CSE 473: Artificial Intelligence
Probability
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slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jaren Moore, Dan Weld



Uncertainty

" The real world is rife with uncertainty!
= E.g., if | leave for SEA 60 minutes before my flight, will arrive in time?
" Problems:

= partial observability (road state, other drivers’ plans, etc.)
" noisy sensors (radio traffic reports, Google maps)

" immense complexity of modelling and predicting traffic, security line, etc.
= |ack of knowledge of world dynamics (will tire burst? need COVID test?)

" Combine probability theory + utility theory -> decision theory
* Maximize expected utility : a* = argmax, 2. P(s | a) U(s)



Inference in Ghostbusters

= Aghostisin the grid
somewhere
= Sensor readings tell how
close a square is to the
ghost
= On the ghost: red
= 1 or 2 away: orange
= 3 or4away: yellow

= 5+ away: green

= Sensors are noisy, but we know P(Color(x,y) | DistanceFromGhost(x,y))

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3




Basic laws of probability

" Begin with a set (2 of possible worlds
" E.g., 6 possible rolls of a die, {1, 2, 3, 4, 5, 6}

= A probability model assigns a number P(w) to each world @
" E.g., P(1) = P(2) = P(3) = P(5) = P(5) = P(6) = 1/6. =N
" These numbers must satisfy 1/6,".”f .1./6,
« 0<Pl)<1 = e
. Za) e() 'D(a)) =1




Basic laws contd.

= An event is any subset of (2
" E.g., “roll <4” is the set {1,2,3}
" E.g., “roll is odd” is the set {1,3,5}
" The probability of an event is the sum of probabilities over its worlds
" P(A) =Za)eA Plw)
= E.g., P(roll<4)=P(1)+P(2) + P(3)=1/2

= De Finetti (1931):

= anyone who bets according to probabilities that violate these laws can be
forced to lose money on every set of bets



Random Variables

= Arandom variable (usually denoted by a capital letter) is some aspect
of the world about which we (may) be uncertain
= Formally a deterministic function of @

= The range of a random variable is the set of possible values
= Odd =Is the dice roll an odd number? — {true, false}
= e.g. Odd(1)=true, Odd(6) = false
= often write the event Odd=true as odd, Odd=false as —odd
= T=lsithotorcold? — {hot, cold}
= D =How long will it take to get to the airport? — [0, «)
" chost = Where is the ghost? — {(0,0), (0,1), ...}
= The probability distribution of a random variable X gives the
probability for each value x in its range (probability of the event X=x)

m P(X:X) = Z {: X(w)=x} P(C())
" P(x) for short (when unambiguous)
= P(X) refers to the entire distribution (think of it as a vector or table)




Probability Distributions

= Associate a probability with each value; sums to 1

= Temperature:

P(T)
T p
hot 0.5
cold 0.5

* Weather:
P(W)
W P
sun 0.6
rain 0.1
fog 0.3
meteor 0.0
T
pc 71777/ 7

= Joint distribution

P(T,W)
Temperature
hot cold
sun 0.45 |0.15
g rain 0.02 |0.08
g fog 0.03 |0.27
meteor | 0.00 |0.00




Making possible worlds

" |[n many cases we
" begin with random variables and their domains

= construct possible worlds as assignments of values to all variables

= E.g., two dice rolls Roll; and Roll,
" How many possible worlds?
= What are their probabilities?

= Size of distribution for n variables with range size d? d"

" For all but the smallest distributions, cannot write out by hand!



Probabilities of events

" The Probability of an event is the sum of probabilities
of its worlds, P(A) =3, . 4 P(®)

= So, given a joint distribution over all variables, can
compute any event probability!

= Probability that it’'s hot AND sunny?
= P(T=hot, W=sun)
= = 45

= Probability that it’s hot?
= P(T=hot) =2, c w P(T= hot, W=w)

= = P(T=hot, W=sun) + P(T=hot, W=rain) + P(T=hot, W=fog) + P(T=hot,
W=meteor)

= = 45+.02+.03+.00=.5

Joint distribution
P(TW)
Temperature
hot cold
sun 0.45 0.15
< | rain 0.02 |0.08
(¢
%’ fog 0.03 0.27
meteor | 0.00 0.00

= Probability that it’s hot OR not foggy?
= P(T=hot V - W=fog) = P(T=hot) + P(- W=fog) - P(T=hot, - W=fog)
= = P(T=hot) + (1 - P(W=fog)) - P(T=hot, - W=fog)
" =5+ (1-.03+.27)—(.45+.02+.00)=.5+.7-.47=.73




= P(+x, +y) ?

= P(+x)?

" P(-yOR+x)?

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1




Quiz: Events

" P(x, +y)?

= P(+x)?

=2+.3=.5

" P(-y OR+x)?

