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Algorithms that provide rapid agreement and teamwork between all participants

allow effective task performance by self-organizing networked systems.
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ABSTRACT | This paper provides a theoretical framework for

analysis of consensus algorithms for multi-agent networked

systems with an emphasis on the role of directed information

flow, robustness to changes in network topology due to

link/node failures, time-delays, and performance guarantees.

An overview of basic concepts of information consensus in

networks and methods of convergence and performance

analysis for the algorithms are provided. Our analysis frame-

work is based on tools from matrix theory, algebraic graph

theory, and control theory. We discuss the connections

between consensus problems in networked dynamic systems

and diverse applications including synchronization of coupled

oscillators, flocking, formation control, fast consensus in small-

world networks, Markov processes and gossip-based algo-

rithms, load balancing in networks, rendezvous in space,

distributed sensor fusion in sensor networks, and belief

propagation. We establish direct connections between spectral

and structural properties of complex networks and the speed

of information diffusion of consensus algorithms. A brief

introduction is provided on networked systems with nonlocal

information flow that are considerably faster than distributed

systems with lattice-type nearest neighbor interactions. Simu-

lation results are presented that demonstrate the role of small-

world effects on the speed of consensus algorithms and

cooperative control of multivehicle formations.

KEYWORDS | Consensus algorithms; cooperative control;

flocking; graph Laplacians; information fusion; multi-agent

systems; networked control systems; synchronization of cou-

pled oscillators

I . INTRODUCTION

Consensus problems have a long history in computer

science and form the foundation of the field of distributed
computing [1]. Formal study of consensus problems in

groups of experts originated in management science and
statistics in 1960s (see DeGroot [2] and references therein).
The ideas of statistical consensus theory by DeGroot re-

appeared two decades later in aggregation of information

with uncertainty obtained from multiple sensors1 [3] and

medical experts [4].

Distributed computation over networks has a tradition

in systems and control theory starting with the pioneering

work of Borkar and Varaiya [5] and Tsitsiklis [6] and

Tsitsiklis, Bertsekas, and Athans [7] on asynchronous
asymptotic agreement problem for distributed decision-

making systems and parallel computing [8].

In networks of agents (or dynamic systems), Bcon-

sensus[ means to reach an agreement regarding a certain

quantity of interest that depends on the state of all agents.

A Bconsensus algorithm[ (or protocol) is an interaction

rule that specifies the information exchange between an

agent and all of its neighbors on the network.2

The theoretical framework for posing and solving

consensus problems for networked dynamic systems was

introduced by Olfati-Saber and Murray in [9] and [10]

building on the earlier work of Fax and Murray [11], [12].

The study of the alignment problem involving reaching an

agreementVwithout computing any objective functionsV
appeared in the work of Jadbabaie et al. [13]. Further

theoretical extensions of this work were presented in [14]
and [15] with a look toward treatment of directed infor-

mation flow in networks as shown in Fig. 1(a).
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1This is known as sensor fusion and is an important application of
modern consensus algorithms that will be discussed later.

2The term Bnearest neighbors[ is more commonly used in physics
than Bneighbors[ when applied to particle/spin interactions over a lattice
(e.g., Ising model).
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The common motivation behind the work in [5], [6],

and [10] is the rich history of consensus protocols in com-

puter science [1], whereas Jadbabaie et al. [13] attempted

to provide a formal analysis of emergence of alignment in

the simplified model of flocking by Vicsek et al. [16]. The
setup in [10] was originally created with the vision of de-

signing agent-based amorphous computers [17], [18] for

collaborative information processing in networks. Later,

[10] was used in development of flocking algorithms with

guaranteed convergence and the capability to deal with

obstacles and adversarial agents [19].

Graph Laplacians and their spectral properties [20]–[23]

are important graph-related matrices that play a crucial role
in convergence analysis of consensus and alignment algo-

rithms. Graph Laplacians are an important point of focus

of this paper. It is worth mentioning that the second smallest

eigenvalue of graph Laplacians called algebraic connectivity
quantifies the speed of convergence of consensus algo-

rithms. The notion of algebraic connectivity of graphs has

appeared in a variety of other areas including low-density

parity-check codes (LDPC) in information theory and com-
munications [24], Ramanujan graphs [25] in number theory

and quantum chaos, and combinatorial optimization prob-

lems such as the max-cut problem [21].

More recently, there has been a tremendous surge of
interestVamong researchers from various disciplines of

engineering and scienceVin problems related to multia-

gent networked systems with close ties to consensus prob-

lems. This includes subjects such as consensus [26]–[32],

collective behavior of flocks and swarms [19], [33]–[37],

sensor fusion [38]–[40], random networks [41], [42], syn-

chronization of coupled oscillators [42]–[46], algebraic

connectivity3 of complex networks [47]–[49], asynchro-
nous distributed algorithms [30], [50], formation control

for multirobot systems [51]–[59], optimization-based co-

operative control [60]–[63], dynamic graphs [64]–[67],

complexity of coordinated tasks [68]–[71], and consensus-

based belief propagation in Bayesian networks [72], [73].

A detailed discussion of selected applications will be pre-

sented shortly.

In this paper, we focus on the work described in five key
papersVnamely, Jadbabaie, Lin, and Morse [13], Olfati-

Saber and Murray [10], Fax and Murray [12], Moreau [14],

and Ren and Beard [15]Vthat have been instrumental in

paving the way for more recent advances in study of self-
organizing networked systems, or swarms. These networked

systems are comprised of locally interacting mobile/static

agents equipped with dedicated sensing, computing, and
communication devices. As a result, we now have a better
understanding of complex phenomena such as flocking

[19], or design of novel information fusion algorithms for

sensor networks that are robust to node and link failures

[38], [72]–[76].

Gossip-based algorithms such as the push-sum protocol

[77] are important alternatives in computer science to

Laplacian-based consensus algorithms in this paper.

Markov processes establish an interesting connection
between the information propagation speed in these two

categories of algorithms proposed by computer scientists

and control theorists [78].

The contribution of this paper is to present a cohesive

overview of the key results on theory and applications of

consensus problems in networked systems in a unified

framework. This includes basic notions in information

consensus and control theoretic methods for convergence
and performance analysis of consensus protocols that

heavily rely on matrix theory and spectral graph theory. A

byproduct of this framework is to demonstrate that seem-

ingly different consensus algorithms in the literature [10],

[12]–[15] are closely related. Applications of consensus

problems in areas of interest to researchers in computer

science, physics, biology, mathematics, robotics, and con-

trol theory are discussed in this introduction.

A. Consensus in Networks
The interaction topology of a network of agents is rep-

resented using a directed graph G ¼ ðV; EÞ with the set of

nodes V ¼ f1; 2; . . . ; ng and edges E � V � V. The

Fig. 1. Two equivalent forms of consensus algorithms: (a) a network

of integrator agents in which agent i receives the state xj of its

neighbor, agent j, if there is a link ði; jÞ connecting the two nodes;

and (b) the block diagram for a network of interconnected

dynamic systems all with identical transfer functions PðsÞ ¼ 1=s.

The collective networked system has a diagonal transfer function

and is a multiple-input multiple-output (MIMO) linear system.

3To be defined in Section II-A.
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neighbors of agent i are denoted by Ni ¼ fj 2 V : ði; jÞ 2 Eg.
According to [10], a simple consensus algorithm to reach an

agreement regarding the state of n integrator agents with

dynamics _xi ¼ ui can be expressed as an nth-order linear

system on a graph

_xiðtÞ¼
X
j2Ni

xjðtÞ 	 xiðtÞ
� �

þ biðtÞ; xið0Þ¼zi

2 R; biðtÞ¼0: (1)

The collective dynamics of the group of agents following

protocol (1) can be written as

_x ¼ 	Lx (2)

where L ¼ ½lij� is the graph Laplacian of the network and its

elements are defined as follows:

lij ¼
	1; j 2 Ni

jNij; j ¼ i:

�
(3)

Here, jNij denotes the number of neighbors of node i (or

out-degree of node i). Fig. 1 shows two equivalent forms of

the consensus algorithm in (1) and (2) for agents with a

scalar state. The role of the input bias b in Fig. 1(b) is
defined later.

