Controlling and reacting to the environment

To control or react to the environment we need to
interface the microcontroller to peripheral devices

Things we want to measure or control
light, temperature, sound, pressure, velocity, position

Sensors and actuators

switches, photoresistors, photodiodes, phototransistors,
COI’T\pGSS, sonar

motors, relays, LEDs, sonar
Software

Microcontroller
executes software
may contain specialized interfaces to sensors and actuators

CSE 477 - Autumn 1999 - Interfacing - 1

Typical control system

physical
system

A

sensors actuators

Iy

CSE 477 - Autumn 1999 - Interfacing - 2

A

controller

Vi

interfaces

Analog to digital conversion

Map analog inputs to a range of binary values
8-bit A/D has outputs in range 0-255

What if we need more information?
linear vs. logarithmic mappings
larger range of outputs (16-bit a/d)

1000, amlog

| / M/ NN

///Eo

.
»

analog

CSE 477 - Autumn 1999 - Interfacing - 3

Digital to analog conversion

Map binary values to analog outputs (voltages)
Most devices have a digital interface

Time-varying digital signals
pulse-code modulation (width of pulse is data)
pulse-width modulation (creates an average voltage)
frequency modulation (number of cycles is data)

1 | . *
11 n B f
NN N 1

CSE 477 - Autumn 1999 - Interfacing - 4

<

Anti-lock brake system

Rear wheel controller/anti-lock brake system
normal operation
regulate velocity of rear wheel
brake pressed
gradually increase amount of breaking

if skidding (front wheel is moving much faster than rear wheel)
then temporarily reduce amount of breaking

Inputs
brake pedal
front wheel
rear wheel

Outputs

pulse-width modulation rear wheel velocity

pulse-width modulation brake on/off
CSE 477 - Autumn 1999 - Interfacing - 5

Rear wheel controller/anti-lock brake system

brake pedal pressed

brake on/off

front wheel velocity

move rear wheel

v

rear wheel velocity

CSE 477 - Autumn 1999 - Interfacing - 6

v

Basic I/0 ports (brakes)

Check if brake pedal pressed
brakePressed = read (brakePedalPort)

Turn brake on/off
write (brakePort, onOff)

Move rear wheel
write (rearWheel, onOff)

brake pedal pressed

v

brake on/off

>

front wheel velocity

\4

move rear wheel\

Cd

rear wheel velocity

Cd

CSE 477 - Autumn 1999 - Interfacing - 7

Polling vs. interrupts

Software must repeatedly check
brake pedal port
how often?
need to make sure not to forget to do so (use timer)

Use automatic detection capability of processor
connect brake pedal to GPIO input capture
interrupt on level change
register interrupt handler for brakePedalHandler
interrupt handler

if brakePressed = true
then clear interrupt flag

brake pedal pressed

CSE 477 - Autumn 1999 - Interfacing - 8

Pulse-width modulation

Pulse a digital signal to get an average ;‘aﬁalg;gjvalue
The longer the pulse width, the higher the voltage

1’0?\

Pulse-width ratio = —§———
N period average

period og value

P 1 1 -/
E 8 8

CSE 477 - Autumn 1999 - Interfacing - 9

Pulse-width modulation for brakes

To pump the brakes gradually increase the duty-cycle
(t,n) until car stops

HEER I

CSE 477 - Autumn 1999 - Interfacing - 10

Brake pump setup

Use two timer registers to turn brake on and of f
timerO applies break
timerl releases break
how do we tell which interrupt is which?

set timerl to go of f here (reset timer and set new values)

set timerO to go off here

start timer running

CSE 477 - Autumn 1999 - Interfacing - 11

Shaft encoders

Need to determine the rear wheel velocity
use sensor to detect wheel moving

Determine speed of a bicycle
attach baseball card so it pokes through spokes
we know number of spokes
count clicks per unit time to get velocity

Baseball card sensor is a shaft encoder
bike wheel

baseball car'd/>

CSE 477 - Autumn 1999 - Interfacing - 12

Shaft encoders

Instead of spokes we'll use black and white segments
Black segments absorb infrared light, white reflects
Count pulses instead of clicks

wheel

IR

—— | emitter pu_lse»
—> | |———> |detector

CSE 477 - Autumn 1999 - Interfacing - 13

IR reflective patterns

How many segments should be used?
more segments give finer resolution
fewer segments require less processing

