CSE 484 / CSE M 584 (Autumn 2011)

Cryptography (cont.)

Daniel Halperin Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Updates Oct. I4th

- Coffee/tea signup sheet posted (optional)
- Next is Tuesday @3 pm. Meet in CSE Atrium
- Lab I due in I week
- TA office hours Mon, Fri before class (CSE 002)
- My office hours Mon,Wed after class (CSE 2IO)

Checkpoint

- Symmetric cryptography
- Both sides know shared key, no one else knows anything. Can encrypt, decrypt, sign/MAC, verify
- Computationally lightweight
- Challenge: How do you privately share a key?
- Asymmetric cryptography
- Everyone has a public key that everyone else knows; and a paired secret key that is private
- Public key can encrypt; only secret key can decrypt
- Secret key can sign/MAC, public key can verify
- Computationally expensive
- Challenge: How do you validate a public key?

Checkpoint

- Where are public keys from?
- One solution: keys for Certificate Authorities a priori known by browser, OS, etc.
- Where are shared keys from?
- In person exchange, snail mail, etc.
- If we have verifiable public/private keys: key exchange protocol generates a shared key for symmetric cryptography

Kerckhoffs's Principle

- Security of a cryptographic object should depend only on the secrecy of the secret (private) key
- Security should not depend on the secrecy of the algorithm itself.

How cryptosystems work today

- Layered approach:
- Cryptographic primitives, like block ciphers, stream ciphers, hash functions, and one-way trapdoor permutations
- Cryptographic protocols, like CBC mode encryption, CTR mode encryption, HMAC message authentication
- Public algorithms (Kerckhoff's Principle)
- Security proofs based on assumptions (not this course)

Attack Scenarios for Encryption

- Ciphertext-Only
- Known Plaintext
- Chosen Plaintext
-Chosen Ciphertext (and Chosen Plaintext)
- (General advice: Target strongest level of privacy possible -- even if not clear why -- for extra "safety")

Chosen-Plaintext Attack

Chosen-Plaintext Attack

Chosen-Plaintext Attack

Chosen-Plaintext Attack

Chosen-Plaintext Attack

Chosen-Plaintext Attack

... repeat for any PIN value

Attack Scenarios for Integrity

What do you think these scenarios should be?

Perfect Secrecy

Cipher achieves perfect secrecy if and only if there are as many possible keys as possible plaintexts, and every key is equally likely (Claude Shannon)

One-Time Pad

Advantages of One-Time Pad

Easy to compute

- Encryption and decryption are the same operation
- Bitwise XOR is very cheap to compute
- As secure as theoretically possible
- Given a ciphertext, all plaintexts are equally likely, regardless of attacker's computational resources
- ...as long as the key sequence is truly random
- True randomness is expensive to obtain in large quantities
- ...as long as each key is same length as plaintext
- But how does the sender communicate the key to receiver?

Disadvantages

Disadvantage \#1: Keys as long as messages. Impractical in most scenarios
Still used by intelligence communities

Disadvantages

Disadvantage \#2: No integrity protection

Disadvantages

Disadvantage \#2: No integrity protection

Disadvantages

Disadvantage \#2: No integrity protection

Disadvantages

Disadvantage \#3: Keys cannot be reused

Learn relationship between plaintexts:
$\mathrm{C} 1 \oplus \mathrm{C} 2=(\mathrm{P} 1 \oplus \mathrm{~K}) \oplus(\mathrm{P} 2 \oplus \mathrm{~K})=(\mathrm{P} 1 \oplus \mathrm{P} 2) \oplus(\mathrm{K} \oplus \mathrm{K})=\mathrm{P} 1 \oplus \mathrm{P} 2$

Visual Cryptography

- Generate a random bitmap
- Encode 0 as:
- Encode I as:

Visual Cryptography

- Take a black and white bitmap image
- For a white pixel, send the same as the mask