According to the definition of graph Laplacian in (3), all

row-sums of L are zero because of
P

j lij ¼ 0. Therefore, L
always has a zero eigenvalue �1 ¼ 0. This zero eigenvalues

corresponds to the eigenvector 1 ¼ ð1; . . . ; 1ÞT because 1
belongs to the null-space of LðL1 ¼ 0Þ. In other words, an

equilibrium of system (2) is a state in the form x� ¼
ð�; . . . ; �ÞT ¼ �1 where all nodes agree. Based on ana-
lytical tools from algebraic graph theory [23], we later show

that x� is a unique equilibrium of (2) (up to a constant

multiplicative factor) for connected graphs.

One can show that for a connected network, the

equilibrium x� ¼ ð�; . . . ; �ÞT is globally exponentially

stable. Moreover, the consensus value is � ¼ 1=n
P

i zi

that is equal to the average of the initial values. This im-

plies that irrespective of the initial value of the state of
each agent, all agents reach an asymptotic consensus

regarding the value of the function fðzÞ ¼ 1=n
P

i zi.

While the calculation of fðzÞ is simple for small net-

works, its implications for very large networks is more

interesting. For example, if a network has n ¼ 106 nodes

and each node can only talk to log10ðnÞ ¼ 6 neighbors,

finding the average value of the initial conditions of the

nodes is more complicated. The role of protocol (1) is to
provide a systematic consensus mechanism in such a large

network to compute the average. There are a variety of
functions that can be computed in a similar fashion using

synchronous or asynchronous distributed algorithms (see

[10], [28], [30], [73], and [76]).

B. The f -Consensus Problem and Meaning
of Cooperation

To understand the role of cooperation in performing

coordinated tasks, we need to distinguish between un-
constrained and constrained consensus problems. An

unconstrained consensus problem is simply the alignment

problem in which it suffices that the state of all agents

asymptotically be the same. In contrast, in distributed

computation of a function fðzÞ, the state of all agents has to

asymptotically become equal to fðzÞ, meaning that the

consensus problem is constrained. We refer to this con-

strained consensus problem as the f -consensus problem.
Solving the f -consensus problem is a cooperative task

and requires willing participation of all the agents. To

demonstrate this fact, suppose a single agent decides not to

cooperate with the rest of the agents and keep its state

unchanged. Then, the overall task cannot be performed

despite the fact that the rest of the agents reach an agree-

ment. Furthermore, there could be scenarios in which

multiple agents that form a coalition do not cooperate with
the rest and removal of this coalition of agents and their

links might render the network disconnected. In a dis-

connected network, it is impossible for all nodes to reach

an agreement (unless all nodes initially agree which is a

trivial case).

From the above discussion, cooperation can be infor-

mally interpreted as Bgiving consent to providing one’s

state and following a common protocol that serves the
group objective.[

One might think that solving the alignment problem is

not a cooperative task. The justification is that if a single

agent (called a leader) leaves its value unchanged, all

others will asymptotically agree with the leader according

to the consensus protocol and an alignment is reached.

However, if there are multiple leaders where two of whom

are in disagreement, then no consensus can be asymptot-
ically reached. Therefore, alignment is in general a coop-

erative task as well.

Formal analysis of the behavior of systems that involve

more than one type of agent is more complicated, partic-

ularly, in presence of adversarial agents in noncooperative

games [79], [80]. The focus of this paper is on cooperative

multi-agent systems.

C. Iterative Consensus and Markov Chains
In Section II, we show how an iterative consensus

algorithm that corresponds to the discrete-time version of

system (1) is a Markov chain

�ðkþ 1Þ ¼ �ðkÞP (4)
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with P ¼ I	 �L and a small � 9 0. Here, the ith element
of the row vector �ðkÞ denotes the probability of being in

state i at iteration k. It turns out that for any arbitrary

graph G with Laplacian L and a sufficiently small �, the

matrix P satisfies the property
P

j pij ¼ 1 with pij � 0;8i; j.
Hence, P is a valid transition probability matrix for the

Markov chain in (4). The reason matrix theory [81] is so

widely used in analysis of consensus algorithms [10],

[12]–[15], [64] is primarily due to the structure of P in (4)
and its connection to graphs.4

There are interesting connections between this Markov

chain and the speed of information diffusion in gossip-

based averaging algorithms [77], [78].

One of the early applications of consensus problems

was dynamic load balancing [82] for parallel processors

with the same structure as system (4). To this date, load

balancing in networks proves to be an active area of
research in computer science.

D. Applications
Many seemingly different problems that involve inter-

connection of dynamic systems in various areas of science

and engineering happen to be closely related to consensus

problems for multi-agent systems. In this section, we pro-

vide an account of the existing connections.

1) Synchronization of Coupled Oscillators: The problem of

synchronization of coupled oscillators has attracted numer-

ous scientists from diverse fields including physics,

biology, neuroscience, and mathematics [83]–[86]. This

is partly due to the emergence of synchronous oscillations

in coupled neural oscillators. Let us consider the

generalized Kuramoto model of coupled oscillators on a
graph with dynamics

_�i ¼ 	
X
j2Ni

sinð�j 	 �iÞ þ !i (5)

where �i and !i are the phase and frequency of the ith
oscillator. This model is the natural nonlinear extension of
the consensus algorithm in (1) and its linearization around

the aligned state �1 ¼ . . . ¼ �n is identical to system (2)

plus a nonzero input bias bi ¼ ð!i 	 �!Þ=	 with �! ¼ 1=
n
P

i !i after a change of variables xi ¼ ð�i 	 �!tÞ=	.

In [43], Sepulchre et al. show that if 	 is sufficiently

large, then for a network with all-to-all links, synchroni-

zation to the aligned state is globally achieved for all ini-

tial states. Recently, synchronization of networked
oscillators under variable time-delays was studied in [45].

We believe that the use of convergence analysis methods

that utilize the spectral properties of graph Laplacians will

shed light on performance and convergence analysis of
self-synchrony in oscillator networks [42].

2) Flocking Theory: Flocks of mobile agents equipped

with sensing and communication devices can serve as

mobile sensor networks for massive distributed sensing in an

environment [87]. A theoretical framework for design and

analysis of flocking algorithms for mobile agents with

obstacle-avoidance capabilities is developed by Olfati-
Saber [19]. The role of consensus algorithms in particle-

based flocking is for an agent to achieve velocity matching

with respect to its neighbors. In [19], it is demonstrated

that flocks are networks of dynamic systems with a

dynamic topology. This topology is a proximity graph that

depends on the state of all agents and is determined locally

for each agent, i.e., the topology of flocks is a state-

dependent graph. The notion of state-dependent graphs
was introduced by Mesbahi [64] in a context that is

independent of flocking.

3) Fast Consensus in Small-Worlds: In recent years,

network design problems for achieving faster consensus

algorithms has attracted considerable attention from a

number of researchers. In Xiao and Boyd [88], design of

the weights of a network is considered and solved using
semi-definite convex programming. This leads to a slight

increase in algebraic connectivity of a network that is a

measure of speed of convergence of consensus algorithms.

An alternative approach is to keep the weights fixed and

design the topology of the network to achieve a relatively

high algebraic connectivity. A randomized algorithm for

network design is proposed by Olfati-Saber [47] based on

random rewiring idea of Watts and Strogatz [89] that led to
creation of their celebrated small-world model. The random

rewiring of existing links of a network gives rise to

considerably faster consensus algorithms. This is due to

multiple orders of magnitude increase in algebraic

connectivity of the network in comparison to a lattice-

type nearest-neighbort graph.

4) Rendezvous in Space: Another common form of
consensus problems is rendezvous in space [90], [91]. This

is equivalent to reaching a consensus in position by a num-

ber of agents with an interaction topology that is position

induced (i.e., a proximity graph). We refer the reader to

[92] and references therein for a detailed discussion. This

type of rendezvous is an unconstrained consensus problem

that becomes challenging under variations in the network

topology. Flocking is somewhat more challenging than
rendezvous in space because it requires both interagent

and agent-to-obstacle collision avoidance.

5) Distributed Sensor Fusion in Sensor Networks: The

most recent application of consensus problems is distrib-

uted sensor fusion in sensor networks. This is done by

posing various distributed averaging problems require to

4In honor of the pioneering contributions of Oscar Perron (1907) to
the theory of nonnegative matrices, were refer to P as the Perron Matrix of
graph G (See Section II-C for details).
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implement a Kalman filter [38], [39], approximate
Kalman filter [74], or linear least-squares estimator [75]

as average-consensus problems. Novel low-pass and high-

pass consensus filters are also developed that dynamically

calculate the average of their inputs in sensor networks

[39], [93].

