CSE 484 / CSE M 584 (Autumn 2011)

Asymmetric Cryptography

Daniel Halperin Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

(Reminder:) Symmetric Cryptography

- 1 secret key, shared between sender/receiver
- Repeat fast and simple operations lots of times (rounds) to mix up key and ciphertext

Why do we think it is secure? (simplistic)

- If we do lots and lots and lots of mixing, no simple formula (and reversible) describing the whole process (cryptographic weakness).
- Mix in ways we think it's hard to short-circuit all the rounds. Especially non-linear mixing, e.g., Sboxes.
- Some math gives us confidence in these assumptions

Public Key Cryptography

Basic Problem

<u>Given</u>: Everybody knows Bob's public key Only Bob knows the corresponding private key

<u>Goals</u>: 1. Alice wants to send a secret message to Bob 2. Bob wants to authenticate himself

Public-Key Cryptography

- Everyone has 1 private key and 1 public key
- Mathematical relationship between private and public keys
- Why do we think it is secure? (simplistic)
 - Relies entirely on problems we believe are "hard"

Applications of Public-Key Crypto

Encryption for confidentiality

- <u>Anyone</u> can encrypt a message
 - With symmetric crypto, must know secret key to encrypt
- Only someone who knows private key can decrypt
- Key management is simpler (or at least different)
 - Secret is stored only at one site: good for open environments
- Digital signatures for authentication
 - Can "sign" a message with your private key
- Session key establishment
 - Exchange messages to create a secret session key
 - Then switch to symmetric cryptography (why?)

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
<u>Public</u> info: p and g

- p is a large prime number, g is a generator of Z_p^*
 - $-Z_p^*=\{1, 2 \dots p-1\}; \forall a \in Z_p^* \exists i \text{ such that } a=g^i \mod p$

- Modular arithmetic: numbers "wrap around" after they reach p

Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem:

given g^x mod p, it's hard to extract x

- There is no known <u>efficient</u> algorithm for doing this
- This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:

given g^x and g^y, it's hard to compute g^{xy} mod p • ... unless you know x or y, in which case it's easy

Decisional Diffie-Hellman (DDH) problem:

given g^x and g^y, it's hard to tell the difference between g^{xy} mod p and g^r mod p where r is random

Properties of Diffie-Hellman

- Assuming DDH problem is hard, Diffie-Hellman protocol is a secure key establishment protocol against <u>passive</u> attackers
 - Eavesdropper can't tell the difference between established key and a random value
 - Can use new key for symmetric cryptography
 - Approx. 1000 times faster than modular exponentiation
- Diffie-Hellman protocol (by itself) does not provide authentication

Properties of Diffie-Hellman

- DDH: not true for integers mod p, but true for other groups
- DL problem in p can be broken down into DL problems for subgroups, if factorization of p-1 is known.
- Common recommendation:
 - Choose p = 2q+1 where q is also a large prime.
 - Pick a g that generates a subgroup of order q in Z_p^*
 - DDH is hard for this group
 - (OK to not know all the details of why for this course.)
 - Hash output of DH key exchange to get the key

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets

Public info: p and q

• p, q are large prime numbers, p=2q+1, g a generator for the subgroup of order q

– <u>Modular arithmetic</u>: numbers "wrap around" after they reach p

Compute $k=H((q^{y})^{x})=H(q^{xy} \mod p)$ Compute $k=H((q^{x})^{y})=H(q^{xy} \mod p)$

Requirements for Public-Key Encryption

- Key generation: computationally easy to generate a pair (public key PK, private key SK)
 - Computationally infeasible to determine private key SK given only public key PK
- Encryption: given plaintext M and public key PK, easy to compute ciphertext C=E_{PK}(M)
- Decryption: given ciphertext C=E_{PK}(M) and private key SK, easy to compute plaintext M
 - Infeasible to compute M from C without SK
 - Even infeasible to learn partial information about M
 - <u>Trapdoor</u> function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts

- ◆ Euler totient function φ(n) where n≥1 is the number of integers in the [1,n] interval that are relatively prime to n
 - Two numbers are relatively prime if their greatest common divisor (gcd) is 1
- Euler's theorem:
 - if $a \in \mathbb{Z}_n^*$, then $a^{\varphi(n)} = 1 \mod n$

 Z_n^* : multiplicative group of integers mod n (integers relatively prime to n)

Special case: Fermat's Little Theorem if p is prime and gcd(a,p)=1, then a^{p-1}=1 mod p

RSA Cryptosystem

Key generation:

- Generate large primes p, q
 - Say, 1024 bits each (need primality testing, too)
- Compute n=pq and φ(n)=(p-1)(q-1)
- Choose small e, relatively prime to $\varphi(n)$

- Typically, e=3 or $e=2^{16}+1=65537$ (why?)

- Compute unique d such that $ed = 1 \mod \varphi(n)$
- Public key = (e,n); private key = (d,n)
- Encryption of m: $c = m^e \mod n$
 - Modular exponentiation by repeated squaring

• Decryption of c: $c^d \mod n = (m^e)^d \mod n = m$