- For a black pixel, send the opposite of the mask

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html

Visual Cryptography

- http://www.cl.cam.ac.uk/~fms27/vck/face.gif

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html

Reducing Keysize

- What do we do when we can't pre-share huge keys?
- When OTP is unrealistic
- We use special cryptographic primitives
- Single key can be reused (with some restrictions)
- But no longer provable secure (in the sense of the OTP)

Examples: Block ciphers, stream ciphers

Background: Permutation

\rightarrow For N-bit input, 2^{N} ! possible permutations

- Idea for how to use a keyed permutation: split plaintext into blocks; for each block use secret key to pick a permutation
- Without the key, permutation should "look random"

Block Ciphers

- Operates on a single chunk ("block") of plaintext
- For example, 64 bits for DES, 128 bits for AES
- Each key defines a different permutation
- Same key is reused for each block (can use short keys)

Block Cipher Security

Result should look like a random permutation on the inputs

- Recall: not just shuffling bits. N-bit block cipher permutes over 2^{N} inputs.
- Only computational guarantee of secrecy
- Not impossible to break, just very expensive
- If there is no efficient algorithm (unproven assumption!), then can only break by brute-force, try-every-possible-key search
- Time and cost of breaking the cipher exceed the value and/or useful lifetime of protected information

Block Cipher Operation (Simplified)

Block of plaintext
Key

S	S	S	S
S	S	S	S
	S		

S	S	S	S	

Block Cipher Operation (Simplified)

$$
\begin{array}{|l|l|l|l|}
\hline \mathrm{S} & \mathrm{~S} & \mathrm{~s} & \mathrm{~S} \\
\hline
\end{array}
$$

Block Cipher Operation (Simplified)

$$
\begin{array}{|l|l|l|l|}
\hline \mathrm{S} & \mathrm{~S} & \mathrm{~S} & \mathrm{~S} \\
& \\
\hline
\end{array}
$$

Block Cipher Operation (Simplified)

Procedure must be reversible (for decryption)

Feistel Structure (Stallings Fig 2.2)

DES

- Feistel structure
- "Ladder" structure: split input in half, put one half through the round and XOR with the other half
- After 3 random rounds, ciphertext indistinguishable from a random permutation if internal F function is a pseudorandom function (Luby \& Rackoff)
- DES: Data Encryption Standard
- Feistel structure
- Invented by IBM, issued as federal standard in 1977
- 64-bit blocks, 56 -bit key +8 bits for parity

DES and 56 bit keys (Stallings Tab 2.2)

- 56 bit keys are quite short

Key Size (bits)	Number of Alternative Keys	Time required at 1 encryption/ $\boldsymbol{\mu} \mathbf{s}$	Time required at 10^{6} encryptions $/ \boldsymbol{\mu} \mathbf{s}$
32	$2^{32}=4.3 \times 10^{9}$	$2^{31} \mu \mathrm{~s}=35.8$ minutes	2.15 milliseconds
56	$2^{56}=7.2 \times 10^{16}$	$2^{55} \mu \mathrm{~s}=1142$ years	10.01 hours
128	$2^{128}=3.4 \times 10^{38}$	$2^{127} \mu \mathrm{~s}=5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168}=3.7 \times 10^{50}$	$2^{167} \mu \mathrm{~s}=5.9 \times 10^{36}$ years	5.9×10^{30} years
26 characters (permutation)	$26!=4 \times 10^{26}$	$2 \times 10^{26} \mu \mathrm{~s}=6.4 \times 10^{12}$ years	6.4×10^{6} years

1999: EFF DES Crack + distibuted machines

- < 24 hours to find DES key
- DES ---> 3DES
- 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

Advanced Encryption Standard (AES)

- New federal standard as of 2001
- Based on the Rijndael algorithm

128-bit blocks, keys can be 128, 192 or 256 bits

- Unlike DES, does not use Feistel structure
- The entire block is processed during each round
- Design uses some very nice mathematics