6) Distributed Formation Control: Multivehicle systems

are an important category of networked systems due to
their commercial and military applications. There are two

broad approaches to distributed formation control: i) rep-

resentation of formations as rigid structures [53], [94] and

the use of gradient-based controls obtained from their

structural potentials [52] and ii) representation of form-

ations using the vectors of relative positions of neighboring

vehicles and the use of consensus-based controllers with

input bias. We discuss the later approach here.
A theoretical framework for design and analysis of

distributed controllers for multivehicle formations of type

ii) was developed by Fax and Murray [12]. Moving in

formation is a cooperative task and requires consent and

collaboration of every agent in the formation. In [12],

graph Laplacians and matrix theory were extensively used

which makes one wonder whether relative-position-based

formation control is a consensus problem. The answer is
yes. To see this, consider a network of self-interested agents
whose individual desire is to minimize their local cost

UiðxÞ ¼
P

j2Ni
kxj 	 xi 	 rijk2 via a distributed algorithm

(xi is the position of vehicle i with dynamics _xi ¼ ui and rij

is a desired intervehicle relative-position vector). Instead,

if the agents use gradient-descent algorithm on the

collective cost
Pn

i¼1 UiðxÞ using the following protocol:

_xi ¼
X
j2Ni

ðxj 	 xi 	 rijÞ ¼
X
j2Ni

ðxj 	 xiÞ þ bi (6)

with input bias bi ¼
P

j2Ni
rji [see Fig. 1(b)], the objective

of every agent will be achieved. This is the same as the

consensus algorithm in (1) up to the nonzero bias terms bi.

This nonzero bias plays no role in stability analysis of sys-

tem (6). Thus, distributed formation control for integrator

agents is a consensus problem. The main contribution of

the work by Fax and Murray is to extend this scenario to

the case where all agents are multiinput multioutput linear

systems _xi ¼ Axi þ Bui. Stability analysis of relative-
position-based formation control for multivehicle systems

is extensively covered in Section IV.

E. Outline
The outline of the paper is as follows. Basic concepts

and theoretical results in information consensus are

presented in Section II. Convergence and performance

analysis of consensus on networks with switching topology
are given in Section III. A theoretical framework for

cooperative control of formations of networked multi-

vehicle systems is provided in Section IV. Some simulation
results related to consensus in complex networks including

small-worlds are presented in Section V. Finally, some

concluding remarks are stated in Section VI.

II . INFORMATION CONSENSUS

Consider a network of decision-making agents with

dynamics _xi ¼ ui interested in reaching a consensus via
local communication with their neighbors on a graph

G ¼ ðV; EÞ. By reaching a consensus, we mean asymptot-

ically converging to a one-dimensional agreement space
characterized by the following equation:

x1 ¼ x2 ¼ . . . ¼ xn:

This agreement space can be expressed as x ¼ �1 where

1 ¼ ð1; . . . ; 1ÞT and � 2 R is the collective decision of the

group of agents. Let A ¼ ½aij� be the adjacency matrix of

graph G. The set of neighbors of a agent i is Ni and
defined by

Ni ¼ fj 2 V : aij 6¼ 0g; V ¼ f1; . . . ; ng:

Agent i communicates with agent j if j is a neighbor of i (or

aij 6¼ 0). The set of all nodes and their neighbors defines

the edge set of the graph as E ¼ fði; jÞ 2 V � V : aij 6¼ 0g.
A dynamic graph GðtÞ ¼ ðV; EðtÞÞ is a graph in which

the set of edges EðtÞ and the adjacency matrix AðtÞ are

time-varying. Clearly, the set of neighbors NiðtÞ of every

agent in a dynamic graph is a time-varying set as well.

Dynamic graphs are useful for describing the network

topology of mobile sensor networks and flocks [19].

It is shown in [10] that the linear system

_xiðtÞ ¼
X
j2Ni

aij xjðtÞ 	 xiðtÞ
� �

(7)

is a distributed consensus algorithm, i.e., guarantees con-

vergence to a collective decision via local interagent

interactions. Assuming that the graph is undirected
(aij ¼ aji for all i; j), it follows that the sum of the state

of all nodes is an invariant quantity, or
P

i _xi ¼ 0. In

particular, applying this condition twice at times t ¼ 0 and

t ¼ 1 gives the following result

� ¼ 1

n

X
i

xið0Þ:

In other words, if a consensus is asymptotically reached,

then necessarily the collective decision is equal to the
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average of the initial state of all nodes. A consensus algo-
rithm with this specific invariance property is called an

average-consensus algorithm [9] and has broad applications

in distributed computing on networks (e.g., sensor fusion

in sensor networks).

The dynamics of system (7) can be expressed in a

compact form as

_x ¼ 	Lx (8)

where L is known as the graph Laplacian of G. The graph

Laplacian is defined as

L ¼ D	 A (9)

where D ¼ diagðd1; . . . ; dnÞ is the degree matrix of G with

elements di ¼
P

j6¼i aij and zero off-diagonal elements. By

definition, L has a right eigenvector of 1 associated with

the zero eigenvalue5 because of the identity L1 ¼ 0.

For the case of undirected graphs, graph Laplacian

satisfies the following sum-of-squares (SOS) property:

xTLx ¼ 1

2

X
ði;jÞ2E

aijðxj 	 xiÞ2: (10)

By defining a quadratic disagreement function as

’ðxÞ ¼ 1

2
xTLx (11)

it becomes apparent that algorithm (7) is the same as

_x ¼ 	r’ðxÞ

or the gradient-descent algorithm. This algorithm globally

asymptotically converges to the agreement space provided

that two conditions hold: 1) L is a positive semidefinite

matrix; 2) the only equilibrium of (7) is �1 for some �.

Both of these conditions hold for a connected graph and
follow from the SOS property of graph Laplacian in (10).

Therefore, an average-consensus is asymptotically reached

for all initial states. This fact is summarized in the

following lemma.

Lemma 1: Let G be a connected undirected graph. Then,

the algorithm in (7) asymptotically solves an average-

consensus problem for all initial states.

A. Algebraic Connectivity and Spectral Properties
of Graphs

Spectral properties of Laplacian matrix are instrumen-

tal in analysis of convergence of the class of linear

consensus algorithms in (7). According to Gershgorin

theorem [81], all eigenvalues of L in the complex plane are

located in a closed disk centered at �þ 0j with a radius of

� ¼ maxi di, i.e., the maximum degree of a graph. For

undirected graphs, L is a symmetric matrix with real
eigenvalues and, therefore, the set of eigenvalues of L can

be ordered sequentially in an ascending order as

0 ¼ �1 � �2 � � � � � �n � 2�: (12)

The zero eigenvalue is known as the trivial eigenvalue of L.

For a connected graph G, �2 9 0 (i.e., the zero eigenvalue

is isolated). The second smallest eigenvalue of Laplacian

�2 is called algebraic connectivity of a graph [20]. Algebraic

connectivity of the network topology is a measure of

performance/speed of consensus algorithms [10].

Example 1: Fig. 2 shows two examples of networks of

integrator agents with different topologies. Both graphs

are undirected and have 0–1 weights. Every node of the

graph in Fig. 2(a) is connected to its 4 nearest neighbors on

a ring. The other graph is a proximity graph of points that

are distributed uniformly at random in a square. Every

node is connected to all of its spatial neighbors within a

closed ball of radius r 9 0. Here are the important degree
information and Laplacian eigenvalues of these graphs

aÞ�1 ¼ 0; �2 ¼ 0:48; �n ¼ 6:24; � ¼ 4

bÞ�1 ¼ 0; �2 ¼ 0:25; �n ¼ 9:37; � ¼ 8: (13)

In both cases, �i G 2� for all i.

B. Convergence Analysis for Directed Networks
The convergence analysis of the consensus algorithm in

(7) is equivalent to proving that the agreement space

characterized by x ¼ �1; � 2 R is an asymptotically stable

equilibrium of system (7). The stability properties of

system (7) is completely determined by the location of the

Laplacian eigenvalues of the network. The eigenvalues of

the adjacency matrix are irrelevant to the stability analysis
of system (7), unless the network is k-regular (all of its

nodes have the same degree k).

