Software

Compilers
assemblers
high-level language compilers
loaders/linkers

Layers of abstraction
subroutines
device drivers
run-time systems: concurrency and communication
operating systems
application programmer interfaces (APIs)

Debugging
emulation
monitors

agents
CSE 477 - Autumn 1999 - Software - 1

Writing code

Machine code

Assembler
macro capability
symbolic variables
direct access to microcontroller's special features

Compilers
high-level language (C, C++, etc.)
escape to assembly language when needed

API/header files for special features
(I/0 ports, special registers, etc.)

Program loader/linker
stores program into ROM/RAM
combines multiple programs (e.g., user code with device drivers)

CSE 477 - Autumn 1999 - Software - 2

Abstraction

Subroutines
encapsulate frequently used functions
save system state onh entering, restore oh exit
parameter passing through the stack or registers

Device drivers
special subroutines for accessing peripheral devices
may or may hot include state
interactions with other activities (e.g., interrupts)

CSE 477 - Autumn 1999 - Software - 3

Very simple device driver

Turn LED on/off

Parameters:
port pin

API:

on(port_pin) - specifies the port pin (e.g., port D pin 3)

of f(port_pin)

Interactions:
only if other devices want to use the same port

CSE 477 - Autumn 1999 - Software - 4

Simple device driver

Turning an LED on and of f at a fixed rate

Parameters:
port pin
rate at which to blink LED

APT:
on(port_pin, rate)
specifies the port pin (e.g., port D pin 3)
specifies the rate to use in setting up the timer (what scale?)
of f(port_pin)

Internal state and functions:
keep track of state (on or off for a particular pin) of each pin
interrupt service routine to handle timer interrupt
set up interrupt service routine address

CSE 477 - Autumn 1999 - Software - 5

Interesting interactions

What if other devices also need to use timer
(e.g., PWM device)?

timer interrupts now need to be handled differently depending on
which device's alarm is going of f

Benefits of special-purpose output compare peripheral
output compare pins used exclusively for one device
each output compare has a separate interrupt handling routine

What if we don't have output compare capability?

CSE 477 - Autumn 1999 - Software - 6

Sharing timers

Create a new device driver for the timer unit
allow other devices to ask for timer services
manage timer independently so that it can service multiple

requests
Parameters:
time to wait, address to call when timer reaches that value

APT:
set_timer(time_to_wait, call_back_address)
set call_back_address to correspond to time+time_to_wait
compute hext alarm to sound and set up timer for that
update in interrupt service routine for next alarm

Internal state and functions:
how many alarms can the driver keep track of?
how are they organized? FIFO? priority queue?

CSE 477 - Autumn 1999 - Software - 7

Concurrency

Multiple programs interleaved to as if parallel
Each program requests access to devices/services

e.g., timers, serial ports, etc.

Exclusive or concurrent access to devices

allow only one program at a time to access a device (e.g., serial port)
arbitrate multiple accesses (e.g., timer)

State and arbitration needed
keep track of state of devices and concurrent programs using resource
arbitrate their accesses (order, fairness, exclusivity)
monhitors/locks (supported by primitive operations in ISA - test-and-set)

Interrupts
disabling may effect timing of programs
keeping enabled may cause unwanted interactions

CSE 477 - Autumn 1999 - Software - 8

Handling concurrency

Traditional operating system
multiple threads or processes
file system
virtual memory and paging
input/output (buffering between CPU, memory, and I/0 devices)
interrupt handling (mostly with I/O devices)
resource allocation and arbitration
command interface (execution of programs)

Embedded operating system
lightweight threads
input/output
interrupt handling
real-time guarantees

CSE 477 - Autumn 1999 - Software - 9

Embedded operating systems

Lightweight threads
basic locks
fast context-switches

Input/output
APT for talking to devices
buffering

Interrupt handling (with I/0 devices and UT)

translate interrupts into events to be handled by user code
trigger new tasks to run (reactive)

Real-time issues
guarantee task is called at a certain rate
guarantee an interrupt will be handled within a certain time
priority or deadline driven scheduling of tasks

CSE 477 - Autumn 1999 - Software - 10

Examples

Palm OS (e.g., IBM Workpad)
US Robotics Palm Pilot
Motorola microcontrollers (68328 - Dragonball)
simple OS for PDAs

only supports single threads
Y PP I embedded operating

Windows CE (e.g., Nino) systems typically
PDA operating system reside in ROM (flash)

spin-off of Windows ‘95
portable to a wide variety of processors
full-featured OS modularized to only include features as needed

Wind River Systems VxWorks
one of the most popular embedded OS kernels
highly portable to an even wider variety of processors (tiny to huge)
modularized even further

CSE 477 - Autumn 1999 - Software - 11

Palm OS

Interface management
basic user interface model
event dispatch loop paradigm

System management
alarm and time (timers and real-time clocks)
sound, pen, key, serial port (I/0 devices)
string (libraries of routines)
system (errors, power, application start/stop)
event (interrupt->event translation, dispatch loop)