Az - N
AN }“”é AN

48 segments

CSE 477 - Autumn 1999 - Interfacing - 14

Interfacing shaft encoders

Use interrupt on GPIO pin

every interrupt, increment counter

Use timer to set period for counting
when timer interrupts, read GPIO pin counter
velocity = counter * distance per click / period
reset counter

Pulse accumulator function
common function
some microcontrollers have this in a single peripheral device

CSE 477 - Autumn 1999 - Interfacing - 15

Sonar range finder

Uses ultra-sound (not audible) to measure distance
Time echo return

Sound travels at approximately 343m/sec
need 34.3kHz timer for cm resolution

One simple echo not enough
many possible reflections
want to take multiple readings for high accuracy

CSE 477 - Autumn 1999 - Interfacing - 16

Polaroid 6500 sonar range finder

Commonly found on old Polaroid cameras, now a
frequently used part in mobile robots

Transducer (gold disc)

charged up to high voltage
and “snapped”

disc stays sentisized so it
can detect echo (acts as
microphone)

Controller board
high-voltage circuitry
to prepare disc for
transmitting and then
receiving (careful Ill)

CSE 477 - Autumn 1999 - Interfacing - 17

Polaroid 6500 sonar range finder (cont'd)

We'll use it in its simplest mode

Only need to connect two pins to microcontroller
INIT - start transmitting

ECHO - return signal voee —]
Some important tips
INIT requires large
current (greater than T LI
microcontroller can
provide) st

ECHO requires a
pull-up resistor

EINH low)

INTERNAL f—emme —

BLANKING

ECHO

CSE 477 - Autumn 1999 - Interfacing - 18

Digital compass

Four compass directions (each has three pins)

One-hot/two-hot encoding
one-hot for N, E, S, W
two-hot for NE, SE, SW, NW

12v

680Q “
inside compass

CSE 477 - Autumn 1999 - Interfacing - 19

Digital compass (cont'd)

Detecting a change in compass direction
4 bits change from 0001 to 0011 to 0010 to 0110 to 0100 ...
always alternating between one bit on and two bits on

Parity tree can detect difference between one and
two bits being asserted

XOR tree of four bits (one TTL SSI package)

output must change at least once for every change in orientation

e.g., NE ->E -> SE

j D 1100 -> 0100 -> 0110
—

0->1->0

sS»n mZ

CSE 477 - Autumn 1999 - Interfacing - 20

10

IR proximity detector

Oscillator must be set to match detector

micro
controller

1000

IR detector i’l§
GP1U52X

CSE 477 - Autumn 1999 - Interfacing - 21

N\ ¥

LY N N WA N Y

~ N\

A

XXX

IR frequency modulation

Signal from LED emitter
40 kHz

| 600 microseconds |

600 microseconds I
Signal from detector

time

CSE 477 - Autumn 1999 - Interfacing - 22

11

Proximity code

void ir_detect() {
turn on emitter
sleep for 600us /l wait at 1667Hz
val_on = read detector [/l emitter is on
turn off emitter
sleep for 600us /I wait at 1667Hz
val_off = read detector /I while emitter off

return(val_on & ~val_off);

CSE 477 - Autumn 1999 - Interfacing - 23

Another proximity detector

Detector drives LED (guaranteed to match frequency)

Hama-
matsu
2 S3599 Target
Out

1
+5 T Pwr AR
K=

Gnd
LED

TIP 125

CSE 477 - Autumn 1999 - Interfacing - 24

12

I/0 ports

The are never enough I/0 ports

Techniques for creating more ports
port sharing with simple glue logic
decoders/multiplexors
memory-mapped I/0
port expansion units

Direction of ports is important
single direction port easier to implement
timing important for bidirectional ports

CSE 477 - Autumn 1999 - Interfacing - 25

Port sharing

If signals all in same direction and have a separate
guard signal, then able to share without glue logic

Example: connect 5 LCD displays to microcontroller
can share connections to RS, RW, and DB but not E
changes on E affect display - must guarantee only one is activated

2L

21

:H

2

2

O

B E RS R! B E

(=)=

B E RS R!

