CSE 473: Artificial Intelligence

Search
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Today

= Agents that Plan Ahead
= goal-based

= Search Problems

= Uninformed Search Methods
= Depth-First Search
= Breadth-First Search

= Uniform-Cost Search




Planning Agents

Planning agents decide based on
evaluating future action sequences

Must have a model of how the world
evolves in response to actions

Usually have a definite goal

Optimal: Achieve goal at least cost




Optimal?
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SCORE: 0




Precompute optimal plan, execute it

SCORE: 0




Search Problems




Search Problems

= A search problem consists of:
astespace s [l K K I O I [l =
= An initial state s,
. -
-
= S has no dots left
= Action cost ¢(s,a,s”)

= Actions _4(s) in each state
= Transition model Result(s,a)
= +1 per step; -10 food; -500 win; +500 die; -200 eat ghost

= A goal test G(s)

= A solution is an action sequence that reaches a goal state
= An optimal solution has least cost among all solutions



Search Problems Are Models







Oradea

Arad

Example: Traveling in Romania
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= State space:

= (Cities
Initial state:

= Arad
Actions:

= Go to adjacent city

Transition model:
= Reach adjacent city

Goal test:
m 5 =Bucharest?
Action cost:

= Road distance fromstos’

Solution?



Models are almost always wrong
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What's in a State Space?

The world state includes every last detail of the environment

SCORE:

A search state keeps only the details needed for planning (abstraction)

= Problem: Eat-All-Dots

= Problem: Pathing (= path finding)

= States: (x,y); location

= Actions: NSEW

= Transition: update x,y value
= Goal test: is (x,y)=destination

States: pacman location,
boolean for each food

Actions: NSEW

Transition: update x,y and
possibly a dot Boolean

Goal test: dots all false



State Space Sizes

= World state:
= Agent positions: 120
=" Food count: 30
= Ghost positions: 12
= Agent facing: NSEW

= How many
= World states?
120x(23%)x(122)x4
= States for pathing (path finding)?
120
= States for eat-all-dots?
120x(239)




State Space Graphs and Search Trees



State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
» The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea
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State Space Graphs

= State space graph: A mathematical
representation of a search problem

= Nodes are (abstracted) world configurations
= Arcs represent successors (action results)
» The goal test is a set of goal nodes (maybe only one)

" |n a state space graph, each state occurs only
once!

= We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

Tiny state space graph for a tiny
search problem



State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree is
an entire PATH in
the state space
graph.

We construct the
tree on demand —
and we construct as
little as possible.
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Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0




Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?
/s
a \b
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b G a G
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Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid: How many unique states within d steps of start?

How many states in search tree of depth d?




Quiz: State Space Graphs vs. Search Trees

Consider a rectangular grid:

How many unique states within d steps of start?

Enumerate after step 1: {4, 4 +8,4+8+ 12, ...}
= Min(5*5 — 1, \sum{i=1}*{d} 4i)

How many states in search tree of depth d?

= O(47d)



Tree Search



Search Example: Romania
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Creating the search tree
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Creating the search tree
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Creating the search tree
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General Tree Search

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

= Main variations:
= Which leaf node to expand next
= Whether to check for repeated states
= Data structures for frontier, expanded nodes




Systematic search

frontier

reached =

unexplored o expanded U frontier
expande

1. Frontier separates expanded from unexplored region of state-space graph
2. Expanding a frontier node:

a. Moves a node from frontier into expanded

b. Adds nodes from unexplored into frontier, maintaining property 1



Depth-First Search




Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

(last in first out)

Depth-First Search




Search Algorithm Properties




Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?
Optimal: Guaranteed to find the least cost path?
Time complexity?

. [ 1 node
Space complexity?
b nodes
b? nod
Cartoon of search tree: noaes
= b isthe branching factor m tiers <
= mis the maximum depth
= solutions at various depths
b™ nodes

Number of nodes in entire tree?
= 1+b+b*+...b"=0(b™)

Remember O(..) is the upper bound of the function



Depth-First Search (DFS) Properties

= What nodes does DFS expand?

= Some left prefix of the tree down to depth m. 1 node
= Could process the whole tree! b nodes
= |f mis finite, takes time O(b™) b2 nodes
. m tiers <
" How much space does the frontier take?
= Only has siblings on path to root, so O(bm)
" |sit complete? b™ nodes

= m could be infinite
= preventing cycles may help (more later)

" |sit optimal?

= No, it finds the “leftmost” solution, regardless
of depth or cost



Breadth-First Search




Strategy: expand a
shallowest node first

Breadth-First Search

Implementation: 6
Frontier is a FIFO e Aﬂ)
queue @ @ G
(first in first out)
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Breadth-First Search (BFS) Properties

What nodes does BFS expand?

= Processes all nodes above shallowest solution - o 1 node
= Let depth of shallowest solution be s ctiers < b nodes
= Search takes time O(b°) / b2 nodes
How much space does the frontier take? - / o A\ bs nodes
= Has roughly the last tier, so O(b°)
@,
Is it complete? o b™ nodes

= s must be finite if a solution exists, so yes!

Is it optimal?

= |f costs are equal (e.g., 1)



Quiz: DFS vs BFS




Quiz: DFS vs BFS

(In terms of S, the depth of the shallowest solution and M, the maximum depth)

= When will BFS outperform DFS?

= When will DFS outperform BFS?



Quiz: DFS vs BFS

(In terms of S, the depth of the shallowest solution and M, the maximum depth)

= When will BFS outperform DFS?
= S<<M

= When will DFS outperform BFS?
= S~=M



Example: Maze Water DFS/BFS (part 1)

GG T— Search Strategies Demo




Example: Maze Water DFS/BFS (part 2)

® O O Search Strategies Demo




Iterative Deepening

" |dea: get DFS’s space advantage with BFS’s time
/ shallow-solution advantages
*= Run a DFS with depth limit 1. If no solution...
= Run a DFS with depth limit 2. If no solution...
= Run a DFS with depth limit 3. .....

" [sn’t that wastefully redundant?

= Generally most work happens in the lowest level
searched, so not so bad!

= Also useful for the meta data



Uniform Cost Search




g(n) = cost from root to n
Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

Uniform Cost Search

Cost <
contours




Uniform Cost Search (UCS) Properties

= What nodes does UCS expand?

= Processes all nodes with cost less than cheapest solution!

= |f that solution costs C* and arcs cost at least <, then the
“« : ” - %
effective depth” is roughly C*/¢ CH e “tiers”
= Takes time O(b¢"¢) (exponential in effective depth)

" How much space does the frontier take?
= Has roughly the last tier, so O(b¢ %)

" |sit complete?

= Assuming C* is finite and € > 0, yes!

" |sit optimal?

= Yes! (Proof next lecture via A*)



Video of Demo Empty UCS
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Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 1)
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Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)
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