The following lemma combines a well-known rank

property of graph Laplacians with Gershgorin theorem to

provide spectral characterization of Laplacian of a fixed

directed network G. Before stating the lemma, we need to

define the notion of strong connectivity of graphs. A graph

5These properties were discussed earlier in the introduction for
graphs with 0–1 weights.
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is strongly connected (SC) if there is a directed path

connecting any two arbitrary nodes s; t of the graph.6

Lemma 2: (spectral localization) Let G be a strongly

connected digraph on n nodes. Then rankðLÞ ¼ n	 1 and

all nontrivial eigenvalues of L have positive real parts.

Furthermore, suppose G has c � 1 strongly connected

components, then rankðLÞ ¼ n	 c.
Proof: The proof of the rank property for digraphs is

given in [10]. The proof for undirected graphs is available

in the algebraic graph theory literature [23]. The positivity

of the real parts of the eigenvalues follow from the fact that

all eigenvalues are located in a Gershgorin disk in the

closed right-hand plane that touches the imaginary axis at

zero. The second part follows from the first part after

relabeling the nodes of the digraph so that its Laplacian
becomes a block diagonal matrix. h

Remark 1: Lemma 2 holds under a weaker condition of

existence of a directed spanning tree for G. G has a directed

spanning tree if there exists a node r (a root) such that all
other nodes can be linked to r via a directed path. This type

of condition on existence of directed spanning trees have

appeared in [13]–[15]. The root node is commonly known

as a leader [13].

The essential results regarding convergence and deci-

sion value of Laplacian-based consensus algorithms for

directed networks with a fixed topology are summarized in

the following theorem. Before stating this theorem, we
need to define an important class of digraphs that appear

frequently throughout this section.

Definition 1: (balanced digraphs [10]) A digraph G is

called balanced if
P

j6¼i aij ¼
P

j6¼i aji for all i 2 V.

In a balanced digraph, the total weight of edges

entering a node and leaving the same node are equal for all

nodes. The most important property of balanced digraphs
is that w ¼ 1 is also a left eigenvector of their Laplacian

(or 1TL ¼ 0).

Theorem 1: Consider a network of n agents with topol-

ogy G applying the following consensus algorithm:

_xiðtÞ ¼
X
j2Ni

aij xjðtÞ 	 xiðtÞ
� �

; xð0Þ ¼ z: (14)

Suppose G is a strongly connected digraph. Let L be the

Laplacian of G with a left eigenvector � ¼ ð�1; . . . ; �nÞ
satisfying �TL ¼ 0. Then

i) a consensus is asymptotically reached for all

initial states;

ii) the algorithm solves the f -consensus problem with

the linear function fðzÞ ¼ ð�TzÞ=ð�T1Þ, i.e., the

group decision is � ¼
P

i wizi with
P

i wi ¼ 1;

iii) if the digraph is balanced, an average-consensus is

asymptotically reached and � ¼ ð
P

i xið0ÞÞ=n.
Proof: The convergence of the consensus algorithm

follows from Lemma 2. To show part ii), note that the

collective dynamics of the network is _x ¼ 	Lx. This means

that y ¼ �Tx is an invariant quantity due to _y ¼ 	�TLx ¼
0; 8 x. Thus, limt!1 yðtÞ ¼ yð0Þ, or �Tð�1Þ ¼ �Txð0Þ that

implies the group decision is � ¼ ð�TzÞ=
P

i �i. Setting

wi ¼ �i=
P

i �i, we get � ¼ wTz. Part iii) follows as a special

case of the statement in part ii) because for a balanced
digraph � ¼ 1 and wi ¼ 1=n; 8i. h

Remark 2: In [10], it is shown that a necessary and suf-
ficient condition for L to have a left eigenvector of � ¼ 1 is

that G must be a balanced digraph.

A challenging problem is to analyze convergence of a

consensus algorithm for a dynamic network with a switching
topology GðtÞ that is time-varying. Various aspects of this
problem has been addressed by several groups during the

recent years [10], [13]–[15] and will be discussed in detail.

6The notion of strong connectivity applies to directed graphs (or
digraphs). For undirected graphs SC is the same as connectivity.

Fig. 2. Examples of networks with n ¼ 20 nodes: (a) a regular network

with 80 links and (b) a random network with 45 links.
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C. Consensus in Discrete-Time and Matrix Theory
An iterative form of the consensus algorithm can be

stated as follows in discrete-time:

xiðkþ 1Þ ¼ xiðkÞ þ �
X
j2Ni

aij xjðkÞ 	 xiðkÞ
� �

: (15)

The discrete-time collective dynamics of the network

under this algorithm can be written as

xðkþ 1Þ ¼ PxðkÞ (16)

with P ¼ I	 �L (I is the identity matrix) and � 9 0 is the
step-size. In general, P ¼ expð	�LÞ and the algorithm in

(15) is a special case that only uses communication with

first-order neighbors.7 We refer to P as Perron matrix of a

graph G with parameter �.

Three important types of nonnegative matrices are

irreducible, stochastic, and primitive (or ergodic) matrices

[81]. A matrix A is irreducible if its associated graph is

strongly connected. A nonnegative matrix is called row (or
column) stochastic if all of its row-sums (or column-sums)

are 1. An irreducible stochastic matrix P is primitive if it has

only one eigenvalue with maximum modulus.

Lemma 3: Let G be a digraph with n nodes and maxi-

mum degree � ¼ maxið
P

j6¼i aijÞ. Then, the Perron matrix

P with parameter � 2 ð0; 1=�� satisfies the following

properties.
i) P is a row stochastic nonnegative matrix with a

trivial eigenvalue of 1;

ii) All eigenvalues of P are in a unit circle;

iii) If G is a balanced graph, then P is a doubly

stochastic matrix;

iv) If G is strongly connected and 0 G � G 1=�, then

P is a primitive matrix.

Proof: Since P ¼ I	 �L, we get P1 ¼ 1	 �L1 ¼ 1
which means the row sums of P is 1. Moreover, 1 is a trivial

eigenvalue of P for all graphs. To show that P is non-

negative, notice that P ¼ I	 �Dþ �A due to definition of

Laplacian L ¼ D	 A. �A is a nonnegative matrix. The di-

agonal elements of I	 �D are 1	 �di � 1	 di=� � 0

which implies I	 �D is nonnegative. Since the sum of two

nonnegative matrices is a nonnegative matrix, P is a non-

negative row stochastic matrix. To prove part ii), one no-
tices that all eigenvectors of P and L are the same. Let �j be

the jth eigenvalue of L. Then, the jth eigenvalue of P is

j ¼ 1	 ��j: (17)

Based on Gershgorin theorem, all eigenvalues of L are in the
disk js	�j � �. Defining z ¼ 1	 s=�, we have jzj � 1

which proves part ii). If G is a balanced digraph, then 1 is

the left eigenvector of L, or 1TL ¼ 0. This means that

1TP ¼ 1T 	 �1TL ¼ 1T which implies the column sums of

P are 1. This combined with the result in part i) gives

part iii). To prove part iv), note that if G is strongly con-

nected, then P is an irreducible matrix [81]. To prove that P
is primitive, we need to establish that it has a single eigen-
value with maximum modulus of 1. For all 0 G � G 1=�, the

transformation  ¼ 1	 �s maps the circle js	�j ¼ �
into a circle that is located strictly inside a unit disk passing

through the point  ¼ 1. This means that only a single

eigenvalue at 1 ¼ 1 can have a modulus of 1. h

Remark 3: The condition � G 1=� in part iv) is nec-

essary. If an incorrect step-size of � ¼ 1=� is used. Then, P
would no longer be a primitive matrix because it could

have multiple eigenvalues of modulus 1. The counter-

example is a directed cycle of length n with a Laplacian

that has n roots on the boundary of the Gershgorin disk

js	�j � �. With the choice of � ¼ 1=� ¼ 1, one gets a

Perron matrix that is irreducible but has n eigenvalues on

the boundary of the unit circle. This is a common mistake

that is repeated by some of the researchers in the past.
The convergence analysis of the discrete-time consen-

sus algorithm relies on the following well-known lemma in

matrix theory.

