More Embedded Microcontrollers

- Motorola 68HC11
- Microchip PIC
- Motorola 683××
- Motorola 68328
- Intel i960
- Motorola MPC823
- Motorola ColdFire

CSE 477 - Autumn 1999 - Introduction - 1

Motorola 68HC11

- Motorola 68HC11 (A1 model)
 - 8-bit microcontroller with a M6800/M6801 processor core
 - I on-board 512-byte EEPROM and 256-byte RAM
 - 16-bit timer system with input capture and output compare
 - I built-in A/D converter for 8 analog inputs
 - I serial communications interfaces
- Development board for 68HC11 (M68HC11EVB)
 - I 68HC11A1 system with 8K user EPROM and up to 16K user RAM
 - port replacement unit
 - to regain I/O ports used for memory addressing
 - I two serial communications interfaces
 - I on-board monitor program for downloading and debugging programs
 - includes basic I/O utilities

MC68HC11 and EVB

- Review manuals
 - I learn how to read documentation
- Instruction set
 - I instruction capabilities
 - timing
- Special registers and integrated I/O devices
 - I input capture
 - I output compare
 - I analog/digital conversion
- Interrupt organization
- Memory space and its allocation
- Timers

CSE 477 - Autumn 1999 - Introduction - 3

Small microcontrollers

68HC11

- I basic microcontroller with simple instruction set
- I full-featured (many of the same features as larger microcontrollers)
- I good real-time capabilities
- A/D conversion built-in
- cheap
- I very common (lots of resources available including on web)
- I public domain C compiler available
- I evaluation board with debugging support (BUFFALO ROM)

PIC (Microchip)

- small footprint (as few as 24 pins)
- I no external system bus
- I lots of members of family differentiated by I/O pin capabilities
 - A/D, serial I/O, interrupts, input capture, etc.

Motorola MC683xx

- Designed by Motorola for automotive, data acquisition, printers, plotters, cameras, and other consumer products
- Introduced in 1989 (9 years ago)
- General characteristics
 - I operate in harsh environment (-40 to 125°C and noise)
 - low power (~625mW), low cost ~\$12
 - I crunch numbers (execute control loops)
 - I clock frequency (up to 78MHz)

Functional units

- CPU32 (68020 processor core)
- I SIM (System Integration Module)
- GPT (General Purpose Timer)
- QSM (Queued Serial Module)
- I TPU (Time Processor Unit)

Functional blocks

- CPU32
 - 32-bit processor based on 68020
- System Integration Module
 - I controls external bus, I/O functions and system clock
- Time Processor Unit
 - I 16-channel timer/counter unit
 - I controls internal/external events
- Memory Module
 - I on-chip RAM with stand-by power feature
- A/D
 - 16 channel queued
- CAN protocol
 - I Controller Area Network (automative bus, protocol)

Time Processor Unit

- A microcontroller dedicated to timing control
- Two 16-bit timers/registers
 - I free running based on system clock
 - I can be controlled with external clock
- 16 independent channels (input or output)
- Functions
 - I input capture
 - I period or pulse width accumulation
 - I output compare
 - pulse width modulation
 - stepper motor control
 - automotive functions (fire spark plugs, determine engine rotation)

Clocks and Timers

- System clock
- Periodic interrupt timer
- Software watchdog timer
- Bus monitor
- Synchronous communication
 - I baud rate, delay, min idle
- Asynchronous communication baud rate
- TPU timers

PWM on DragonBall

- PWM transforms duty cycle into an average analog value
- In addition to controlling motor velocity, can synthesize music

CSE 477 - Autumn 1999 - Introduction - 11

I/O Bottleneck

- Off-chip communication very slow relative to processing speeds
 - I processor generating lots of memory requests
 - I multiple devices competing for system bus
- Technology wave increasing the gap in performance
 - I processors running faster
 - interconnect bandwidth increasing at slower rate
- How do local area networks handle this problem?
 - I restrict communication
 - I hubs, gateways
- Solution
 - I off load communication to a communication processor

