

CSE481C Course Information

Multi Robot Systems: Theory and Implementation

People

James McLurkin, jamesm@cs.washington.edu
 Ryan McElroy, arcanius@cs.washington.edu

Textbook

No textbook, selected papers over the quarter

- Grading Four labs with simple write-ups: 10%, 10%, 15%, 15% Final project proposal: 20% Final Project: 30%

Lab

- We will alternate lecture and lab during the class time. You must attend both classes each week • Labs are in CSE 003D
- There is a sign-up for staffed lab hours. Rank your choices.
- 2008-01-06 CSE481C: Robotics Capstone, Lec1: Behavior-Based Control

Course Goals:

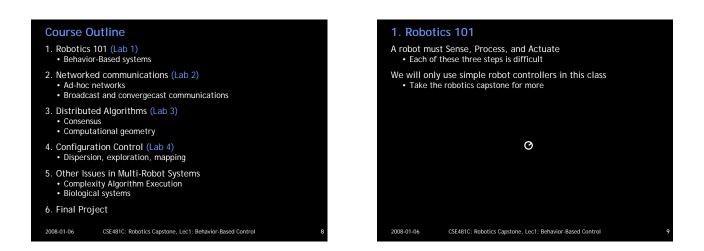
Lectures:

- Introduce the key concepts of multi-robot systems:
- Robotics Communications
- Distributed Algorithms
 Configuration Control

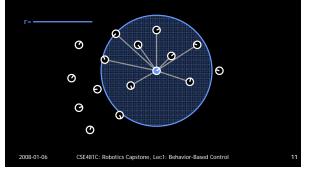
Labs:

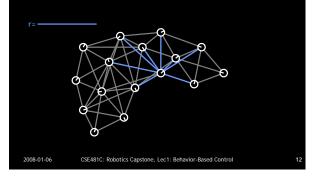
- Implement one topic from each concept
 System engineering of multi-threaded software
- Measure performance, analyze data

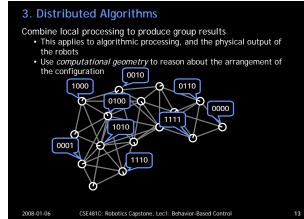
Final Project:


- Implement an algorithm of your design
 Write a clear, thoughtful proposal

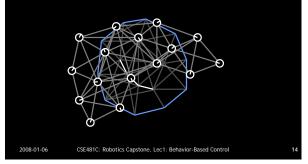
2008-01-06 CSE481C: Robotics Capstone, Lec1: Behavior-Based Control




2. Network Communications


If we assume limited communications range, robots must form adhoc networks

2. Network Communications


If we assume limited communications range, robots must form adhoc networks

4. Configuration Control

A configuration is a group of robots and their internal states Configuration control algorithms modify the configuration to produce some desired configuration

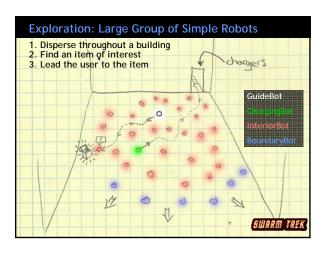
Example Applications and Multi-Robot System Comparisons

2008-01-06 CSE481C: Robotics Capstone, Lec1: Behavior-Based Control

Our Canonical Multi-Robot Application has...

...high robot mobility

- ...short-range local communication & multi-hop global communication
- $\ldots a$ noisy sensor on each robot to measure the positions of other robots


...algorithms that are robust to population changes and robot failures

2008-01-06 CSE481C: Robotics Capstone, Lec1: Behavior-Based Control

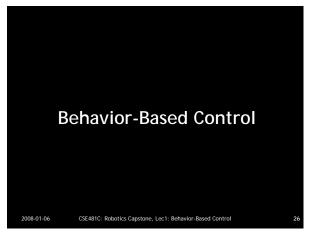
high robot mobility ..short-range local communication & multi-hop global communication ...a noisy sensor on each robot to measure the positions of other robots ...algorithms that are robust to population changes and robot failures 2008-01-06 CSE481C: Robotics Capstone, Lec1: Behavior-Based Control

xploration: Small Group of Complex Robots
Coordinated exploration with three robots from unknown start locations
The robots are fully autonomous. All computation is performed on–board.
Shown is the perspective of one robot

