, P(A) = åw Î A P(w)

§ So, given a joint distribution over all variables, can 
compute any event probability!
§ Probability that it’s hot AND sunny?

§ P(T=hot, W=sun)
§ = .45

§ Probability that it’s hot?
§ P(T=hot) = åw ÎW P(T= hot, W=w)
§ = P(T=hot, W=sun) + P(T=hot, W=rain) + P(T=hot, W=fog) + P(T=hot, 

W=meteor)
§ = .45 + .02 + .03 + .00 = .5

§ Probability that it’s hot OR not foggy?
§ P(T=hot ∨ ¬ W=fog) = P(T=hot) + P(¬ W=fog) - P(T=hot, ¬ W=fog)
§ = P(T=hot) + (1 - P(W=fog)) - P(T=hot, ¬ W=fog)
§ = .5 + (1 - .03 + .27) – (.45 + .02 + .00) = .5 + .7 - .47 = .73

P(T,W)

Joint distribution

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00



Quiz: Events

§ P(+x, +y) ?

§ P(+x) ?

§ P(-y OR +x) ?

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1



Quiz: Events

§ P(+x, +y) ?

= .2 

§ P(+x) ?

= .2 + .3  = .5

§ P(-y OR +x) ?

= P(-y) + P(+x) - P(-y, + x) = .3 + .1 + .2 + .3 - .3 = .6
= 1 - P(+y, -x) = 1 - .4 = .6

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1



Marginal Distributions

§ Marginal distributions are sub-tables which eliminate variables 
§ Marginalization (summing out): Collapse a dimension by adding

P(X=x) = å
y  

P(X=x, Y=y)

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

0.60
0.10
0.30
0.00

0.50 0.50

P(T)

P(W)



Quiz: Marginal Distributions

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

X P
+x
-x

Y P
+y
-y



Quiz: Marginal Distributions

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

X P
+x .5
-x .5

Y P
+y .6
-y .4



Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

Conditional Probabilities

§ A simple relation between joint and conditional probabilities
§ In fact, this is taken as the definition of a conditional probability

P(b)P(a)

P(a,b)

= P(W=s,T=c) + P(W=r,T=c) + P(W=f,T=c) + P(W=m,T=c) 
= 0.15 + 0.08 + 0.27 + 0.00= 0.50

P(T,W)

P(a | b) = P(a, b)
P(b)

P(W=s | T=c) = P(W=s,T=c)
P(T=c)

= 0.15/0.50 = 0.3



Quiz: Conditional Probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

§ P(+x | +y) ?

§ P(-x | +y) ?

§ P(-y | +x) ?



Quiz: Conditional Probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

§ P(+x | +y) ?

= .2 / (.2 + .4) = 1/3

§ P(-x | +y) ?

= .4 / (.2 + .4) = 2/3

§ P(-y | +x) ?

= .3 / (.3 + .2) = .6



Conditional Distributions

§ Distributions for one set of variables given another set

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

P(W | T=c)

0.30
0.16
0.54
0.00

P(W | T=h)

0.90
0.04
0.06
0.00

P(W | T)

0.30
0.16
0.54
0.00

0.90
0.04
0.06
0.00

hot cold hot cold

Notice how the values in the tables have been re-normalized!



§ Procedure:
§ Multiply each entry by a = 1/(sum over all entries)

Normalizing a distribution

Ensure entries sum to ONE

a = 1/0.50 = 2

Normalize

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

P(W,T=c)

0.15
0.08
0.27
0.00

0.30
0.16
0.54
0.00

P(W,T)
P(W | T=c) = P(W,T=c)/P(T=c)
= a P(W,T=c)



The Product Rule

§ Sometimes we have conditional distributions but we want the joint

P(a | b) = P(a, b)
P(b)

P(a | b) P(b) = P(a, b) 



The Product Rule: Example

P(W | T) P(T) = P(W, T) 

T P

hot 0.5

cold 0.5

P(T)

P(W | T)

0.30
0.16
0.54
0.00

0.90
0.04
0.06
0.00

hot cold Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

P(W, T)



The Chain Rule

§ A joint distribution can be written as a product of conditional 
distributions by repeated application of the product rule:

P(x1, x2, x3) = P(x3 | x1, x2) P(x1, x2) 
= P(x3 | x1, x2) P(x2 | x1) P(x1)

P(x1, x2,…, xn) = Õi P(xi | x1,…, xi-1)



Bayes’ Rule



Bayes’ Rule

§ Write the product rule both ways:
P(a | b) P(b) = P(a, b) = P(b | a) P(a)  

§ Dividing left and right expressions, we get:

§ Why is this at all helpful?

§ Lets us build one conditional from its reverse
§ Often one conditional is tricky but the other one is simple
§ Describes an “update” step from prior P(a) to posterior P(a | b) 
§ Foundation of many systems we’ll see later

§ In the running for most important AI equation!

That’s my rule!

P(a | b) = P(b | a) P(a)
P(b)



Inference with Bayes’ Rule

§ Example: Diagnostic probability from causal probability:

§ Example:
§ M: meningitis, S: stiff neck

§ Note: posterior probability of meningitis still very small: 0.008 (80x bigger – why?)
§ Note: you should still get stiff necks checked out!  Why?

Example
givens

P(cause | effect) = P(effect | cause) P(cause)
P(effect)

P(s | m) = 0.8
P(m) = 0.0001
P(s) = 0.01

P(m | s) = P(s | m) P(m)
P(s) = 

0.8 x 0.0001  .
0.01



§ Two variables X and Y are (absolutely) independent if
"x,y P(x, y) = P(x) P(y)

§ I.e., the joint distribution factors into a product of two 
simpler distributions

§ Equivalently, via the product rule P(x,y) = P(x|y)P(y),

P(x | y) = P(x)   or    P(y | x) = P(y)

§ Example: two dice rolls Roll1 and Roll2
§ P(Roll1=5, Roll2=3)     =  P(Roll1=5) P(Roll2=3) =  1/6 x 1/6  =  1/36
§ P(Roll2=3 | Roll1=5)   =   P(Roll2=3)

Independence

P(b)P(a)

P(a,b)



Example: Independence

§ n fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5

P(X1,X2,...,Xn) 

P(Xn) P(X1) P(X2) 

table size: 2n

in general: dn



Conditional Independence



Conditional Independence

§ Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

§ X is conditionally independent of Y given Z : 
"x,y,z P(x | y, z) =  P(x | z)

= P(x,y,z) / P(y, z) = P(x,z)/ P(z)

or, equivalently, if and only if
"x,y,z P(x, y | z) = P(x | z) P(y | z)

P(y)P(x)
P(z)



Probabilistic Inference

§ Probabilistic inference: compute a desired probability 
from a probability model
§ Typically for a query variable given evidence
§ E.g., P(airport on time | no accidents) = 0.90
§ These represent the agent’s beliefs given the evidence

§ Probabilities change with new evidence:
§ P(airport on time | no accidents, 5 a.m.) = 0.95
§ P(airport on time | no accidents, 5 a.m., raining) = 0.80
§ Observing new evidence causes beliefs to be updated


