CSE 473: Artificial Intelligence

Probability

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jaren Moore, Dan Weld

Uncertainty

- The real world is rife with uncertainty!
- E.g., if I leave for SEA 60 minutes before my flight, will arrive in time?
- Problems:
- partial observability (road state, other drivers' plans, etc.)
- noisy sensors (radio traffic reports, Google maps)
- immense complexity of modelling and predicting traffic, security line, etc.
- lack of knowledge of world dynamics (will tire burst? need COVID test?)
- Combine probability theory + utility theory -> decision theory
- Maximize expected utility : $a^{*}=\operatorname{argmax}_{a} \sum_{s} P(s \mid a) U(s)$

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
- On the ghost: red
- 1 or 2 away: orange
- 3 or 4 away: yellow
- 5+ away: green

- Sensors are noisy, but we know $\mathrm{P}(\operatorname{Color}(\mathrm{x}, \mathrm{y}) \mid$ DistanceFromGhost($\mathrm{x}, \mathrm{y})$)

$P($ red \| 3)	P (orange \| 3)	$P($ yellow \| 3)	$P($ green \| 3)
0.05	0.15	0.5	0.3

Basic laws of probability

- Begin with a set Ω of possible worlds
- E.g., 6 possible rolls of a die, $\{1,2,3,4,5,6\}$

- A probability model assigns a number $P(\omega)$ to each world ω
- E.g., $P(1)=P(2)=P(3)=P(5)=P(5)=P(6)=1 / 6$.
- These numbers must satisfy
- $0 \leq P(\omega) \leq 1$
- $\sum_{\omega \in \Omega} P(\omega)=1$

Basic laws contd.

- An event is any subset of Ω
- E.g., "roll < 4" is the set $\{1,2,3\}$
- E.g., "roll is odd" is the set $\{1,3,5\}$

- The probability of an event is the sum of probabilities over its worlds
- $\boldsymbol{P}(A)=\sum_{\omega \in A} P(\omega)$
- E.g., $P($ roll $<4)=P(1)+P(2)+P(3)=1 / 2$
- De Finetti (1931):
- anyone who bets according to probabilities that violate these laws can be forced to lose money on every set of bets

Random Variables

- A random variable (usually denoted by a capital letter) is some aspect of the world about which we (may) be uncertain
- Formally a deterministic function of ω
- The range of a random variable is the set of possible values
- Odd $=$ Is the dice roll an odd number? \rightarrow \{true, false $\}$
- e.g. $\operatorname{Odd}(1)=$ true, $\operatorname{Odd}(6)=$ false
- often write the event Odd=true as odd, Odd=false as \neg odd
- $T=$ Is it hot or cold? \rightarrow hot, cold $\}$
- $D=$ How long will it take to get to the airport? $\rightarrow[0, \infty)$

- $L_{\text {Ghost }}=$ Where is the ghost? $\rightarrow\{(0,0),(0,1), \ldots\}$
- The probability distribution of a random variable X gives the probability for each value x in its range (probability of the event $X=x$)
- $P(X=x)=\sum_{\{\omega: X(\omega)=x\}} P(\omega)$
- $P(x)$ for short (when unambiguous)
- $P(X)$ refers to the entire distribution (think of it as a vector or table)

Probability Distributions

- Associate a probability with each value; sums to 1
- Temperature:
$\mathbf{P}(\mathrm{T})$

T	P
hot	0.5
cold	0.5

- Weather:

$\mathbf{P}(\mathrm{W})$	
W	P
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

- Joint distribution

$$
\mathbf{P}(T, W)
$$

		Temperature	
		hot	cold
	sun	0.45	0.15
	rain	0.02	0.08
	fog	0.03	0.27
	meteor	0.00	0.00

Making possible worlds

- In many cases we
- begin with random variables and their domains
- construct possible worlds as assignments of values to all variables
- E.g., two dice rolls Roll_{1} and Roll_{2}
- How many possible worlds?
- What are their probabilities?
- Size of distribution for n variables with range size d ? d^{n}
- For all but the smallest distributions, cannot write out by hand!

Probabilities of events

- The Probability of an event is the sum of probabilities of its worlds, $P(A)=\sum_{\omega \in A} P(\omega)$
- So, given a joint distribution over all variables, can compute any event probability!

