CSE 484 / CSE M 584
Computer Security:
Buffer Overflows Il

TA: Franzi Roesner
franzi@cs.washington.edu



Lab 1 Deadline Reminders

Lab 1 Checkpoint (spioits 1-3) due tomorrow at 5pm!

— Turn in text file of md5sums for sploits 1-3, include all
group member UW NetiDs.

Lab 1 Final due in two weeks (2/8, 5pm).

If you don’t have a group or VM access yet, talk
to me today!

Upcoming office hours:

— Tomorrow (Friday) 10:30 am — lan

— Monday 1:30 pm — Yoshi

— Wednesday 1:00 pm — Daseul and lan
— Thursday 12:30 pm — Franzi and Daseul



Lab 1 Notes/Hints

If you get stuck, move on!

Don’t procrastinate on Sploits 4-7. Some of them
are much harder.

Sploit 3: No frame pointer, so you can only
change last byte of saved EIP. Think about an
existing instruction you could point to that would
have desirable side effects.

You have more than one copy of your buffer: (1)
as argument to function, (2) where it gets copied.

Sploit 4 is not necessarily harder than Sploit 3.



Sploit 5 Tips

e Buffer copied to the heap.

* Target 5 uses the implementation that’s found
In /bin/tmalloc.c.

 Read “Once upon a free()”:

http://www.phrack.org/issues.html?
issue=57&id=9& mode=txt




Dynamic Memory Management in C

e Memory allocation: malloc(size tn)

— Allocates n bytes and returns a pointer to the
allocated memory; memory not cleared.

* Memory deallocation: free(void * p)

— Frees the memory space pointed to by p, which
must have been returned by a previous call to

malloc() (or similar).

— If free(p) has been called before (“double free”),
undefined behavior occurs.

— If p is null, no operation is performend.

(Some memory management slides adapted from Vitaly Shmatikov)



Target5: What’s the problem?

char *p; char *q;

if ( (p = tmalloc(128)) == NULL)
{ exit (EXIT FAILURE); }

if ( (g = tmalloc(128)) == NULL)
{exit (EXIT FAILURE); }

tfree(p);
tfree(q);

if ( (p = tmalloc(256)) == NULL)
{exit (EXIT FAILURE); }

obsd_strlcpy(p, arg, 256);
I tfree(q) ;I €&—— “Undefined” behavior

on second free()



Free Chunks (as used in tmalloc.c)

* Chunks organized into doubly-linked list.

e Each chunk on list contains forward/back pointers to
next/previous chunks in the list.
— LSB of right pointer contains free bit.
— Adjacent free chunks are consolidated.

Previous pointer

Previous pointer

Next pointer Next pointer

Unused space (not cleared)

User Data

Allocated Chunk Free Chunk



One big
free chunk:

Split to malloc:

Split to malloc
(twice):

Free (twice):

Consolidate
free chunks:

Chunk Maintenance

]
e —
L 2
0
S A—




Chunks in tmalloc.c

* Lines 20-28 give chunk structure:

Ptr to Left I Ptr to Right | Data

* Look at chunk consolidation in tfree(p):

q_>s ° r

q = p->s.1;

p->s.r->s.l = q;

Hey look, if we control
chunks p (and q), this code
will write the value of q
(address of buffer?) to a
location we specify
(location of saved EIP?).

e Goal: populate (fake) chunks appropriately.



General Questions?