:p(_y)+P(+X)_P(-y,+x)=_3+.1+.2+.3-.3=.6
:1—P(+y,—X)=1-.4=.6

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
X -y 0.1




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
" Marginalization (summing out): Collapse a dimension by adding

P(X=x) = Zy P(X=x, Y=y)

Temperature
hot cold
sun 0.45 | 0.15 0.60
< | rain 0.02 |0.08 0.10
: P(W)
2 fog 0.03 |0.27 0.30
meteor | 0.00 0.00 0.00
0.50 |0.50

P(T)



Quiz: Marginal Distributions

—

P(z) =) P(z,y)
Y

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—

P(y) = > P(z,y)




Quiz: Marginal Distributions

—

P(z) =) P(z,y)
Y

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

—

P(y) = > P(z,y)




Conditional Probabilities

= Asimple relation between joint and conditional probabilities

= |n fact, this is taken as the definition of a conditional probability

P(a | b) = P(a, b)

P(b)
P(TW)
Temperature
hot
sun 0.45
% rain 0.02
©
v 0.03
2 fog
meteor | 0.00

P(a,b)

P(a)

P(W=s | T=c) = P(W=s,T=c) = 0.15/0.50 = 0.3
P(T=c)

= P(W=s,T=c) + P(W=r,T=c) + P(W=fT=c) + P(W=m,T=c)
=0.15+0.08 + 0.27 + 0.00=0.50




Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

= P(+x | +y)?

= P(-x|+y)?

" Py [+x)?



Quiz: Conditional Probabilities

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

= P(+x | +y)?

=2/(2+.4)=1/3

= P(-x|+y)?

=4/(2+.4)=2/3

" Py [+x)?

=.3/(3+.2)=.6



Conditional Distributions

= Distributions for one set of variables given another set

P(W | T=h) P(W | T=c) P(W|T)
Temperature
hot cold
hot cold hot cold
sun 0.45 |[0.15 0.90 0.30
< | rain 0.02 |0.08 0.04 0.16
g fog 0.03 |0.27 0.06 0.54
meteor |0.00 |0.00 0.00 0.00

Notice how the values in the tables have been re-normalized!



Normalizing a distribution

" Procedure:
» Multiply each entry by a = 1/(sum over all entries)

N

Ensure entries sum to ONE

P(WT)
Temberature P(W | T=c) = P(W,T=c)/P(T=c)
P P(W,T=c) = o P(W,T=c)
hot
sun 0.45 0.15 0.30
S N I.
%’ rain 0.02 0.08 ormalize 0.16
(qv) ﬂ
g fog 0.03 0.27 0.54
o=1/0.50=2
meteor | 0.00 0.00 0.00




The Product Rule

= Sometimes we have conditional distributions but we want the joint

P(a | b) P(b) = P(a, b) (> pPla|b)= PaDb)

P(b)



The Product Rule: Example

P(W | T) P(T) = P(W, T)

P(W | T) P(W, T)
hot cold P(T) Temperature
hot cold
T P
sun 0.45 0.15
hot 0.5 S
< |rain 0.02 0.08
cold | 0.5 =
2 | fog 0.03 |0.27
meteor | 0.00 0.00




The Chain Rule

= Ajoint distribution can be written as a product of conditional
distributions by repeated application of the product rule:

P(Xy, X, X3) = P(X5 | X1, X,) P(Xq, X,)
= P(x5 | X1, X,) P(x, | X;) P(x,)

P(Xll XZI'"I Xn) = Hi P(Xi | Xll"'l Xi—l)



Bayes’ Rule




Bayes’ Rule

= Write the product rule both ways:
P(a | b) P(b) = P(a, b) =P(b | a) P(a) That's my rulel |

= Dividing left and right expressions, we get:

P(a | b) = P(b | a) P(a)
P(b)
= Why is this at all helpful?

= |Lets us build one conditional from its reverse

= Often one conditional is tricky but the other one is simple

= Describes an “update” step from prior P(a) to posterior P(a | b)
= Foundation of many systems we’ll see later

= |n the running for most important Al equation!



Inference with Bayes’ Rule

= Example: Diagnostic probability from causal probability:

P(effect | cause) P(cause)

P(cause | effect) =

P(effect)
= Example:
= M: meningitis, S: stiff neck

P(s | m)=0.8
P(m) = 0.0001
P(s) =0.01
P p

P(m | s) = s IP(n:)) (m) _

—

—

Example
givens

0.8 x 0.0001

0.01

= Note: posterior probability of meningitis still very small: 0.008 (80x bigger — why?)

= Note: you should still get stiff necks checked out! Why?



Independence

= Two variables X and Y are (absolutely) independent if
vVx,y  Plx,y)=P(x) P(y)

= |.e., the joint distribution factors into a product of two
simpler distributions

= Equivalently, via the product rule P(x,y) = P(x|y)P(y),
P(x | y)=P(x) or Ply|x)=Ply)

= Example: two dice rolls Roll; and Roll,
= P(Roll;=5, Roll,=3) = P(Roll;=5) P(Roll,=3) = 1/6 x1/6 = 1/36
= P(Roll,=3 | Roll;=5) = P(Roll,=3)




Example: Independence

" n fair, independent coin flips:

P(X;) P(X;) P(X,)

H |05 H |os5 o H |os5

T 0.5 T 0.5 T 0.5
—

P(X.,X,,....X,)

in general: d” |

table size: 2" <




Conditional Independence




Conditional Independence

= Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

= X is conditionally independent of Y given Z:
Vxy,z  Plx |y z)= Plx| 2
= P(x,y,2) / P(y, z) = P(x,z)/ P(2)

or, equivalently, if and only if
Vxy,z Pl y|z)=Plx|2z)Ply| 2




Probabilistic Inference

Probabilistic inference: compute a desired probability
from a probability model

= Typically for a query variable given evidence

= E.g., P(airport on time | no accidents) = 0.90

= These represent the agent’s beliefs given the evidence

Probabilities change with new evidence:
= P(airport on time | no accidents, 5 a.m.) =0.95
= P(airport on time | no accidents, 5 a.m., raining) = 0.80
= QObserving new evidence causes beliefs to be updated