Intel's Approach

A two-pronged attack

- I hardware: communication processor
- software: device-drivers

Use a RISC processor to handle communication for the main processor

- I isolate main processor from slower peripherals
- I reduce interrupts to CPU
- support for system busses running at different clock rates

Define a new standard: Intelligent I/O

- I standardize device-drivers
- I minimize OS dependencies
- I increase system throughput

CSE 477 - Autumn 1999 - Introduction - 13

System w/ Communication Processor

I_2O

Goals

- abstract the I/O subsystem
- I improve system throughput
- I enable rapid deployment of new I/O technology

Message-passing paradigm

- supports peer communication
- simplifies device-drivers

CSE 477 - Autumn 1999 - Introduction - 15

I₂O Device-Drivers

I20 Message Passing

CSE 477 - Autumn 1999 - Introduction - 17

Intel i960-RP Processor

Main features

- PCI to PCI bridge
- messaging unit
 - mechanism to transfer data between the PCI system and 80960
- I DMA access to both PCI busses
- I address translation units
 - 64-byte input and output queues
 - queues allow transactions to complete on initiating bus before they complete on target bus
- 7 to 150 MIPS

i960 Block Diagram

CSE 477 - Autumn 1999 - Introduction - 19

i960 Messaging Unit

Message registers

- i 960 sends and receives messages via special registers
- when written an interrupt generated to i960 or PCI

Doorbell registers

- I inbound and outbound doorbells
- either hardware or software can generate doorbell interrupts
- I contain interrupt status from other message unit mechanisms

Circular queues

- I two inbound and two outbound queues
- I posted messages contain orders
- I free messages indicate operation completed and message can be reused

Motorola's Approach

- Use 2 RISC processors
 - 1 32-bit PowerPC core for application code
 - 1 32-bit customized RISC for imaging and communication
- Put communication processor on same die as main processor
 - system on a chip
 - I incorporate features common in portable devices
 - I single-chip solution for consumer electronics
 - signal processing functions

CSE 477 - Autumn 1999 - Introduction - 21

Research Deal Institution Deal Instituti

MPC 823 Features

- Performance of 66 MIPS @ 50MHz
- Low power
 - consumes less than 180mW @ 25MHz
 - 1 2.2V internal, 3.3V I/O boundary
 - I doze functional units disabled except
 - PLL, mem-controller, real-time clock, LCD, comm. proc in standby
 - I sleep all units disabled except
 - real-time clock, periodic interrupt timer, PLL active for fast wakeup
 - I deep sleep all units disabled except
 - real-time clock, periodic interrupt timer
- 1K data cache and 2K instruction cache
- PCMCIA support

CSE 477 - Autumn 1999 - Introduction - 23

Communication Module Features

- Interfaces to PPC core via on-chip dual ported RAM
- Protocols supported include
 - Ethernet/IEEE 802.3
 - Universal Serial Bus (USB), AppleTalk, UART/USART, I2C
 - IrDA 1.1
 - ISDN
- 16x16 bit multiply accumulate (MAC)
- DSP functions
 - V.32bis/V.34bis datapump filter
 - I JPEG compression
- Four independent baud rate generators

More Communication Module Features

■ Video/LCD controller

- supports passive LCD and NTSC/PAL encoders
- end of frame interrupt generation
- I programmable display active area
- I programmable background color for inactive area
- I 1,2,4-bit per pixel grayscale
- I built-in color RAM with 256 12-bit entries
- I programmable polarity for all LCD interface signals

CSE 477 - Autumn 1999 - Introduction - 25

PDA Based on MPC823

Figure 16-2. Example of a PDA Application

CSE 477 - Autumn 1999 - Introduction - 27

ColdFire Features

- Variable instruction length RISC 68K processor
 - I subset of 68K instruction set
 - 16, 32, 48-bit instruction sizes
 - single-cycle instruction execution
 - tighter code density than 32 or 64-bit processors
- Completely synthesizable
 - I core can be used in system on a chip designs
- Performance: 36 MIPS
- Price: ~\$25