Lemma 4: (Perron-Frobenius, [81]) Let P be a primitive

nonnegative matrix with left and right eigenvectors w and

v, respectively, satisfying Pv ¼ v, wTP ¼ wT , and vTw ¼ 1.

Then limk!1 Pk ¼ vwT .
The convergence and group decision properties of

iterative consensus algorithms x Px with row stochastic

Perron matrices is stated in the following result. It turns

out that this discrete-time convergence result is almost

identical to its continuous-time counterpart.

Theorem 2: Consider a network of agents xiðkþ 1Þ ¼
xiðkÞ þ uiðkÞ with topology G applying the distributed
consensus algorithm

xiðkþ 1Þ ¼ xiðkÞ þ �
X
j2Ni

aij xjðkÞ 	 xiðkÞ
� �

(18)

where 0 G � G 1=� and � is the maximum degree of the

network. Let G be a strongly connected digraph. Then

i) A consensus is asymptotically reached for all

initial states;

ii) The group decision value is � ¼
P

i wixið0Þ withP
i wi ¼ 1;

iii) If the digraph is balanced (or P is doubly-
stochastic), an average-consensus is asymptoti-

cally reached and � ¼ ð
P

i xið0ÞÞ=n.

7The set of mth-order neighbors is the set of neighbors of node i on a
graph with adjacency matrix Am.
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Proof: Considering that xðkÞ ¼ Pkxð0Þ, a consensus is

reached in discrete-time, if the limit limk!1 Pk exists.
According to Lemma 4, this limit exists for primitive

matrices. Based on part iv) of Lemma 3, P is a primitive

matrix. Thus, limk!1 xðkÞ ¼ vðwTxð0ÞÞ with v ¼ 1, or

xi ! � ¼ wTxð0Þ for all i as k!1. Hence, the group

decision value is � ¼
P

i wixið0Þ with
P

i wi ¼ 1 (due to

vTw ¼ 1). If the graph is balanced, based on part iii) of

Lemma 3, P is a column stochastic matrix with a left eigen-

vector of w ¼ ð1=nÞ1. The group decision becomes equal to
� ¼ ð1=nÞ1Txið0Þ and average-consensus is asymptotically

reached. h
So far, we have presented a unified framework for

analysis of convergence of consensus algorithms for di-

rected networks with fixed topology in both discrete-time

and continuous-time. A comparison between the two cases

of continuous-time and discrete-time consensus are listed

in Table 1.

D. Performance of Consensus Algorithms
The speed of reaching a consensus is the key in design

of the network topology as well as analysis of performance

of a consensus algorithm for a given network. Let us first

focus on balanced directed networks that include

undirected networks as a special case. This is primarily

due to the fact that the collective dynamics of the network
of agent applying a continuous- or discrete-time consen-

sus algorithm in this case has an invariant quantity

� ¼ ð
P

i xiÞ=n. To demonstrate this in discrete-time, note

that 1TP ¼ 1T and

�ðkþ 1Þ ¼ 1

n
1Txðkþ 1Þ ¼ 1

n
ð1TPÞxðkÞ ¼ �ðkÞ

which implies � is invariant in at iteration k. Let us define
the disagreement vector [10]

� ¼ x	 �1 (19)

and note that
P

i �i ¼ 0, or 1T� ¼ 0. The consensus

algorithms result in the following disagreement dynamics:

CT : _�ðtÞ ¼ 	L�ðtÞ
DT : �ðkþ 1Þ ¼ P�ðkÞ: (20)

Based on the following lemma, one can readily show that
�ð�Þ ¼ �T� is a valid Lyapunov function for the CT system

that quantifies the collective disagreement in the network.

Theorem 3: (algebraic connectivity of digraphs) Let G be

a balanced digraph (or undirected graph) with Laplacian L
with a symmetric part Ls ¼ ðLþ LTÞ=2 and Perron matrix

P with Ps ¼ ðPþ PTÞ=2. Then,

i) �2 ¼ min1T�¼0ð�TL�=�T�Þ with �2 ¼ �2ðLsÞ, i.e.

�TL� � �2k�k2

for all disagreement vectors �;

ii) 2 ¼ max1T�¼0ð�TP�=�T�Þ with 2 ¼ 1	 ��2, i.e.

�TP� � 2k�k2

for all disagreement vectors �.

Proof: Since G is a balanced digraph, 1TL ¼ 0 and

L1 ¼ 0. This implies that Ls is a valid Laplacian matrix
because of Ls1 ¼ ðL1þ LT1Þ=2 ¼ 0. Similarly, Ps is a valid

Perron matrix which is a nonnegative doubly stochastic

matrix. Part i) follows from a special case of Courant-

Fisher theorem [81] for a symmetric matrix Ls due to

min
1T�¼0

�TL�

�T�
¼ min

1T�¼0

�TLs�

�T�
¼ �2ðLsÞ:

To show part ii), note that for a disagreement vector �
satisfying 1T� ¼ 0, we have

max
�

�TP�

�T�
¼ max

�

�TP�

�T�
¼ max

�

�T� 	 ��TL�

�T�

¼ 1	 �min
�

�TL�

�T�
¼ 1	 ��2ðLsÞ

¼2ðPsÞ (21)

Corollary 1: A continuous-time consensus is globally

exponentially reached with a speed that is faster or equal to

�2 ¼ �2ðLsÞ with Ls ¼ ðLþ LTÞ=2 for a strongly connected

and balanced directed network.
Proof: For CT consensus, we have

_� ¼ 	2�TL� � 	2�2�
T� ¼ 	2�2�:

Therefore, �ð�Þ ¼ k�k2
exponentially vanishes with a

speed that is at least 2�2. Since k�k ¼ �1=2, the norm of

Table 1 Continuous-Time versus Discrete-Time Consensus
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the disagreement vector exponentially vanishes with a speed
of at least �2. h

Recently, Olfati-Saber [47] has shown that quasi-

random small-world networks have extremely large �2

values compared to regular networks with nearest neighbor

communication such as the one in Fig. 2(a). For example

for a network, with n ¼ 1000 nodes and uniform degree

di ¼ 10;8i, the algebraic connectivity of a small-world net-

work can become more than 1500 times of the �2 of a
regular network [47].

According to Theorem 3, 2 is the second largest eigen-
value of PsVthe symmetric part of the Perron matrix P.

The speed of convergence of the iterative consensus algo-

rithm is provided in the following result.

Corollary 2: A discrete-time consensus is globally

exponentially reached with a speed that is faster or equal
to 2 ¼ 1	 ��2ðLÞ for a connected undirected network.

Proof: Let �ðkÞ ¼ �ðkÞT�ðkÞ be a candidate Lyapunov

function for the discrete-time disagreement dynamics of

�ðkþ 1Þ ¼ P�ðkÞ. For an undirected graph P ¼ PT and all

eigenvalues of P are real. Calculating �ðkþ 1Þ, one gets

�ðkþ 1Þ ¼ �ðkþ 1ÞT�ðkþ 1Þ
¼ P�ðkÞk k2 � 2

2 �ðkÞk k2

¼2
2�k

with 0 G 2 G 1 due to the fact that P is primitive. Clearly,

k�ðkÞk exponentially vanishes with a speed faster or equal

to 2. h

Remark 4: The proof of Corollary 2 for balanced di-

graphs is rather detailed and beyond the scope of this

paper.

E. Alternative Forms of Consensus Algorithms
In the context of formation control for a network of

multiple vehicles, Fax and Murray [12] introduced the

following version of a Laplacian-based system on a graph G
with 0–1 weights:

_xi ¼
1

jNij
X
j2Ni

ðxj 	 xiÞ: (22)

This is a special case of a consensus algorithm on a graph

G� with adjacency elements aij ¼ 1=jNij ¼ 1=di for j 2 Ni

and zero for j 62 Ni. According to this form, di ¼P
j 6¼i aij ¼ 1 for all i that means the degree matrix of G�

is D� ¼ I and its adjacency matrix is A� ¼ D	1A provided

that all nodes have nonzero degrees (e.g., for connected
graphs/digraphs). In graph theory literature, A� is called

normalized adjacency matrix. Let Q be the key matrix in the

dynamics of (22), i.e., _x ¼ 	Qx. Then, an alternative form
of graph Laplacian is

Q ¼ I	 D	1A: (23)

This is identical to the standard Laplacian of the weighted

graph G� due to L� ¼ D� 	 A� ¼ I	 D	1A. The conver-

gence analysis of this algorithm is identical to the con-

sensus algorithm presented earlier. The Perron matrix

associated with Q is in the form P ¼ I	 �L� with 0 G � G 1.