Memory management
structures for data in memory (heaps, records, databases)

Communication
serial port (layered with TCP/IP protocol)

CSE 477 - Autumn 1999 - Software - 12

Palm OS Application Model

One application is "running”
running application has control of the screen and user input

others may be active in the background and receive other I/0
events

when application starts, "PilotMain" is called

Main
runs "AppStart” to set up user interface of program
runs “"AppStop” before it stops execution
all data in RAM
permanent storage in memory heaps organized in "databases”
"AppEventLoop” is run between start and stop

CSE 477 - Autumn 1999 - Software - 13

PilotMain

static DWord StarterPilotMain(Word cmd, Ptr cmdPBP, Word launchFlags)
{
Err error;
error = RomVersionCompatible(ourMinVersion, launchFlags);
if (error)
return error;
switch (cmd) {
case sysAppLaunchCmdNormalLaunch:
error = AppStart();
if (error)
return error;

FrmGotoForm(MainForm);

AppEventLoop();
AppStop();
break;

default:
break;

}

return O;

CSE 477 - Autumn 1999 - Software - 14

Events

Generated by system (timers, I/0, user input, etc.)
Applications polls (in a loop) for new events
Many different types of events (29 in all)

application events (e.g., stop)
user interface events

menu

selection

pen

key

Interpret events
specific to application
default behavior provided by system

CSE 477 - Autumn 1999 - Software - 15

Event dispatch loop

Get event

Handle event
system event handler
menu event handler
application event handler
user interface element event handler

Leverage default behaviors
most user code goes into the application event handler

CSE 477 - Autumn 1999 - Software - 16

AppEventLoop

static void AppEventLoop(void)
{
Word error;
EventType event;
do {
EvtGetEvent(&event, evtWaitForever);
if (! SysHandleEvent(&event))
if (' MenuHandleEvent(0, &event, &error))
if (! AppHandleEvent(&event))
FrmDispatchEvent(&event);
/*
** do other stuff here
*
/
} while (event.eType != appStopEvent);
}

CSE 477 - Autumn 1999 - Software - 17

Serial Line

static void EVBconnect()

{ . .
int i;
Err err=0;
SerSettingsType settings;
FormPtr frmP;

/* already connected? */

if (serRefNum !=0) {
frmP = FrmInitForm(ConnectForm);
FrmDoDialog(frmP);
FrmDeleteForm(frmP);
return;

}

[* initialize variables */

gotFramingByte = FALSE;

numBytesRcvd = 0;

for (i=0; i < SerRcvQueueSize; i++)
serRcvQueueli] ="\0';

CSE 477 - Autumn 1999 - Software - 18

Serial Line (cont'd)

err = SysLibFind("Serial Library", &serRefNum);
ErrFatalDisplaylf(err, "Can't find Serial Library!");
if (err) SerClose(serRefNum);

I* open the serial connection at the specified baud rate */
err = SerOpen(serRefNum, 0, BaudRate);
ErrFatalDisplaylf(err, "Problem opening the serial port!");
if (err) {

SerClose(serRefNum);

serRefNum = 0;

}

settings.baudRate = BaudRate;

settings.ctsTimeout = O;

settings.flags = serSettingsFlagStopBits1 |
serSettingsFlagBitsPerChar8 |
serSettingsFlagRTSAutoM;

SerSetSettings(serRefNum, &settings);

CSE 477 - Autumn 1999 - Software - 19

Serial Line (cont'd)

SerReceive(serRefNum, serRcvQueue, 1, 0, &err);

if (err == serErrTimeOut) return;

static void EVBdisconnect()
{
FormPtr frmP;
/*
** connected?
*
if (serRefNum != 0) {
SerClose(serRefNum);
serRefNum = 0;
}else {
frmP = FrmInitForm(DisconnectForm);
FrmDoDialog(frmP);
FrmDeleteForm(frmP);
}
}

CSE 477 - Autumn 1999 - Software - 20

Storage system

Everything is stored in RAM
dynamic (stacks, heaps, global vars of application)
when application stops, data may be lost
storage (databases)

analagous to a file and provides static storage across invocation
of the application

Databases
chunks of data
each entry is associated with a type (linked to an application)

CSE 477 - Autumn 1999 - Software - 21

Conduits

Mechanism for transferring databases
across serial ports of device (RS232 or IrDA) to PC
Hot-Sync

synchronizes RAM databases with PC copies

changes on PC propagate to RAM and vice-versa

Also used to transfer new applications to RAM
Can be extended to bring arbitrary data into the Pilot

e.g., collect e-mail for later reading

Pilot was envisioned as extension of desktop
user input at both ends (PC or Pilot)
same data (synchronized periodically)

