CSE 484 / CSE M 584
Computer Security:
More Cryptography

TA: Franzi Roesner
franzi@cs.washington.edu

Logistics

Lab 1 Final due TOMORROW (5pm).
Office hours: tomorrow at 10:30am (lan).

For quickest response from TAs before 5pm
tomorrow, email all of us:

cse484-tas@cs.washington.edu

Check forum for some tips.

Homework #2 out now (crypto), due on
Friday, 2/22, 5pm.

DH Summary

Pick secret, random X X Pick secret, random Y
Q" mod p
: S, G
p gY mod p :
<
Alice Bob
Compute k=(g¥)*=0"Y mod p Compute k=(gX)Y=0" mod p

* Publicinfo: p (large prime) and
g (generator of Z*)
2,*={1,2 .. p-1;; Va€Z* Tisuch that a=g' mod p

RSA Summary

* Key generation

— Generate large primes p, q
e Say, 1024 bits each (need primality testing, too)

— Compute n = pg and ¢(n) = (p-1)(g-1)

— Choose small e, relatively prime to ¢(n)

— Compute unique d such that ed =1 mod ¢(n)

— Public key = (e,n); private key = (d,n)
* Encryption of m: c = m®mod n

— Modular exponentiation by repeated squaring
* Decryption of ¢: c® mod n=(m®¢)9mod n=m

Sample RSA Decryption

* 2621513 714131312814 1513
1420963125261416 2315262 6131

e p=3,q=11, n=33, e=7, d=3

* A-1B-2C-3 D-4 E-5F-6 G-7 H-81-9 J-10 K-11
L-12 M-13 N-14 O-15 P-16 Q-17 R-18 $-19 T-20
U-21V-22 W-23 X-24 Y-25 Z-26

Sample RSA Decryption

* How to compute d?
— Recall: ed =1 mod ¢(n) (where ¢(n) = (p-1)(g-1))
— So d is inverse of e mod ¢(n).

— How to compute modular inverse?
* Use extended Euclidean algorithm
e ...or Wolfram Alpha ©

e Note that this is hard if you don’t know ¢(n) (i.e., can’t
factor n).

Public Key Crypto Summary

* Diffie-Hellman: Why is it secure?

— Discrete log; computational DH problem;
decisional DH problem are hard.

* RSA: Why is it secure?

— Taking eth root is hard; Factoring is hard.

Cryptography Summary

Goal: Privacy
— One-time pad
— Block ciphers w/ symmetric keys (e.g., DES, AES)
* Modes: EBC, CBC, CTR
— Public key crypto (e.g., Diffie-Hellman, RSA)
Goal: Integrity
— MACs, often using hash functions (e.g, MD5, SHA-256)

Goal: Privacy and Integrity

— Encrypt-then-MAC (why?)

Goal: Authenticity (and Integrity)
— Digital signatures (e.g., RSA, DSS)

Certificate Authorities

e CAs ssign certificates; root CAs can authorize
intermediate CAs (certificate chains).

* Problems with this model?

* |deas for alternate solutions?

— Examples: Perspectives (http://perspectives-project.org/),
Convergence (http://convergence.io/)
e Both rely on notary servers (chosen by the user):

browser checks certificates it sees against those seen
over time by trusted notaries. How does this help?

SSL Strip Attack

[Figure omitted from online version of slides.]

[Figures thanks to Elie Bursztein. See also http://www.thoughtcrime.org/software/sslstrip/.]

SSL Strip Attack

[Figure omitted from online version of slides.]

[Figures thanks to Elie Bursztein. See also http://www.thoughtcrime.org/software/sslstrip/.]

SSL User Interface Attacks

[Figure omitted from online version of slides.]

[Figures thanks to Elie Bursztein]

SSL User Interface Attacks

[Figure omitted from online version of slides.]

[Figures thanks to Elie Bursztein]

SSL User Interface Attacks

[Figure omitted from online version of slides.]

[Figures thanks to Elie Bursztein]