In explicit form, this gives the following iterative consensus
algorithm:

xðkþ 1Þ ¼ ð1	 �ÞIþ �D	1A
� �

xðkÞ:

The aforementioned algorithm for � ¼ 1 takes a rather
simple form xðkþ 1Þ ¼ D	1AxðkÞ that does not converge

for digraphs such as cycles of length n. Therefore, this

discretization with � ¼ 1 is invalid. Interestingly, the

Markov process

�ðkþ 1Þ ¼ �ðkÞP (24)

with transition probability matrix P ¼ D	1A is known as

the process of random walks on a graph [95] in graph theory

and computer science literature with close connections to

gossip-based consensus algorithms [78].

Keep in mind that based on algorithm (22), if graph G is

undirected (or balanced), the quantity

� ¼
X

i

dixi

 !
 X
i

di

 !

is invariant in time and a weighted-average consensus is
asymptotically reached. The weighting wi ¼ di=ð

P
i diÞ is

specified by node degree di ¼ jNij. Only for regular net-

works (i.e., d1 ¼ d2 ¼ � � � ¼ dn), (22) solves an average-

consensus problem. This is a rather restrictive condition

because most networks are not regular.

Another popular algorithm proposed in [13] (also used

in [14], [15]) is the following discrete-time consensus

algorithm for undirected networks:

xiðkþ 1Þ ¼ 1

1þ jNij
xiðkÞ þ

X
j2Ni

xjðkÞ
 !

(25)

which can be expressed as

xðkþ 1Þ ¼ ðIþ DÞ	1ðIþ AÞxðkÞ:
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Note that the stochastic Perron matrix P ¼ ðI þ
DÞ	1ðIþ AÞ is obtained from the following normalized

Laplacian matrix with � ¼ 1:

Ql ¼ I	 ðIþ DÞ	1ðIþ AÞ: (26)

This Laplacian is a modification of (23) and has the

drawback that it does not solve average-consensus problem

for general undirected networks.

Now, we demonstrate that algorithm (25) is equivalent

to (23) (and, thus, a special case of (7)). Let G be a graph

with adjacency matrix A and no self-loops, i.e., aii ¼ 0; 8i.
Then, the new adjacency matrix Al ¼ Iþ A corresponds to
a graph Gl that is obtained from G by adding n self-loops

with unit weights ðaii ¼ 1; 8iÞ. As a result, the corres-

ponding degree matrix of Gl is Dl ¼ Iþ D. Thus, the nor-

malized Laplacian of Gl in (26) is Ql ¼ I	 D	1
l Al. In other

words, the algorithm proposed by Jadbabaie et al. is

identical to the algorithm of Fax and Murray for a graph

with n self-loops. In both cases � ¼ 1 is used to obtain the

stochastic nonnegative matrix P.

Remark 5: A undirected cycle is not a counterexample

for discretization of _x ¼ 	Qlx with � ¼ 1. Since the Perron

matrix Pl ¼ ðIþ DÞ	1ðIþ AÞ is symmetric and primitive.

Example 2: In this example, we clarify that why P ¼
D	1A can be an unstable matrix for a connected graph G,

whereas Pl ¼ ðIþ DÞ	1ðIþ AÞ remains stable for the same
exact graph. for doing so, let us consider a bipartite graph G
with n ¼ 2m nodes and adjacency matrix

A ¼ 0m Jm

Jm 0m

� �
(27)

where 0m and Jm denote the m� m matrices of zeros and

ones, respectively. Note that D ¼ mIn and P ¼ D	1A ¼
ð1=mÞA. On the other hand, the Perron matrix of G with n
self-loops is

Pl ¼ ðIn þ DÞ	1ðIn þ AÞ ¼ 1

mþ 1

Im Jm

Jm Im

� �
:

Let v ¼ 12m be the vector of ones with 2m elements and

w ¼ colð1m;	1mÞ. Both v and w are eigenvectors of P
associated with eigenvalues 1 and 	1, respectively, due to

Pv ¼ v and Pw ¼ 	w. This proves that P is not a primitive
matrix and the limit limk!1 Pk does not exist (since P has

two eigenvalues with modulus 1).

In contrast, Pl does not suffer from this problem because

of the n nonzero diagonal elements. Again, v is an eigen-
vector of Pl associated with the eigenvalue 1, but Plw ¼
	ðm	 1Þ=ðmþ 1Þw and due to ðm	 1Þ=ðmþ 1Þ G 1 for

all m � 1, 	1 is no longer an eigenvalue of Pl.

Table 2 summarizes three types of graph Laplacians

used in systems and control theory. The alternative

forms of Laplacians in the second and third rows of

Table 2 are both special cases of L ¼ D	 A that is widely

used as the standard definition of Laplacian in algebraic
graph theory [23].

The algorithms in all three cases are in two forms

_x ¼ 	 Lx (28)

xðkþ 1Þ ¼ PxðkÞ: (29)

Based on Example 2, the choice of the discrete-time

consensus algorithm is not arbitrary. Only the first and the
third row of Table 2 guarantee stability of a discrete-time

linear system for all possible connected networks. The

second type requires a further analysis to verify whether P
is stable, or not.

F. Weighted-Average Consensus
The choice of the Laplacian for the continuous-time

consensus depends on the specific application of interest.
In cases that reaching an average-consensus is desired,

only L ¼ D	 A can be used. In case of weighted-average
consensus with a desired weighting vector � ¼ ð�1; . . . ; �nÞ,
the following algorithms can be used:

K _x ¼ 	Lx (30)

with K ¼ diagð�1; . . . ; �nÞ and L ¼ D	 A. This is equiva-

lent to a nodes with a variable rate of integration based on

the protocol

�i _xi ¼
X
j2Ni

aijðxj 	 xiÞ:

In the special case the weighting is proportional to the

node degrees, or K ¼ D, one obtains the second type of

Laplacian in Table 2, or _x ¼ 	D	1Lx ¼ 	ðI	 D	1AÞx.

Table 2 Forms of Laplacians
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G. Consensus Under Communication Time-Delays
Suppose that agent i receives a message sent by its

neighbor j after a time-delay of � . This is equivalent to a

network with a uniform one-hop communication time-

delay. The following consensus algorithm:

_xiðtÞ ¼
X
j2Ni

aij xjðt	 �Þ 	 xiðt	 �Þ
� �

(31)

was proposed in [10] to reach an average-consensus for

undirected graphs G.

Remark 6: Keep in mind that the algorithm

_xiðtÞ ¼
X
j2Ni

aij xjðt	 �Þ 	 xiðtÞ
� �

(32)

does not preserve the average �xðtÞ ¼ ð1=nÞ
P

i xiðtÞ in time
for a general graph. The same is true when the graph in

(31) is a general digraph. It turns out that for balanced

digraphs with 0–1 weights, �xðtÞ is an invariant quantity

along the solutions of (31).

The collective dynamics of the network can be

expressed as

_xðtÞ ¼ 	Lxðt	 �Þ:

Rewriting this equation after taking Laplace transform of

both sides, we get

XðsÞ ¼ HðsÞ
s

xð0Þ (33)

with a proper MIMO transfer function HðsÞ ¼ ðIn þ
ð1=sÞ expð	s�ÞLÞ	1. One can use Nyquist criterion to

verify the stability of HðsÞ. A similar criterion for stability

of formations was introduced by Fax and Murray [12]. The

following theorem provides an upper bound on the time-

delay such that stability of the network dynamics is main-

tained in presence of time-delays.

Theorem 4: (Olfati-Saber and Murray, 2004) The

algorithm in (31) asymptotically solves the average-

consensus problem with a uniform one-hop time-delay �
for all initial states if and only if 0 � � G �=2�n.

Proof: See the proof of Theorem 10 in [10]. h
Since �n G 2�, a sufficient condition for conver-

gence of the average-consensus algorithm in (31) is that
� G �=4�. In other words, there is a trade-off between

having a large maximum degree and robustness to time-

delays. Networks with hubs (having very large degrees)
that are commonly known as scale-free networks [96] are

fragile to time-delays. In contrast, random graphs [97] and

small-world networks [47], [89] are fairly robust to time-

delays since they do not have hubs. In conclusion, con-

struction of engineering networks with nodes that have

high degrees is not a good idea for reaching a consensus.