Joint distribution

$$
P(T, W)
$$

		Temperature	
		hot	cold
$\begin{aligned} & \overline{ \pm} \\ & \frac{1}{4} \\ & 0 \end{aligned}$	sun	0.45	0.15
	rain	0.02	0.08
	fog	0.03	0.27
	meteor	0.00	0.00

- Probability that it's hot OR not foggy?
- $P(T=$ hot $\vee \neg W=$ fog $)=P(T=h o t)+P(\neg W=f o g)-P(T=h o t, \neg W=f o g)$
- $=P(T=$ hot $)+(1-P(W=f o g))-P(T=h o t, ~-W=$ fog $)$
- $=.5+(1-.03+.27)-(.45+.02+.00)=.5+.7-.47=.73$

Quiz: Events

- $P(+x,+y)$?
- $P(+x)$?
- $P(-y O R+x) ?$

X	Y	P
$+x$	$+y$	0.2
$+x$	$-y$	0.3
$-x$	$+y$	0.4
$-x$	$-y$	0.1

Quiz: Events

- $P(+x,+y)$?

$$
=.2
$$

- $P(+x)$?

$$
=.2+.3=.5
$$

$P(X, Y)$		
X	y	P
$+x$	$+y$	0.2
$+x$	$-y$	0.3
$-x$	$+y$	0.4
$-x$	$-y$	0.1

- $P(-y O R+x)$?

$$
\begin{aligned}
& =P(-y)+P(+x)-P(-y,+x)=.3+.1+.2+.3-.3=.6 \\
& =1-P(+y,-x)=1-.4=.6
\end{aligned}
$$

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Collapse a dimension by adding

$$
P(X=x)=\sum_{y} P(X=x, Y=y)
$$

		Temperature			$\mathrm{P}(\mathrm{W})$
		hot	cold		
$\begin{aligned} & \pm \\ & \stackrel{ \pm}{ \pm} \\ & \stackrel{1}{0} \\ & \stackrel{N}{3} \end{aligned}$	sun	0.45	0.15	0.60	
	rain	0.02	0.08	0.10	
	fog	0.03	0.27	0.30	
	meteor	0.00	0.00	0.00	
		0.50	0.50		

Quiz: Marginal Distributions

Quiz: Marginal Distributions

Conditional Probabilities

- A simple relation between joint and conditional probabilities
- In fact, this is taken as the definition of a conditional probability

$$
P(a \mid b)=\frac{P(a, b)}{P(b)}
$$

$$
\begin{aligned}
P(W=s \mid T=c)=\frac{P(W=s, T=c)}{P(T=c)} \quad=0.15 / 0.50=0.3 \\
\begin{array}{l}
=P(W=s, T=c)+P(W=r, T=c)+P(W=f, T=c)+P(W=m, T=c) \\
=0.15+0.08+0.27+0.00=0.50
\end{array}
\end{aligned}
$$

Quiz: Conditional Probabilities

- $P(+x \mid+y)$?

X	Y	P
+X	+y	0.2
+X	-y	0.3
-X	+y	0.4
-X	-y	0.1

- $P(-x \mid+y)$?
- $P(-y \mid+x)$?

Quiz: Conditional Probabilities

- $P(+x \mid+y)$?
$P(X, Y)$

X	Y	P
$+x$	$+y$	0.2
$+x$	$-y$	0.3
$-x$	$+y$	0.4
$-x$	$-y$	0.1

$$
=.2 /(.2+.4)=1 / 3
$$

- $P(-x \mid+y)$?
$=.4 /(.2+.4)=2 / 3$
- $P(-y \mid+x)$?

$$
=.3 /(.3+.2)=.6
$$

Conditional Distributions

- Distributions for one set of variables given another set

		Temperature	
		hot	cold
	sun	0.45	0.15
	rain	0.02	0.08
	rain	fog	0.03
	meteor	0.00	0.00

P(W \| T=h)	P(W \| T=c)
hot	cold
0.90 0.04 0.06 0.00	0.30 0.16 0.54 0.00

$\mathrm{P}(\mathrm{W} \mid \mathrm{T})$ hot
cold
0.90
0.04
0.30
0.06
0.00

Notice how the values in the tables have been re-normalized!