CSE 477 - Autumn 1999 - Software - 22

Development environment

Elements
user interface constructor
source code editor
compiler
debugger

SDKs: system development kits
Metrowerks CodeWarrior for Palm Pilot
GNU for Palm Pilot

Conduit development kits for PC

CSE 477 - Autumn 1999 - Software - 23

User Interfaces in PalmOS

AT ICOEEATE
[N T NN N CEEY o

{

L DT i
] Arwrbrw | e o | e | b | e | g et | —— s] i s

CSE 477 - Autumn 1999 - Software - 24

Form Layout

| T
= Fom

Lén g 3
Top g K
dah L]
=3 L]
[T =
v Bt 71 ame Bumul
P 0 TR
| Fwas
L PRI ol Ej
Dyiwdy Paprees 1T 3
Farm Te CRIATT Lakd O b

CSE 477 - Autumn 1999 - Software - 25

UI Resources

gl Dansvaa

Il L

e e
PR e

]
- h s

|+ i

S Lir
- L L]
=

iay wis

= B ko i Le
K| il

Fill |

-

)

Lrrermm dpy Srvmwrran H L P T
gl b R bt Laa 1 =
AT W iB

Ll e L

e Teravwn Heaiee Nin [as: orime anw e
e Ak b

T P NS S . PR rey S -
s i[1w s B e 184w s E

18 1l]

L,

CSE 477 - Autumn 1999 - Software - 26

Resources header file

/I Resource: tFRM 1000

#define MainForm 1000 //(Left Origin = 0, Top Origin = 0, Width =

#define MainUpdateButtonButton 1005 //(Left Origin = 107, Top Origin = 138, Widt
#define MainUnnamed1001BitMap 1000 //(Left Origin = 72, Top Origin = 67, Bitmap
#define MainUnnamed1002BitMap 1200 //(Left Origin = 86, Top Origin = 82, Bitmap
#define MainUnnamed1003BitMap 1100 //(Left Origin = 72, Top Origin = 95, Bitmap
#define MainUnnamed1004BitMap 1300 //(Left Origin = 57, Top Origin = 82, Bitmap
#define MainUnnamed1006Label 1006 //(Left Origin = 72, Top Origin = 15, Usable
#define MainUnnamed1007Label 1007 //(Left Origin = 75, Top Origin = 144, Usabl
#define MainUnnamed1008Label 1008 //(Left Origin = 145, Top Origin = 80, Usabl
#define MainUnnamed1009Label 1009 //(Left Origin = 0, Top Origin = 80, Usable

/I Resource: tFRM 1100

#define InfoForm 1100 //(Left Origin = 2, Top Origin = 46, Width =
#define InfoUnnamed1101Button 1101 //(Left Origin = 60, Top Origin = 75, Width
#define InNfoUnnamed1102Label 1102 //(Left Origin = 45, Top Origin = 29, Usable

/I Resource: MENU 1000

#define MainOptionsMenu 1000
#define MainOptionsConnect 1000
#define MainOptionsDisconnect 1001
#define MainOptionsUpdate 1002
#define MainOptionsAboutCSE477Lab3 1004

CSE 477 - Autumn 1999 - Software - 27

Debugging code

Emulators
replaces microcontroller in system
“debuggable” version of microcontroller

Monitors
add code to microcontroller that can always take control
requires resources

Agents
smaller amount of code called by program being debugged
does not provide complete control

CSE 477 - Autumn 1999 - Software - 28

Debugging code: direct

Real microcontroller
hard limits (e.g., program must fit in available memory of target)
load ROM or dual-ported RAM with program
initializations must be just right (e.g., stack pointer and comm port)
debugged via logic analyzer on pins

modern microcontrollers include special pins to permit access
to internal state without disrupting running program

CSE 477 - Autumn 1999 - Software - 29

Debugging code: emulation

Emulator
replaces microcontroller in target system being designed
pin-compatible (timing also, although not always perfect)

provides access to internal memory and registers

(hard to get to otherwise due to limitations of I/0 pins)
single-step capability

(with links to source code)

relaxes memory bounds
(fakes external memory including “infinite" stack)

CSE 477 - Autumn 1999 - Software - 30

Debugging code: monitor

Monitor
adds small program to microcontroller code
usually in ROM inside microcontroller or on target board
provides system initialization
runs user program as subroutine
can always get control of program (via interrupts)
uses system resources (e.g., timer, serial line, LAN)
makes it difficult to debug device drivers and real-time code (e.g., OS)
provides many of the same functions as emulator at no hardware cost
e.g., Angel monitor for StrongARM

CSE 477 - Autumn 1999 - Software - 31

Debugging code: agents

Agents
similar to monitors in function
are called as subrouting by program being debugged
limits resources
not as robust (program may crash before calling agent)
usually requires OS support and run as concurrent process

CSE 477 - Autumn 1999 - Software - 32