III . CONSENSUS IN SWITCHING
NETWORKS

In many scenarios, networked systems can possess a

dynamic topology that is time-varying due to node and link

failures/creations, packet-loss [40], [98], asynchronous

consensus [41], state-dependence [64], formation recon-

figuration [53], evolution [96], and flocking [19], [99].

Networked systems with a dynamic topology are
commonly known as switching networks. A switching

network can be modeled using a dynamic graph GsðtÞ
parameterized with a switching signal sðtÞ : R! J that

takes its values in an index set J ¼ f1; . . . ;mg. The

consensus mechanism on a network with a variable

topology becomes a linear switching system

_x ¼ 	LðGkÞx; (34)

with the topology index k ¼ sðtÞ 2 J and a Laplacian of the

type D	 A. The set of topologies of the network is � ¼
fG1;G2; . . . ;Gmg. First, we assume at any time instance,

the network topology is a balanced digraph (or undirected

graph) that is strongly connected. Let us denote �2ððL þ
LTÞ=2Þ by �2ðGkÞ for a topology dependent Laplacian L ¼
LðGkÞ. The following result provides the analysis of

average-consensus for dynamic networks with a perfor-

mance guarantee.

Theorem 5: (Olfati-Saber and Murray, 2004) Consider a

network of agents applying the consensus algorithm in

(34) with topologies Gk 2 �. Suppose every graph in � is a
balanced digraph that is strongly connected and let

��2 ¼ mink2J �2ðGkÞ. Then, for any arbitrary switching sig-

nal, the agents asymptotically reach an average-consensus

for all initial states with a speed faster or equal to ��2.

Moreover, �ð�Þ ¼ �T� is a common Lyapunov function for

the collective dynamics of the network.

Proof: See the proof of Theorem 9 in [10]. h
Note that � is a finite set with at most nðn	 1Þ

elements and this allows the definition of ��2. Moreover,

the use of normal Laplacians does not render the average

�x ¼ ð1=nÞ
P

i xi invariant in time, unless all graphs in � are

d-regular (all of their nodes have degree d). This is hardly

the case for various applications.

The following result on consensus for switching

networks does not require the necessity for connectivity
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in all time instances and is due to Jadbabaie et al. [13]. This
weaker form of network connectivity is crucial in analysis

of asynchronous consensus with performance guarantees

(which is currently an open problem). We need to re-

phrase the next result for the purpose of compatibility with

the notation used in this paper.

Consider the following discrete-time consensus

algorithm:

xkþ1 ¼ Psk
xk; t ¼ 0; 1; 2; . . . (35)

with sk 2 J. Let P ¼ fP1; . . . ; Pmg denote the set of Perron
matrices associated with a finite set of undirected graphs �
with n self-loops. We say a switching network with the set

of topologies � is periodically connected with a period N 9 1

if the unions of all graphs over a sequence of intervals

½j; jNÞ for j ¼ 0; 1; 2; . . . are connected graphs, i.e., Gj ¼
[jN	1

k¼j Gsk
is connected for j ¼ 0; 1; 2; . . ..

Theorem 6: (Jadbabaie, Lin, and Morse, 2003) Consider
the system in (35) with Psk

2 P for k ¼ 0; 1; 2; . . .. Assume

the switching network is periodically connected. Then,

limk!1 xk ¼ �1, or an alignment is asymptotically

reached.

Proof: See the proof of Theorem 2 in [13]. h
The solution of (35) can be explicitly expressed as

xt ¼
Yt

k¼0

Psk

 !
x0 ¼ 	tx0

with 	t ¼ Pst
� � � Ps2

Ps1
. the convergence of the consensus

algorithm in (35) depends on whether the infinite product

of nonnegative stochastic matrices Pst
� � � Ps2

Ps1
has a limit.

The problem of convergence of infinite product of

stochastic matrices has a long history and has been studied

by several mathematicians including Wolfowitz [100]. The

proof in [13] relies on Wolfowitz’s lemma:

Lemma 5: (Wolfowitz, 1963) Let P ¼ fP1; P2; . . . ; Pmg
be a finite set of primitive stochastic matrices such that for

any sequence of matrices Ps1
; Ps2

; . . . ; Psk
2 P with k � 1,

the product Psk
� � � Ps2

Ps1
is a primitive matrix. Then, there

exists a row vector w such that

lim
k!1

Psk
� � � Ps2

Ps1
¼ 1w: (36)

According to Wolfowitz’s lemma, we get limk!1 xk ¼
1ðwx0Þ ¼ �1 with � ¼ wx0. The vector w depends on the

switching sequence and cannot be determined a priori.

Thus, an alignment is asymptotically reached and the
group decision is an undetermined quantity in the convex

hull of all initial states.

Remark 7: Since normal Perron matrices in the form

ðIþ DÞ	1ðIþ AÞ are employed in [13], the agents (in

general) do not reach an average-consensus. The use of

Perron matrices in the form I	 �L with 0 G � G 1=
ð1þmaxk2J �ðGkÞÞ resolves this problem.

Recently, an extension of Theorem 6 with connectivity

of the union of graphs over an infinite interval has been

introduced by Moreau [14] (also, an extension is presented

in [15] for weighted graphs). Here, we rephrase a theorem

due to Moreau and present it based on notation. First, let

us define a less restrictive notion of connectivity of

switching networks compared to periodic connectivity. Let

� be a finite set of undirected graphs with n self-loops. We
say a switching networks with topologies in � is ultimately
connected if there exists an initial time k0 such that over

the infinite interval ½k0;1Þ the graph G ¼ [1k¼k0
Gsk

with

sk 2 J is connected.

Theorem 7: (Moreau, 2005) Consider an ultimately

connected switching network with undirected topologies

in � and dynamics (35). Assume Psk
2 P where P is the set

of normal Perron matrices associated with �. Then, a

consensus is globally asymptotically reached.

Proof: See the proof of Proposition 2 in [14]. h
Similarly, the algorithm analyzed in Proposition 2 of

[14] does not solve the f -consensus problem. This can be

resolved by using the first form of Perron matrices in

Table 2. The proof in [14] uses a nonquadratic Lyapunov

function and no performance measures for reaching a
consensus is presented.

IV. COOPERATION IN NETWORKED
CONTROL SYSTEMS

This section provides a system-theoretic framework for

addressing the problem of cooperative control of net-

worked multivehicle systems using distributed controllers.
On one hand, a multivehicle system represents a col-

lection of decision-making agents that each have limited

knowledge of both the environment and the state of the

other agents. On the other hand, the vehicles can influ-

ence their own state and interact with their environment

according to their dynamics which determines their

behavior.

The design goal is to execute tasks cooperatively
exercising both the decision-making and control capabilities

of the vehicles. In real-life networked multivehicle sys-

tems, there are a number of limitations including limited

sensing capabilities of the vehicles, network bandwidth

limitations, as well as interruptions in communications

due to packet-loss [40], [98] and physical disruptions to

the communication devices of the vehicle.

Olfati-Saber et al. : Consensus and Cooperation in Networked Multi-Agent Systems

Vol. 95, No. 1, January 2007 | Proceedings of the IEEE 227



The system framework we analyze is presented in a

schematic form in Fig. 3. The Kronecker product� between

two matrices P ¼ ½pij� and Q ¼ ½qij� is defined as

P� Q ¼ ½pijQ�: (37)

This is a block matrix with the ijth block of pijQ.

The dynamics of each vehicle, represented by PðsÞ, is
decoupled from the dynamics of other vehicles in the

networkVthus, the system transfer function In � PðsÞ. The

output of PðsÞ represents observable elements of the state of

each vehicle. Similarly, the controller of each vehicle,

represented by KðsÞ, is decoupled from the controller of

othersVthus, the controller transfer function In � KðsÞ.
The coupling occurs through cooperation via the consensus
feedback. Since all vehicles apply the same controller, they
form a cooperative team of vehicles with consensus feed-

back gain matrix L� Im. This cooperation requires sharing

of information among vehicles, either through interagent

sensing, or explicit communication of information.

