CSE 473: Artificial Intelligence

Search

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld

Today

= Agents that Plan Ahead
= goal-based

= Search Problems

= Uninformed Search Methods
= Depth-First Search
= Breadth-First Search

= Uniform-Cost Search

Planning Agents

Planning agents decide based on
evaluating future action sequences

Must have a model of how the world
evolves in response to actions

Usually have a definite goal

Optimal: Achieve goal at least cost

Optimal?

® & & 2 2 2

SCORE: 0

Precompute optimal plan, execute it

SCORE: 0

Search Problems

Search Problems

= A search problem consists of:
astespace s [l K K I O I [l =
= An initial state s,
. -
-
= S has no dots left
= Action cost ¢(s,a,s”)

= Actions _4(s) in each state
= Transition model Result(s,a)
= +1 per step; -10 food; -500 win; +500 die; -200 eat ghost

= A goal test G(s)

= A solution is an action sequence that reaches a goal state
= An optimal solution has least cost among all solutions

Search Problems Are Models

Oradea

Arad

Example: Traveling in Romania

Fagaras

118

Timisoara
111 Lugoj
70
Mehadia
75
Drobeta 120

80

Rimnicu Vilcea

Craiova

138

Pitesti

211

101

Neamt
87
Iasi
92
Vaslui
142
98 .
Hirsova
83 ..
Urziceni
86
Bucharest
90
Giurgiu Eforie

= State space:

= (Cities
Initial state:

= Arad
Actions:

= Go to adjacent city

Transition model:
= Reach adjacent city

Goal test:
m 5 =Bucharest?
Action cost:

= Road distance fromstos’

Solution?

Models are almost always wrong

- MAPQVES Y. -

> = T WT il NORTH ES— v
O & ?5\, Microsoft*
Q8 g |~— a ARCTIC OCEAN . MapPomt
B ® 8 g F -
7o Brier Ave& > o < - ICELAND
\ & >% 23 =
| @ < S |z e
o | > e
o © P < | s ATLANTIC e
= 5 |12 5/ °/ s OCEAN
@ < % s e HeF sinki Tverc
“.' m m 7 0 [i) esang IS ;'
/ g \ ‘ :; +) ng ® Sm(blensk

‘o ;

m
o~
=
174
g

Edinburg% : Vi nlus s

7etar Copen ﬁ Biakystok G‘)::BELARUS w

O(, ‘: X Gl . N ¥ &
‘ S o 2 5 poLanp 5, Kievy
Y, rdal‘n ; "E}z Wroct 3
g 4 ;1 ® pan UKRAINE
Y
Y/ F o = Chl§ma
~ \N _~§Eh
Y % UNGARY
?g -’ROMAHIP.
6%9 ©2004 Mictso Corp ©2003 NAYTEQ. ,u- ; "”ﬂUChQ!’BSP
-— SOUTH —'
Mo LR V' Zoom on map di
> 2005 MapQuest.com, Inc. 200 400

Start: Haugesund, Rogaland, Norway

End: Trondheim, Ser-Trendelag, Norway
Total Distance: 2713.2 Kilometers
Estimated Total Time: 47 hours, 31 minutes

nrk.no/alltidmoro

What's in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

= Problem: Eat-All-Dots

= Problem: Pathing (= path finding)

= States: (x,y); location

= Actions: NSEW

= Transition: update x,y value
= Goal test: is (x,y)=destination

States: pacman location,
boolean for each food

Actions: NSEW

Transition: update x,y and
possibly a dot Boolean

Goal test: dots all false

State Space Sizes

= World state:
= Agent positions: 120
=" Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(122)x4
= States for pathing (path finding)?
120
= States for eat-all-dots?
120x(239)

State Space Graphs and Search Trees

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
» The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

]
\/./

M

/\
Ed

V]

-

-

State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
» The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Tiny state space graph for a tiny
search problem

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct the
tree on demand —
and we construct as
little as possible.

-

~

Search Tree

S
—~
d e P

——— P 1
b C e h r q
I [— N I
a a r p gq f

N | ' S

P f q C G

[] /\

q C G d

*3' /

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?
/s
a \b
o O NA
b G a G
N\ N\
a/ G Ié G

/N /N

Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many unique states within d steps of start?

How many states in search tree of depth d?

Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid:

How many unique states within d steps of start?

Enumerate after step 1: {4, 4 +8,4+8+ 12, ...}
= Min(5*5 — 1, \sum{i=1}*{d} 4i)

How many states in search tree of depth d?

= O(47d)

Tree Search

Search Example: Romania

Oradea
Neamt
Zerind 87
75 151
Iasi
Arad
- 92
Sibiu 99 Fagaras
118 Vaslui
80
. . Rimnicu Vilcea
Timisoara
142
ol . 211
111 Lugoj Pitesti
70 98
. 35 Hirsova
Mehadia 101 Urziceni
86
75 138 Bucharest
Drobeta 120
90
Eforie

Craiova Giurgiu

Creating the search tree

=
~—a
-~
-~
-~

Fagaras » < Oradea > ¢ Rimnicu Vilcea > _Arad > LugOJ ¢ Arad > <
—__K_._— N —— ——— o ___— __.— e ___—’

