Asymmetric Cryptography

Daniel Halperin Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

(Reminder:) Symmetric Cryptography

- 1 secret key, shared between sender/receiver
- Repeat fast and simple operations lots of times (rounds) to mix up key and ciphertext
Why do we think it is secure? (simplistic)
- If we do lots and lots and lots of mixing, no simple formula (and reversible) describing the whole process (cryptographic weakness).
- Mix in ways we think it's hard to short-circuit all the rounds. Especially non-linear mixing, e.g., Sboxes.
- Some math gives us confidence in these assumptions

Public Key Cryptography

Basic Problem

Given: Everybody knows Bob's public key
Only Bob knows the corresponding private key
Goals: 1. Alice wants to send a secret message to Bob 2. Bob wants to authenticate himself

Public-Key Cryptography

- Everyone has 1 private key and 1 public key
- Mathematical relationship between private and public keys
- Why do we think it is secure? (simplistic)
- Relies entirely on problems we believe are "hard"

Applications of Public-Key Crypto

- Encryption for confidentiality
- Anyone can encrypt a message
- With symmetric crypto, must know secret key to encrypt
- Only someone who knows private key can decrypt
- Key management is simpler (or at least different)
- Secret is stored only at one site: good for open environments
- Digital signatures for authentication
- Can "sign" a message with your private key
- Session key establishment
- Exchange messages to create a secret session key
- Then switch to symmetric cryptography (why?)

Diffie-Hellman Protocol (1976)

- Alice and Bob never met and share no secrets
- Public info: p and g
- p is a large prime number, g is a generator of $Z_{p}{ }^{*}$
$-Z_{p}^{*}=\{1,2 \ldots p-1\} ; \forall a \in Z_{p}^{*} \exists i$ such that $a=g^{i} \bmod p$
- Modular arithmetic: numbers "wrap around" after they reach p

Compute $\mathrm{k}=\left(\mathrm{g}^{\mathrm{y}}\right)^{\mathrm{x}}=\mathrm{g}^{\mathrm{xy}} \bmod \mathrm{p}$
Compute $\mathrm{k}=\left(\mathrm{g}^{\mathrm{x}}\right)^{\mathrm{y}}=\mathrm{g}^{\mathrm{xy}} \bmod \mathrm{p}$

Why Is Diffie-Hellman Secure?

- Discrete Logarithm (DL) problem: given $\mathrm{g}^{\mathrm{x}} \bmod \mathrm{p}$, it's hard to extract x
- There is no known efficient algorithm for doing this
- This is not enough for Diffie-Hellman to be secure!
- Computational Diffie-Hellman (CDH) problem: given g^{x} and g^{y}, it's hard to compute $g^{x y} \bmod p$ - ... unless you know x or y, in which case it's easy

Decisional Diffie-Hellman (DDH) problem: given g^{x} and g^{y}, it's hard to tell the difference between $g^{x y} \bmod p$ and $g^{r} \bmod p$ where r is random

Properties of Diffie-Hellman

- Assuming DDH problem is hard, Diffie-Hellman protocol is a secure key establishment protocol against passive attackers
- Eavesdropper can't tell the difference between established key and a random value
- Can use new key for symmetric cryptography
- Approx. 1000 times faster than modular exponentiation
- Diffie-Hellman protocol (by itself) does not provide authentication

Properties of Diffie-Hellman

DDH: not true for integers mod p, but true for other groups

- DL problem in p can be broken down into DL problems for subgroups, if factorization of $\mathrm{p}-1$ is known.
- Common recommendation:
- Choose $p=2 q+1$ where q is also a large prime.
- Pick a g that generates a subgroup of order q in $Z_{p}{ }^{*}$
- DDH is hard for this group
- (OK to not know all the details of why for this course.)
- Hash output of DH key exchange to get the key

Diffie-Hellman Protocol (1976)

- Alice and Bob never met and share no secrets

Public info: p and g

- p, q are large prime numbers, $p=2 q+1, g$ a generator for the subgroup of order q
- Modular arithmetic: numbers "wrap around" after they reach p

Compute $\mathrm{k}=\mathrm{H}\left(\left(\mathrm{g}^{y}\right)^{\mathrm{x}}\right)=\mathrm{H}\left(\mathrm{g}^{\mathrm{xy}} \bmod \mathrm{p}\right) \quad$ Compute $\mathrm{k}=\mathrm{H}\left(\left(\mathrm{g}^{\mathrm{x}}\right)^{\mathrm{y}}\right)=\mathrm{H}\left(\mathrm{g}^{\mathrm{xy}} \bmod \mathrm{p}\right)$

Requirements for Public-Key Encryption

- Key generation: computationally easy to generate a pair (public key PK, private key SK)
- Computationally infeasible to determine private key SK given only public key PK
Encryption: given plaintext M and public key PK, easy to compute ciphertext $\mathrm{C}=\mathrm{E}_{\mathrm{PK}}(\mathrm{M})$
- Decryption: given ciphertext $\mathrm{C}=\mathrm{E}_{\mathrm{PK}}(\mathrm{M})$ and private key SK, easy to compute plaintext M
- Infeasible to compute M from C without SK
- Even infeasible to learn partial information about M
- Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts

- Euler totient function $\varphi(n)$ where $n \geq 1$ is the number of integers in the $[1, \mathrm{n}]$ interval that are relatively prime to n
- Two numbers are relatively prime if their greatest common divisor (gcd) is 1
- Euler's theorem:
if $\mathrm{a} \in \mathrm{Z}_{\mathrm{n}}{ }^{*}$, then $\mathrm{a} \varphi(\mathrm{n})=1 \bmod n$
$\mathrm{Z}_{\mathrm{n}}{ }^{*}$: multiplicative group of integers mod n (integers relatively prime to n)
-Special case: Fermat's Little Theorem
if p is prime and $\operatorname{gcd}(a, p)=1$, then $a^{p-1}=1 \bmod p$

RSA Cryptosystem

- Key generation:
- Generate large primes p, q
- Say, 1024 bits each (need primality testing, too)
- Compute $\mathrm{n}=\mathrm{pq}$ and $\varphi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)$
- Choose small e, relatively prime to $\varphi(\mathrm{n})$
- Typically, e=3 or e=216 $+1=65537$ (why?)
- Compute unique d such that $e d=1 \bmod \varphi(n)$
- Public key $=(\mathrm{e}, \mathrm{n}) ;$ private key $=(\mathrm{d}, \mathrm{n})$
- Encryption of m: c = me mod n
- Modular exponentiation by repeated squaring
\rightarrow Decryption of $\mathrm{c}: \mathrm{c}^{\mathrm{d}} \bmod \mathrm{n}=\left(\mathrm{m}^{\mathrm{e}}\right)^{\mathrm{d}} \bmod \mathrm{n}=\mathrm{m}$