A. Collective Dynamics of Multivehicle Formations
Let us consider a group of n vehicles, whose (identical)

linear dynamics are denoted by

_xi ¼ Axi þ Bui (38)

where xi 2 Rm, ui 2 Rp are the vehicle states and controls,

and i 2 V ¼ f1; . . . ; ng is the index for the vehicles in the

group. Each vehicle receives the following measurements:

yi ¼ C1xi (39)

zij ¼ C2ðxi 	 xjÞ; j 2 Ni (40)

Thus, yi 2 Rk represents internal state measurements, and
zij 2 Rl represents external state measurements relative to

other vehicles. We assume that Ni 6¼ ;, meaning that each
vehicle can sense at least one other vehicle. Note that a

single vehicle cannot drive all the zij terms to zero simul-

taneously; the errors must be fused into a single signal

error measurement

zi ¼
1

jNij
X
j2Ni

zij (41)

where jNij is the cardinality of the set Ni. We also

define a distributed controller K which maps yi, zi to ui

and has internal states vi 2 Rs, represented in state-space

form by

_vi ¼ Fvi þ G1yi þ G2zi

ui ¼Hvi þ D1yi þ D2zi: (42)

Now, we consider the collective system of all n vehicles.

For dimensional compatibility, we use the Kronecker

product to assemble the matrices governing the formation

behavior. The collective dynamics of n vehicles can be

represented as follows:

_x
_v

� �
¼ M11 M12

M21 M22

� �
x
v

� �
: (43)

where the Mij’s are block matrices defined as a function of

the normalized graph Laplacian L (i.e., the second type in

Table 2) and other matrices as follows:

M11 ¼ In � ðAþ BD1C1Þ þ ðIn � BD2C2ÞðL� ImÞ
M12 ¼ In � BH

M21 ¼ In � G1C1 þ ðIn � G2C2ÞðL� ImÞ;
M22 ¼ In � F:

B. Stability of Relative Dynamics of Formations
The main stability result on relative-position-based

formations of networked vehicles is due to Fax and Murray

[12] and can be stated as follows:

Theorem 8: (Fax and Murray, 2004) A local controller K
stabilizes the formation dynamics in (43) if and only if it
stabilizes all the n systems

_xi ¼ Axi þ Bui

yi ¼ C1xi

zi ¼�iC2xi (44)

Fig. 3. The block diagram of cooperative and distributed

formation control of networked multivehicle systems.

The Kronecker product � is defined in (37).
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where f�ign
i¼1 is the set of eigenvalues of the normalized

graph Laplacian L.

Theorem 8 reveals that the stability of a formation of n
identical vehicles can be verified by stability analysis of a

single vehicle with the same dynamics and an output that

is scaled by the eigenvalues of the (normalized) Laplacian
of the network. Note that �i may be complex, leading to a

complex-valued LTI system in the above formulation. This

formalism lends itself to applications of tools from robust

control theory [101].

Fig. 4. (a) A small-world with 300 links, (b) a regular lattice with interconnections to k ¼ 3 nearest neighbors and 300 links,

(c) a regular lattice with interconnections to k ¼ 10 nearest neighbors and 1000 links; (d), (e), (f) the state evolution corresponding to

networks in (a), (b), and (c), respectively. [Note: only the links of a single node are depicted in parts (b) and (c).]
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The zero eigenvalue of L can be interpreted as the

unobservability of absolute motion of the formation in the
measurements zi. A prudent design strategy is to close an

inner loop around yi such that the internal vehicle dyna-

mics are stable, and then to close an outer loop around zi

which achieves desired formation performance. For the

remainder of this section, we concern ourselves solely with

the outer loop. Hence, we assume from now on that C1 is

empty and that A has no eigenvalues in the open right half

plane. We do not wish to exclude eigenvalues along the j!
axis because they are characteristic of vehicle systems,

representing the directions in which motion is possible.

The controller K is also presumed to be stable. If K stabi-

lizes the system in (44) for all �i other than the zero

eigenvalue, we say that it stabilizes the relative dynamics of
a formation.

Let us refer to the system from ui to yi as P, its transfer

function as PðsÞ, and that of the controller from yi to ui as
KðsÞ. For single-input single-output (SISO) systems, we

can state a second version of Theorem 8 which is useful for

stability and robustness analysis.

Theorem 9: (Fax and Murray, 2004) Suppose P is a

SISO system. Then K stabilizes the relative dynamics of

a formation if and only if the net encirclement of 	1=�i

by the Nyquist plot of 	KðsÞPðsÞ is zero for all non-
zero �i.

The application of the above theorem is demonstrated

in Section V-B.

V. SIMULATIONS

In this section, we present the simulation results for

three applications of consensus problems in networked
systems.

A. Consensus in Complex Networks
In this experiment, we demonstrate the speed of

convergence of consensus algorithm (7) for three different

networks with n ¼ 100 nodes in Fig. 4. The initial state is

set to xið0Þ ¼ i for i ¼ 1; . . . ; 100. In Fig. 4(a) and (c), the

network has 300 links and on average each node

communicates with �d ¼ 6 neighbors. Apparently, the

group with a small-world network topology reaches an

average-consensus more than �2ðGaÞ=�2ðGcÞ � 22 times

faster. To create a regular lattice with comparable alge-
braic connectivity, every node has to communicate with 20

other nodes on average to gain an algebraic connectivity

�2ðGeÞ=�2ðGaÞ � 1:2 that is close to that of the small-

world network. Of course, the regular network in Fig. 4(e)

has 3.33 times as many links as the small-world network.

For further information on small-world networks, we refer

the reader to [47], [89], and [102].

B. Multivehicle Formation Control
Consider a system of the form PðsÞ ¼ e	sT=s2, model-

ing a second-order system with time-delay and suppose

this system has been stabilized with a proportional-

derivative (PD) controller. Fig. 5 shows a formation graph

and the Nyquist plot of KðsÞPðsÞ with the location of

Laplacian eigenvalues. The Bo[ locations correspond to the

eigenvalues of the graph defined by the solid arcs in Fig. 5,
and the F�_ locations are for eigenvalues of the graph

when the dashed arc is included as well. This example

clearly shows the effect the formation has on stability

margins. The standard Nyquist plot reveals a system with

reasonable stability marginsVabout 8 dB and 45�. When

one accounts for the effects of the formation, however, one

sees that for the Bo[ formation, the stability margins are

substantially degraded, and for the B�[ formation, the
system is in fact unstable. Interestingly, the formation is

Fig. 5. (a) Interconnection graph of a multivehicle formation and (b) the Nyquist plot.
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rendered unstable when additional information (its
position relative to vehicle 6) is used by vehicle 1. This is

primarily due to the fact that changing the topology of a

network directly effects the location of eigenvalues of the

Laplacian matrix. This example clarifies that the stability

analysis of formations of networked vehicles with directed

switching topology in presence of time-delays is by no

means trivial.

VI. CONCLUSION

A theoretical framework was provided for analysis of

consensus algorithms for networked multi-agent systems

with fixed or dynamic topology and directed information

flow. The connections between consensus problems and

several applications were discussed that include synchro-

nization of coupled oscillators, flocking, formation control,
fast consensus in small-world networks, Markov processes

and gossip-based algorithms, load balancing in networks,

rendezvous in space, distributed sensor fusion in sensor

networks, and belief propagation. The role of Bcoop-

eration[ in distributed coordination of networked auton-

omous systems was clarified and the effects of lack of

cooperation was demonstrated by an example. It was

demonstrated that notions such as graph Laplacians,

nonnegative stochastic matrices, and algebraic connectivity
of graphs and digraphs play an instrumental role in analysis

of consensus algorithms. We proved that algorithms

introduced by Jadbabaie et al. and Fax and Murray are

identical for graphs with n self-loops and are both special

cases of the consensus algorithm of Olfati-Saber and

Murray. The notion of Perron matrices was introduced as

the discrete-time counterpart of graph Laplacians in con-

sensus protocols. A number of fundamental spectral pro-
perties of Perron matrices were proved. This led to a unified

framework for expression and analysis of consensus

algorithms in both continuous-time and discrete-time.

Simulation results for reaching a consensus in small-worlds

versus lattice-type nearest-neighbor graphs and cooperative

control of multivehicle formations were presented. h
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