Normalizing a distribution

- Procedure:
- Multiply each entry by $\alpha=1 /($ sum over all entries)

Ensure entries sum to ONE

The Product Rule

- Sometimes we have conditional distributions but we want the joint

$$
P(a \mid b) P(b)=P(a, b)
$$

The Product Rule: Example

$\boldsymbol{P}(W \mid T) \boldsymbol{P}(T)=\boldsymbol{P}(W, T)$

The Chain Rule

- A joint distribution can be written as a product of conditional distributions by repeated application of the product rule:

$$
\begin{aligned}
P\left(x_{1}, x_{2}, x_{3}\right) & =P\left(x_{3} \mid x_{1}, x_{2}\right) P\left(x_{1}, x_{2}\right) \\
& =P\left(x_{3} \mid x_{1}, x_{2}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{1}\right) \\
P\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\prod_{i} P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
\end{aligned}
$$

Bayes' Rule

Bayes' Rule

- Write the product rule both ways:

$$
P(a \mid b) P(b)=P(a, b)=P(b \mid a) P(a)
$$

- Dividing left and right expressions, we get:

$$
P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

- Why is this at all helpful?
- Lets us build one conditional from its reverse
- Often one conditional is tricky but the other one is simple
- Describes an "update" step from prior $P(a)$ to posterior $P(a \mid b)$
- Foundation of many systems we'll see later

- In the running for most important Al equation!

Inference with Bayes' Rule

- Example: Diagnostic probability from causal probability:

$$
P(\text { cause } \mid \text { effect })=\frac{P(\text { effect } \mid \text { cause) } P(\text { cause })}{P(\text { effect })}
$$

- Example:
- M: meningitis, S: stiff neck

$$
\left.\left.\begin{array}{r}
P(s \mid m)=0.8 \\
P(m)=0.0001 \\
P(s)=0.01
\end{array}\right\} \begin{array}{l}
\text { Example } \\
\text { givens }
\end{array}\right] \begin{array}{r}
P(m \mid s)=\frac{0.8 \times 0.0001}{0.01}
\end{array}
$$

- Note: posterior probability of meningitis still very small: 0.008 (80x bigger - why?)
- Note: you should still get stiff necks checked out! Why?

Independence

- Two variables X and Y are (absolutely) independent if

$$
\forall x, y \quad P(x, y)=P(x) P(y)
$$

- I.e., the joint distribution factors into a product of two simpler distributions
- Equivalently, via the product rule $P(x, y)=P(x \mid y) P(y)$,

$$
P(x \mid y)=P(x) \quad \text { or } \quad P(y \mid x)=P(y)
$$

- Example: two dice rolls Roll_{1} and Roll_{2}
- $P\left(\right.$ Roll $_{1}=5$, Rol $\left._{2}=3\right)=P\left(\right.$ Rol $\left._{1}=5\right) P\left(\right.$ Rol $\left._{2}=3\right)=1 / 6 \times 1 / 6=1 / 36$
- $P\left(\right.$ Roll $_{2}=3 \mid$ Roll $\left._{1}=5\right)=P\left(\right.$ Rol $\left._{2}=3\right)$

Example: Independence

- n fair, independent coin flips:

		$P\left(X_{2}\right)$		$\boldsymbol{P}\left(X_{n}\right)$	
H	0.5	H	0.5	H	0.5
T	0.5	T	0.5	T	0.5

$$
\boldsymbol{P}\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

Conditional Independence

Conditional Independence

- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z :

$$
\begin{array}{rl}
\forall x, y, z & P(x \mid y, z)=P(x \mid z) \\
& =P(x, y, z) / P(y, z)=P(x, z) / P(z)
\end{array}
$$

or, equivalently, if and only if

$$
\forall x, y, z \quad P(x, y \mid z)=P(x \mid z) P(y \mid z)
$$

Probabilistic Inference

- Probabilistic inference: compute a desired probability from a probability model
- Typically for a query variable given evidence
- E.g., P(airport on time | no accidents) $=0.90$
- These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
- P(airport on time \| no accidents, 5 a.m.) = 0.95
- P(airport on time | no accidents, 5 a.m., raining) $=0.80$
- Observing new evidence causes beliefs to be updated