"Distributed Multi-Robot Explo

Comparisons

Single Robots • Robotics Capstone

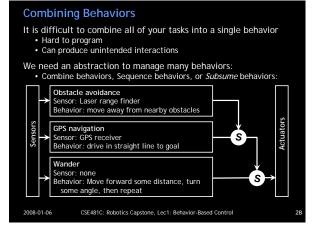

- Small Populations (< 10ish) Some single-robot techniques can be adapted
 - Often with complex robots, good sensors, lots of processing

- Medium Populations (< 1000ish) Centralized data structures and control become less practical Switch to distributed algorithms Often with simple robots, limited sensing, limited processing

CSE481C: Robotics Capstone, Lec1: Behavior-Based Control

2008-01-06

Large Populations • Must look to nature for inspiration • Insect colonies can reach sizes of 20,000,000!


Behavior-Based Control

A behavior is a small program that reads sensors and controls an actuator They are *reactive*, and act like reflexes.
 Behaviors do not plan and have no state (or very limited state)

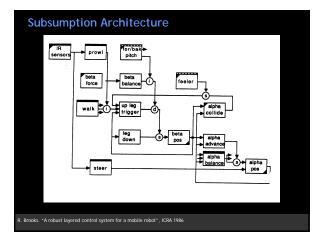
- Example Behaviors for an outdoor driving program:
 - GPS navigation
 - Sensor: GPS receiver Behavior: drive in straight line to goal Obstacle avoidance
 - Sensor: Laser range finder
 - Behavior: move away from nearby obstacles
 - Wander
 - Sensor: none

Behavior: Move forward some distance, then turn some angle, then repeat

2008-01-06 CSE481C: Robotics Capstone, Lec1: Behavior-Based Control

Genghis

The behavior-based poster child


- Hardware
 - 6 legs, 2 motors per leg

 - a-motor for forward/back, β-motor for up/down
 2 bump sensors (feelers)
 2 ground detection sensors (switches)

Very limited computation

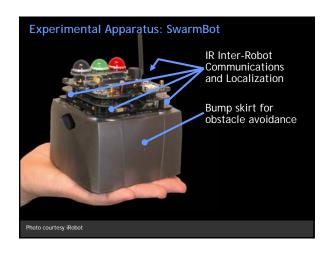
Gak! Why so Complicated?

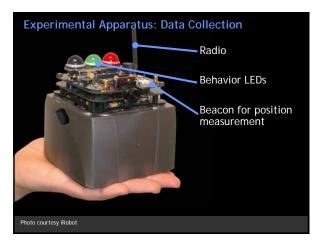
Why not just program it directly?

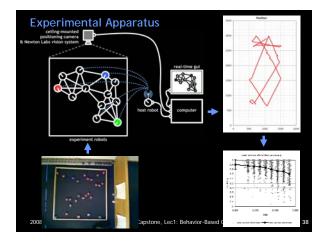
- That's what we would do now.
 Back then, there was a political point to make: Intelligent-looking behavior can arise from simple processing that is tightly coupled to sensors (aka: the environment) and actuators.
 Behaviors can be complied from a high-level specification into machine code
 This whole process is called Subcumption Architecture (there was
- This whole process is called Subsumption Architecture (there was even a complier!)

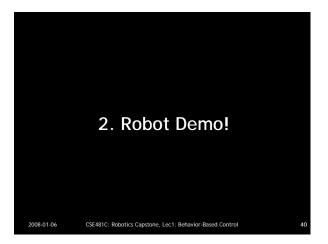
For this course:

- The basic concepts of behavior design and arbitration continues in most modern robotic system
 But your behaviors will be at a higher level of abstraction


2008-01-06 CSE481C: Robotics Capstone, Lec1: Behavior-Based Control


Lab 1: Behavior-Based Control 2008-01-06 CSE481C: Robotics Capstone, Lec1: Behavior-Based Control


Lab 1: Behavior-Based Control


Goal

- Build a layered control system to guide a robot towards light and away from obstacles
 Measure the robot's estimate of its *pose* from odometry compared to ground truth
- 2008-01-06
 - CSE481C: Robotics Capstone, Lec1: Behavior-Based Control

