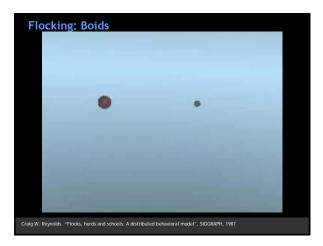


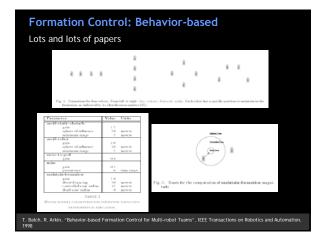
Model: Algorithm

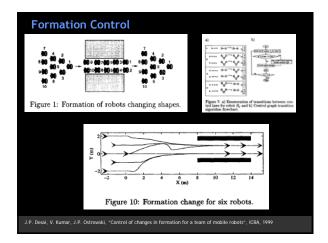
An **algorithm** *A* runs on every robot and transforms any configuration C_1 through valid intermediate configurations to a new configuration C_2 , *s.t.* C_2 satisfies a given set of properties


Definitions	Behavior-Based Approaches vs. Control-Theoretic Approaches
 What is configuration control? A configuration is the output of every multi-robot algorithm We want to achieve some desired global physical configuration With global invariants 	What's the difference? • What's control theory, anyway? • PID control demo
There are many applications in the literature • flocking • formations • coverage • dispersion	 The model Control-theoretic approaches have an explicit model of the systems state that they reason about This model is usually real-valued, and requires suitable analysis techniques
 There is a large diversity of approaches. We roughly classify into: behavior-based approaches control-theoretic approaches other approaches 	What's better? • neither • depends what you want to do Are their other approaches? • Semantic models • Plan-based systems

CSE481C wi09 - Robotics Capstone, Lec3: Consensus

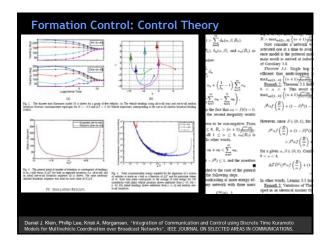
CSE481C wi09 - Robotics Capstone, Lec3: Consensus

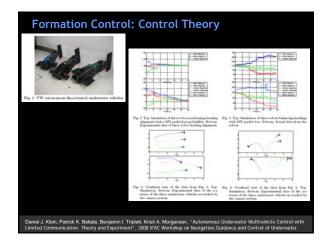

Boids

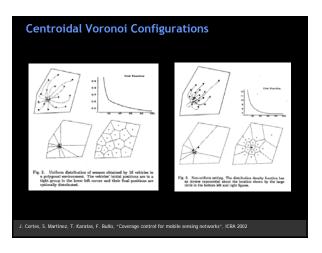

- Three behaviors: 1. Collision Avoidance: avoid collisions with nearby flockmates 2. Velocity Matching: attempt to match velocity with nearby flockmates
 - 3. Flock Centering: attempt to stay close to nearby flockmates
- Limitations
 - Tuning is important: Each behavior has range thresholds and gain tuning parameters
 Global goal location

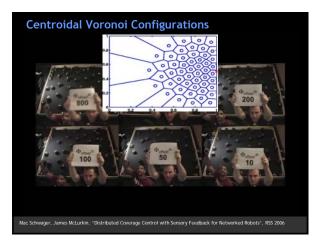
Interesting effects in large populations

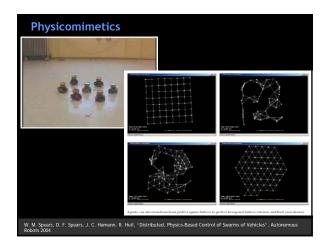
Craig W. Reynolds. "Flocks, herds and schools: A distributed behavioral model", SIGGRAPH, 1987

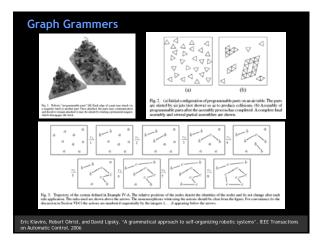










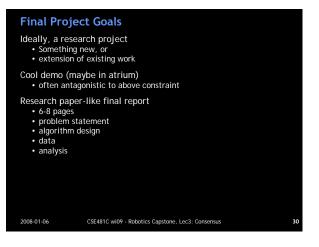


Summary

2008-01-06

A diversity of problems and solutions

There are many, many ways to control the configuration of robots


There are many, many applications, each with their own assumptions and requirements

Standard robot issues of sensing and navigating from a to b+ communications constraints + distributed processing challenges =

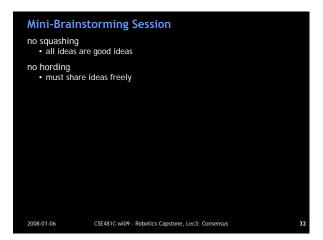
CSE481C wi09 - Robotics Capstone, Lec3: Consensus

This will be an active area for many years to come

"The Literature"

Use the papers I've referenced here to research the literature

Use Google Schoolar or Citeseer while on campus, and you should be able to find the actual papers.
Use their references to find more papers to help design your final


- project Use Firefox and Zotero to keep references you find organized

How do you know if you like a paper?

Do they use real robots?
 Look at the pictures.
 Look at the experiments. Can you do something like that?

If you plan on going to grad school, learn Latex now • Miktex and Winedt is good to get started for windows users • In any case, use PDFtex

2008-01-06 CSE481C wi09 - Robotics Capstone, Lec3: Consensus

