
Daniel Halperin
Tadayoshi Kohno

CSE 484 / CSE M 584 (Autumn 2011)

Cryptography (cont.)

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Saturday, October 15, 11

Updates Oct. 14th

• Coffee/tea signup sheet posted (optional)

• Next is Tuesday @3 pm. Meet in CSE Atrium

• Lab 1 due in 1 week

• TA office hours Mon, Fri before class
(CSE 002)

• My office hours Mon,Wed after class
(CSE 210)

Saturday, October 15, 11

Checkpoint
• Symmetric cryptography
• Both sides know shared key, no one else knows

anything. Can encrypt, decrypt, sign/MAC,
verify
• Computationally lightweight
• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Everyone has a public key that everyone else knows;

and a paired secret key that is private
• Public key can encrypt; only secret key can decrypt
• Secret key can sign/MAC, public key can verify
• Computationally expensive
• Challenge: How do you validate a public key?

Saturday, October 15, 11

Checkpoint

• Where are public keys from?
• One solution: keys for Certificate

Authorities a priori known by browser, OS,
etc.

• Where are shared keys from?
• In person exchange, snail mail, etc.
• If we have verifiable public/private keys:

key exchange protocol generates a shared
key for symmetric cryptography

Saturday, October 15, 11

Kerckhoffs’s Principle

 Security of a cryptographic object should depend
only on the secrecy of the secret (private) key

 Security should not depend on the secrecy of the
algorithm itself.

Saturday, October 15, 11

How cryptosystems work today
 Layered approach:

• Cryptographic primitives, like block ciphers, stream ciphers,
hash functions, and one-way trapdoor permutations

• Cryptographic protocols, like CBC mode encryption, CTR mode
encryption, HMAC message authentication

 Public algorithms (Kerckhoff’s Principle)
 Security proofs based on assumptions (not this course)

block cipher hash functions

CBC encryption CTR encryption HMAC auth.

OCB auth. encryption CBC-MAC auth.

Saturday, October 15, 11

Attack Scenarios for Encryption

Ciphertext-Only
Known Plaintext
Chosen Plaintext
Chosen Ciphertext (and Chosen Plaintext)

(General advice: Target strongest level of privacy
possible -- even if not clear why -- for extra
“safety”)

Saturday, October 15, 11

Chosen-Plaintext Attack

Saturday, October 15, 11

Chosen-Plaintext Attack

key

key

Saturday, October 15, 11

Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

key

key

Saturday, October 15, 11

Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

encrypt(key,PIN)

PIN is encrypted and
transmitted to bank

key

key

Saturday, October 15, 11

Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

encrypt(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

key

key

Saturday, October 15, 11

Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

encrypt(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value

key

key

Saturday, October 15, 11

Attack Scenarios for Integrity

What do you think these scenarios should be?

Saturday, October 15, 11

Perfect Secrecy

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts,
and every key is equally likely (Claude Shannon)

Saturday, October 15, 11

One-Time Pad

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Saturday, October 15, 11

Advantages of One-Time Pad

Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely,

regardless of attacker’s computational resources
• …as long as the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
– But how does the sender communicate the key to receiver?

Saturday, October 15, 11

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #1: Keys as long as messages.
Impractical in most scenarios
Still used by intelligence communities

Saturday, October 15, 11

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #2: No integrity protection

Saturday, October 15, 11

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #2: No integrity protection

0

Saturday, October 15, 11

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #2: No integrity protection

0
0

Saturday, October 15, 11

Disadvantages

= 00000000…---------------

= 00110010…
 00110010… ⊕

00110010… =
 ⊕

 00000000…

Disadvantage #3: Keys cannot be reused

= 11111111…---------------

= 00110010…
 11001101… ⊕

00110010… =
 ⊕

 11111111…

P1

P2

C1

C2

Learn relationship between plaintexts:
C1⊕C2 = (P1⊕K)⊕(P2⊕K) = (P1⊕P2)⊕(K⊕K) = P1⊕P2

Saturday, October 15, 11

• Generate a random bitmap

• Encode 0 as:

• Encode 1 as:

Visual Cryptography

Saturday, October 15, 11

Saturday, October 15, 11

• Take a black and white bitmap image

• For a white pixel, send the same as the mask

• For a black pixel, send the opposite of the mask

Visual Cryptography

or

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html
Saturday, October 15, 11

http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html
http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html

• http://www.cl.cam.ac.uk/~fms27/vck/face.gif

Visual Cryptography

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html
Saturday, October 15, 11

http://www.cl.cam.ac.uk/~fms27/vck/face.gif
http://www.cl.cam.ac.uk/~fms27/vck/face.gif
http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html
http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html

Reducing Keysize

What do we do when we can’t pre-share huge
keys?
• When OTP is unrealistic

We use special cryptographic primitives
• Single key can be reused (with some restrictions)
• But no longer provable secure (in the sense of the OTP)

Examples: Block ciphers, stream ciphers

Saturday, October 15, 11

Background: Permutation

0
1
2

3

0
1
2

3
For N-bit input, 2N! possible permutations
 Idea for how to use a keyed permutation: split

plaintext into blocks; for each block use secret key
to pick a permutation
• Without the key, permutation should “look random”

Saturday, October 15, 11

Block Ciphers

Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES
• Each key defines a different permutation
• Same key is reused for each block (can use short keys)

Plaintext

Ciphertext

block
cipherKey

Saturday, October 15, 11

Block Cipher Security

Result should look like a random permutation on the
inputs
• Recall: not just shuffling bits. N-bit block cipher

permutes over 2N inputs.

Only computational guarantee of secrecy
• Not impossible to break, just very expensive

– If there is no efficient algorithm (unproven assumption!), then
can only break by brute-force, try-every-possible-key search

• Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information

Saturday, October 15, 11

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Saturday, October 15, 11

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Saturday, October 15, 11

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Saturday, October 15, 11

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

Saturday, October 15, 11

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

Saturday, October 15, 11

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Saturday, October 15, 11

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext

Saturday, October 15, 11

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible

(for decryption)

Saturday, October 15, 11

Feistel Structure (Stallings Fig 2.2)

⊕

⊕

Saturday, October 15, 11

DES
Feistel structure

• “Ladder” structure: split input in half, put one half
through the round and XOR with the other half

• After 3 random rounds, ciphertext indistinguishable from
a random permutation if internal F function is a
pseudorandom function (Luby & Rackoff)

DES: Data Encryption Standard
• Feistel structure
• Invented by IBM, issued as federal standard in 1977
• 64-bit blocks, 56-bit key + 8 bits for parity

Saturday, October 15, 11

DES and 56 bit keys (Stallings Tab 2.2)

56 bit keys are quite short

1999: EFF DES Crack + distibuted machines
• < 24 hours to find DES key

DES ---> 3DES
• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

Saturday, October 15, 11

Advanced Encryption Standard (AES)

New federal standard as of 2001
Based on the Rijndael algorithm
128-bit blocks, keys can be 128, 192 or 256 bits
Unlike DES, does not use Feistel structure

• The entire block is processed during each round
Design uses some very nice mathematics

Saturday, October 15, 11

