Groups and Crypto

Roy McElmurry

Groups

- Algebraic building blocks used to prove all kinds of mathematical facts
- For instance, the reason why there is a quadratic, cubic and quartic equation, but no quintic equation
- Composed of a set of elements and a single binary operator that can be applied to them
- The set under the operator must obey
- Closure
- Associativity
- Identity

Group Example

- $\mathrm{Z}_{\mathrm{n}}{ }^{*}$: integers that are relatively prime to n where the operator is multiplication
- Closure: if $a, b \in Z_{n}{ }^{*}$ then $a * b \in Z_{n}{ }^{*}$, since there were no factors of a or b in common with n
- Associativity: multiplication is associative
- Identity: 1 is the identity element, $1^{*} x=x$
- What are the elements of $Z_{p}{ }^{*}$ where p is prime

Subgroups

- Assume we have a group G comprised of a set S and an operator O
- A subgroup of G is any subset of S that is itself a group under the same operator O
Ex: Let $G=Z_{10}{ }^{*}=<\{1,3,7,9\}$, (* mod 10)>, then it's subgroups are the following
- $\mathrm{G}_{1}=\{1\}$
- $\mathrm{G}_{2}=\{1,9\}$
- $\mathrm{G}_{3}=\{1,3,7,9\}$

Some Facts

- Fermat's Little Theorem: if p is prime and $\operatorname{gcd}(a, p)=1$, then $a^{p-1}=1 \bmod p$
- Chinese Remainder Theorem Corollary: if p and q are co-prime then if:
- $x=a(\bmod p)$
- $x=a(\bmod q)$
then $x=a(\bmod p q)$

Asymmetric Crypto (RSA)

- Choose two primes p and q and let $n=p q$
- Choose e and d such that $e d=1(\bmod t)$ where $t=(p-1)(q-1)$ or more precisely $t=\operatorname{lcm}(p-1, q-1)$
- The public key is the tuple (n, e)
- The private key is the tuple (p,q,t,d)
- Encryption: $E(m,(n, e))=m^{e}(\bmod n)$
- Decryption: $D(c,(p, q, t, d))=c^{d}(\bmod n)=$ $m^{\text {ed }}(\bmod n)=m(\bmod n)=m$

RSA Example

- Let $\mathrm{p}=5$ and $\mathrm{q}=11$, then $\mathrm{n}=55$
- $t=\operatorname{lcm}(4,10)=20,(p-1)(q-1)=40$
- Let $e=3$, then $d=7$
- The public key is $(\mathrm{n}, \mathrm{e})=(55,3)$
- The private key is $(p, q, t, d)=(5,11,20,7)$
- Practice example: $p=17, q=23, e=3$
- Answer: $\mathrm{t}=\mathrm{Icm}(16,22)=176,(\mathrm{p}-1)(\mathrm{q}-1)=352, \mathrm{~d}=59$

Symmetric Crypto (Diffie-Hellman)

- Choose two primes p and q such that $p=2 q+1$
- Choose an α, such that $1<\alpha<p-1$ and set $g=\alpha^{2} \bmod p$, with $g \neq 1(\bmod p)$ and $g \neq p-1(\bmod p)$
- The tuple (p, q, g) are known to everyone
- Alice chooses an $x \in Z_{p}{ }^{*}$ such that $g^{x}(\bmod p) \neq$ $1, p-1$, and shares $\mathrm{g}^{\mathrm{x}}(\bmod \mathrm{p})$
- Bob chooses a $y \in Z_{p}{ }^{*}$, and shares $g^{y}(\bmod p)$
- The shared key becomes $g^{x y}(\bmod p)$

DH Example

- Let $q=3, p=7$, then $p=2 q+1$
- Let $\alpha=4$, then $g=2(\bmod 7)$
- Let $x=2$ then $g^{x}=4(\bmod 7)$
- Let $\mathrm{y}=5$ then $\mathrm{g}^{\mathrm{y}}=4(\bmod 7)$
- The shared key is then $g^{x y}=2(\bmod 7)$
- Practice example: $q=5, p=11$
- Answer (many possible): $\alpha=7, g=5, x=9, y=8$

$$
g^{x}=9, g^{y}=4, \text { key }=g^{x y}=3
$$

How do we get these properties?

- Privacy
- Encryption and OAEP
- Authenticity
- Signature and CAs, MAC
- Integrity
- MAC
- Freshness
- Nonces

Overview

- We follow these steps (very simplified) to securely communicate with another person
- 1) obtain this person's public key and verify it against a CA to ensure authenticity
- 2) Negotiate a symmetric key using the asymmetric keys to ensure privacy
- Sign all messages to ensure authenticity and integrity
- Include a nonce in all messages to ensure freshness
-3) Communicate using symmetric keys for the rest of the session
- Use MAC on all messages to ensure integrity
- Include nonces in all messages to ensure freshness