O
[w) ==

B E RS R!

O o}

RS R B E RS R

CSE 477 - Autumn 1999 - Interfacing - 26

13

Forced sharing

Conflict on device signals (e.g., one signal can affect
both)
solution is to insert intervening registers that keep signals stable
registers require enable signals which now need ports as well

device A = device A

EN

>
EN

[@h=

[oh=

v I v l
o
o]

o]

CSE 477 - Autumn 1999 - Interfacing - 27

Decoders and multiplexors

Encode n single-bit device ports using log n bits of
a controller port
enabled decoder: one-hot, input-only device ports
registered decoder: input-only (but not one-hot) device ports
multiplexor: output-only device ports

T
| o
e uc b%%(ﬂlp EN n signals
n register
enable enable f select lines
enabled decoder . registered decoder
data n signals
ucC
|log(n multiplexor
select bits

CSE 477 - Autumn 1999 - Interfacing - 28

14

Memory-mapped I/0

Address bus selects device

Data bus contains data

Device addr
addr = E
latch
data Da Dh——

CSE 477 - Autumn 1999 - Interfacing - 29

Memory-mapped I/0

Partition the address space

Assign memory-mapped locations

Software

loads read from the device
stores write to the device

Can exploit unused bits for device input-only ports

address

device select

can be used as inputs

msb

Isb

CSE 477 - Autumn 1999 - Interfacing - 30

15

Port expansion units

Problem of port shortage so common port expansion
chips exist

Easily connect to the microprocessor
Timing on ports may be slightly different
May not support interrupts

newPort1
uC data port newPort2
ctrl expansion newPort3

CSE 477 - Autumn 1999 - Interfacing - 31

Automatically connecting peripherals

Exploit specialized functions (e.g., UART, timers)

Attempt to connect directly to a device port without adding
interface hardware (e.g., registers), try to share registers if
possible but beware of unwanted interactions if a signal goes to
more than one device

If out of ports, must force sharing by adding hardware to make
a dedicated port sharable (e.g., adding registers and enable
signals for the registers)

If still run out of ports, then most encode signals to increase
bandwidth (e.g., use decoders)

If all else fails, then backup position is memory-mapped I/0, i.e.,
what we would have done if we had a bare microprocessor

CSE 477 - Autumn 1999 - Interfacing - 32

16

64-bit I/0 port

Suppose we wanted a 64-bit I/0 port
If EN is true, then we have an output pin
If ENis false, then we have an input pin

al wires acddr dec|
of addr bus foren
X
out
ane wire
of clata bus aE 10 port pin

W
all wires addr dec
of addr bus 7| for oLt
rd

CSE 477 - Autumn 1999 - Interfacing - 33

64-bit I/0 port software

We need 8 8-bit registers to store/write the 64 bits
Select the EN addresses to be $...000 to $...007
Select OUT addresses to be $..010 to $..017

Read 15th bit
load value at address $...011 (2nd set of OUT regs)
logical AND with 0x80
bit position 7 of result is 15th bit

Write the 47th bit
read OUT register at $..015
set bit position 7 to desired value (or with 0x80)
store in $..015
load EN register at $..005
set bit to output
store value back to $...005

CSE 477 - Autumn 1999 - Interfacing - 34

17

External PWM Unit

Design a system to control many digital motors
Solution: design a PWM unit

data -
74! register to hold
bus » on/off bit T

:: registerto hold
highTime

addres s F

bus—M address
wr — dacocer || W]

counterwith
reset from FSM

_:: registerto hold
perod

to motor

FSM
controller

Y

v

CSE 477 - Autumn 1999 - Interfacing - 35

External PWM FSM Controller

/if (onOff == OFF)

nextState = MotorLow

reset counter

else if (period NOT Expired)
nextState = MotorLow

else if (period Expired)

