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Updates Oct. 14th

• Coffee/tea signup sheet posted (optional)

• Next is Tuesday @3 pm. Meet in CSE Atrium

• Lab 1 due in 1 week

• TA office hours Mon, Fri before class
(CSE 002)

• My office hours Mon,Wed after class
(CSE 210)
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Checkpoint
• Symmetric cryptography
• Both sides know shared key, no one else knows 

anything. Can encrypt, decrypt, sign/MAC, 
verify
• Computationally lightweight
• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Everyone has a public key that everyone else knows; 

and a paired secret key that is private
• Public key can encrypt; only secret key can decrypt
• Secret key can sign/MAC, public key can verify
• Computationally expensive
• Challenge: How do you validate a public key?
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Checkpoint

• Where are public keys from?
• One solution: keys for Certificate 

Authorities a priori known by browser, OS, 
etc.

• Where are shared keys from?
• In person exchange, snail mail, etc.
• If we have verifiable public/private keys:

key exchange protocol generates a shared 
key for symmetric cryptography
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Kerckhoffs’s Principle

 Security of a cryptographic object should depend 
only on the secrecy of the secret (private) key

 Security should not depend on the secrecy of the 
algorithm itself.
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How cryptosystems work today
 Layered approach:

• Cryptographic primitives, like block ciphers, stream ciphers, 
hash functions, and one-way trapdoor permutations

• Cryptographic protocols, like CBC mode encryption, CTR mode 
encryption, HMAC message authentication

 Public algorithms (Kerckhoff’s Principle)
 Security proofs based on assumptions (not this course)

block cipher hash functions

CBC encryption CTR encryption HMAC auth.

OCB auth. encryption CBC-MAC auth.
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Attack Scenarios for Encryption

Ciphertext-Only
Known Plaintext
Chosen Plaintext
Chosen Ciphertext (and Chosen Plaintext)

(General advice:  Target strongest level of privacy 
possible -- even if not clear why -- for extra 
“safety”)
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Chosen-Plaintext Attack
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Chosen-Plaintext Attack

key

key
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Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

key

key
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Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

encrypt(key,PIN)

PIN is encrypted and
transmitted to bank

key

key
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Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

encrypt(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

key

key
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Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

encrypt(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value

key

key

Saturday, October 15, 11



Attack Scenarios for Integrity

What do you think these scenarios should be?

Saturday, October 15, 11



Perfect Secrecy

Cipher achieves perfect secrecy if and only if 
there are as many possible keys as possible plaintexts,
and every key is equally likely   (Claude Shannon)
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One-Time Pad

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 
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Advantages of One-Time Pad

Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, 

regardless of attacker’s computational resources
• …as long as the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
– But how does the sender communicate the key to receiver?
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Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 

Disadvantage #1:  Keys as long as messages.
Impractical in most scenarios 
Still used by intelligence communities
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Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 

Disadvantage #2:  No integrity protection
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Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 

Disadvantage #2:  No integrity protection

0
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Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 

Disadvantage #2:  No integrity protection

0
0
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Disadvantages

= 00000000…---------------

= 00110010…
 00110010… ⊕

00110010… =
 ⊕

   00000000…

Disadvantage #3:  Keys cannot be reused

= 11111111…---------------

= 00110010…
 11001101… ⊕

00110010… =
 ⊕

   11111111…

P1

P2

C1

C2

Learn relationship between plaintexts: 
C1⊕C2 = (P1⊕K)⊕(P2⊕K) = (P1⊕P2)⊕(K⊕K) = P1⊕P2
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• Generate a random bitmap

• Encode 0 as:

• Encode 1 as:

Visual Cryptography
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• Take a black and white bitmap image

• For a white pixel, send the same as the mask

• For a black pixel, send the opposite of the mask

Visual Cryptography

or

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html 
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• http://www.cl.cam.ac.uk/~fms27/vck/face.gif

Visual Cryptography

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html 
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Reducing Keysize 

What do we do when we can’t pre-share huge 
keys?
• When OTP is unrealistic

We use special cryptographic primitives
• Single key can be reused (with some restrictions)
• But no longer provable secure (in the sense of the OTP)

Examples:  Block ciphers, stream ciphers
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Background:  Permutation

0
1
2

3

0
1
2

3
For N-bit input, 2N! possible permutations
 Idea for how to use a keyed permutation: split 

plaintext into blocks; for each block use secret key 
to pick a permutation
• Without the key, permutation should “look random”
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Block Ciphers

Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES
• Each key defines a different permutation
• Same key is reused for each block (can use short keys)

Plaintext

Ciphertext

block
cipherKey
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Block Cipher Security

Result should look like a random permutation on the 
inputs
• Recall:  not just shuffling bits.  N-bit block cipher 

permutes over 2N inputs.

Only computational guarantee of secrecy
• Not impossible to break, just very expensive

– If there is no efficient algorithm (unproven assumption!), then 
can only break by brute-force, try-every-possible-key search

• Time and cost of breaking the cipher exceed the value 
and/or useful lifetime of protected information
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Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key
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Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key
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Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion
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Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms 
its input bits in a 
“random-looking” way 
to provide diffusion 
(spread plaintext bits 
throughout ciphertext)
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Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms 
its input bits in a 
“random-looking” way 
to provide diffusion 
(spread plaintext bits 
throughout ciphertext)
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Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms 
its input bits in a 
“random-looking” way 
to provide diffusion 
(spread plaintext bits 
throughout ciphertext)

repeat for several rounds
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Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms 
its input bits in a 
“random-looking” way 
to provide diffusion 
(spread plaintext bits 
throughout ciphertext)

repeat for several rounds

Block of ciphertext
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Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms 
its input bits in a 
“random-looking” way 
to provide diffusion 
(spread plaintext bits 
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible 

(for decryption)
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Feistel Structure (Stallings Fig 2.2)

⊕

⊕
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DES
Feistel structure

• “Ladder” structure: split input in half, put one half 
through the round and XOR with the other half

• After 3 random rounds, ciphertext indistinguishable from 
a random permutation if internal F function is a 
pseudorandom function (Luby & Rackoff)

DES: Data Encryption Standard
• Feistel structure
• Invented by IBM, issued as federal standard in 1977
• 64-bit blocks, 56-bit key + 8 bits for parity
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DES and 56 bit keys (Stallings Tab 2.2)

56 bit keys are quite short

1999:  EFF DES Crack + distibuted machines
• < 24 hours to find DES key

DES ---> 3DES
• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)
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Advanced Encryption Standard (AES)

New federal standard as of 2001
Based on the Rijndael algorithm
128-bit blocks, keys can be 128, 192 or 256 bits
Unlike DES, does not use Feistel structure

• The entire block is processed during each round
Design uses some very nice mathematics
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