\~——
> /T\ PR I SO , \ PR I SO
e N ' N P ~ P ~ 7 N P ~
7’ N ' N 7’ N
, ~ -, N // 1 \\ // 1 ~ e 1 ~

-_—

" A Se~—a_
——”— \\ ~~-~~~_
" N ~——
- N ~——
- -~
- N ~~a
——— ~~~~
”_.-_..q___N\ __._A—_~~ ”—__&_—~\
{ 1bi {_ Zerind
¢ Sibiu Tlmlsoara) ‘ erin
PLar NG N RN N
- ~ /
- / \ S~o Vs N 7 N
- ’ \ ~< ’ \ P N
- 7/ \ S 7/ \ 7 N
’ \ ~~o ’ \ P
’ \ ~< ’ \ ,
’ \ ~<. ’ \ /
el SR e L e Ll
- - ~ - - - - - - - -~ -

)

Creating the search tree

N\
" Arad » < Fagaras » < Oradea)
[— - \—__7___—

~
L

T N —— _——
=" =< =" PN =" =< - =

- A < lemcu Vieeay < Arad _» {__Lugoj > {__ Arad

///, : \\\\ //// \\\\ //// \\\\ /// / I \ \ // ~

) “"Oradea . »
~~— _——’ \~—_ ———
_/F rey
7 N\ - ~ 7 N\
P 1 SQ ’ N 7 1N ’ N
~ - | ’ | ~ ’ N
~ P d ~ N P d ~ 7 ~

Creating the search tree

C Sibiu > Climisoara CZerind 2

/7 N\ /7 N
/ \ /7 AN
7/ \ Vs N
V4 N\ /7 N
7/ \ y N
’ \ , N
7/ \ / \\
// \\ // \
@ Fagaras Oradea Rimnicu Vileea (__Arad) {__Lugoj {__ Arad §Oradea R
” \\ 7 ~ 7 ~ // \\ ~:/_,IF : : ~_/_/¢__ ~/-/_’F: : ~_/_ _ -
e So i So e I So e o

Pie 1 S ’, N s, N -7 1 NS - 1 ~ ’, N - 1 ~ -, N

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

= Main variations:
= Which leaf node to expand next
= Whether to check for repeated states
= Data structures for frontier, expanded nodes

Systematic search

frontier

reached =

unexplored o expanded U frontier
expande

1. Frontier separates expanded from unexplored region of state-space graph
2. Expanding a frontier node:

a. Moves a node from frontier into expanded

b. Adds nodes from unexplored into frontier, maintaining property 1

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

(last in first out)

Depth-First Search

Search Algorithm Properties

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

. [1 node
Space complexity?
b nodes
b? nod
Cartoon of search tree: noaes
= b isthe branching factor m tiers <
= mis the maximum depth
= solutions at various depths
b™ nodes

Number of nodes in entire tree?
= 1+b+b*+...b"=0(b™)

Remember O(..) is the upper bound of the function

Depth-First Search (DFS) Properties

= What nodes does DFS expand?

= Some left prefix of the tree down to depth m. 1 node
= Could process the whole tree! b nodes
= |f mis finite, takes time O(b™) b2 nodes
. m tiers <
" How much space does the frontier take?
= Only has siblings on path to root, so O(bm)
" |sit complete? b™ nodes

= m could be infinite
= preventing cycles may help (more later)

" |sit optimal?

= No, it finds the “leftmost” solution, regardless
of depth or cost

Breadth-First Search

Strategy: expand a
shallowest node first

Breadth-First Search

Implementation: 6
Frontier is a FIFO e Aﬂ)
queue @ @ G
(first in first out)
4 O,
@ o e
Search
| © ® ® © @
Tiers | N N |
a h r p q f
N | | RN
\ p g f G £ C
| PN |
q a

Breadth-First Search (BFS) Properties

What nodes does BFS expand?

= Processes all nodes above shallowest solution - o 1 node
= Let depth of shallowest solution be s ctiers < b nodes
= Search takes time O(b°) / b2 nodes
How much space does the frontier take? - / o A\ bs nodes
= Has roughly the last tier, so O(b°)
@,
Is it complete? o b™ nodes

= s must be finite if a solution exists, so yes!

Is it optimal?

= |f costs are equal (e.g., 1)

Quiz: DFS vs BFS

Quiz: DFS vs BFS

(In terms of S, the depth of the shallowest solution and M, the maximum depth)

= When will BFS outperform DFS?

= When will DFS outperform BFS?

Quiz: DFS vs BFS

(In terms of S, the depth of the shallowest solution and M, the maximum depth)

= When will BFS outperform DFS?
= S<<M

= When will DFS outperform BFS?
= S~=M

Example: Maze Water DFS/BFS (part 1)

GG T— Search Strategies Demo

Example: Maze Water DFS/BFS (part 2)

® O O Search Strategies Demo

Iterative Deepening

" |dea: get DFS’s space advantage with BFS’s time
/ shallow-solution advantages
*= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3.

" [sn’t that wastefully redundant?

= Generally most work happens in the lowest level
searched, so not so bad!

= Also useful for the meta data

Uniform Cost Search

g(n) = cost from root to n
Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

Uniform Cost Search

Cost <
contours

Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least <, then the
“« : ” - %
effective depth” is roughly C*/¢ CH e “tiers”
= Takes time O(b¢"¢) (exponential in effective depth)

" How much space does the frontier take?
= Has roughly the last tier, so O(b¢ %)

" |sit complete?

= Assuming C* is finite and € > 0, yes!

" |sit optimal?

= Yes! (Proof next lecture via A*)

Video of Demo Empty UCS

‘® 00 Search Strategies Demo

Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 1)

® 00 Search Strategies Demo e

Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)

‘® 00 Search Strategies Demo

h