nextState = MotorHigh

\ reset counter

~

/

Motor Low State

if (onOff == OFF)
nextState = MotorLow

else if (highTime Expired)
nextState = MotorLow

else if (highTime NOT Expired)
nextState = MotorHigh

Motor High State

CSE 477 - Autumn 1999 - Interfacing - 36

18

External PWM software

/l in initialization code
Write off to onOff register

/I do some stuff

/I set up PWM
Repeat for each motor

Write highTime and period registers

/l turn motors on
Repeat for each motor

Write on to the onOFF register

/l more stuff

CSE 477 - Autumn 1999 - Interfacing - 37

Analog to digital conversion

Use charge-redistribution technique

no sample and hold circuitry needed

even with perfect circuits quantization error occurs

Basic capacitors
sum parallel capacitance

lC i_CT12C
[

C 3C

T

7C

CSE 477 - Autumn 1999 - Interfacing - 38

4C

19

Analog to digital conversion

Two reference voltage

mark bottom and top end of range of analog values that can be
converted (V_ and V)

voltage to convert must be within these bounds (Vy)

Successive approximation
most approaches to A/D conversion are based on this
8 to 16 bits of accuracy

Approach
sample value
hold it so it doesn’t change
successively approximate
report closest match

CSE 477 - Autumn 1999 - Interfacing - 39

A/D - sample

During the sample time the top plate of all caps
switched to reference low V|

Bottom plate set to unknown analog input Vy
Q=¢CV
QS =16 (VX - VL)

CSE 477 - Autumn 1999 - Interfacing - 40

20

A/D - hold

Hold state using logically controlled analog switches
Top plates disconnected from V,
Bottom plates switched from Vy to V|

Qu=16 (V.- Vp)
conservation of charge Qg = Qy
16 (Vi - V) = 16 (V, - Vy) — Vy
Vy -V, =V, - V; (output of op-amp)

L

CSE 477 - Autumn 1999 - Interfacing - 41

A/D - successive approximation

Each capacitor successively switched from V| to V
Largest capacitor corresponds to MSB

Output of comparator determines bottom plate
voltage of cap
>0 : remain connected to V,

<0 :refurntoV, 8 14 12 11 |1
Vi

Vi

T
msgl | liss

CSE 477 - Autumn 1999 - Interfacing - 42

21

A/D example - MSB

Suppose Vy = 21/32 (V- V.)and already sampled

Compare after shifting half of capacitance to V,
V; goes up by + 8/16 (V,,-V;) - 8/16 (V-V;) =+ 8/16 (V, - V)
original V| - V; goes down and becomes
V- (Vp+ 5 (Vy-V))=V, - Vp-5(Vy-V,)

Output >0

Vx

L — 5 (V- V)

Vi (next)
Vi \'A ——,

CSE 477 - Autumn 1999 - Interfacing - 43

A/D example - (MSB-1)

Compare after shifting another part of cap. to Vy,
V; goes up by + 4/16 (V|,-V;) - 4/16 (V -V;) =+ 4/16 (V, - V)
original V| - V; goes down and becomes
V- (Vp#.25 (V- V))=V, - Vy - .25 (Vi - V)

Output < O (went too far)
—_—V,

—5— Vx
25 (V- V)

rT_T_T Vz (prev)
Vv, vV, —V \y% (next)

CSE 477 - Autumn 1999 - Interfacing - 44

22

A/D example - (MSB-2)

Compare after shifting another part of cap. to Vy
V; goes up by + 2/16 (V-Vy) - 2/16 (V,-V7) = + 2/16 (V- V)
original V| - V; goes down and becomes
V- (Vp+125(Vy-V))=V, -V -.125 (V- V)

Output >0
Vi v,
— Vx
125 (V,, - V,)
éI (prev)
— VL

CSE 477 - Autumn 1999 - Interfacing - 45

A/D example - LSB

Compare after shifting another part of cap. to Vy,
V; goes up by + 1/16 (V,-Vy) - 1/16 (V. -V;) = + 1/16 (V- V)
original V| - V; goes down and becomes
V- (V;+.0625 (V- V)) = V, - Vg - 0625 (V,, - V,)

Output < O (went too far again)

\'
H — VH
8 2
—— Vx
L VL —— —— VL

CSE 477 - Autumn 1999 - Interfacing - 46

23

A/D example final result

Input sample of 21/32
Gives result of 1010 or 10/16 = 20/32
3% error

Vi
8 2
4 1
l A

CSE 477 - Autumn 1999 - Interfacing - 47

24

