CSE 484 / CSE M 584 Computer Security: More Cryptography

TA: Franzi Roesner

franzi@cs.washington.edu

Logistics

- Lab 1 Final due TOMORROW (5pm).
- Office hours: tomorrow at 10:30am (lan).
- For quickest response from TAs before 5pm tomorrow, email all of us:

cse484-tas@cs.washington.edu

- Check forum for some tips.
- Homework #2 out now (crypto), due on Friday, 2/22, 5pm.

DH Summary

Compute $k=(g^y)^x=g^{xy} \mod p$

Compute $k=(g^x)^y=g^{xy} \mod p$

• Public info: p (large prime) and g (generator of Z_p^*)

 $Z_p^*=\{1, 2 \dots p-1\}; \forall a \in Z_p^* \exists i \text{ such that } a=g^i \text{ mod } p$

RSA Summary

- Key generation
 - Generate large primes p, q
 - Say, 1024 bits each (need primality testing, too)
 - Compute n = pq and $\varphi(n) = (p-1)(q-1)$
 - Choose small e, relatively prime to $\varphi(n)$
 - Compute unique d such that ed = $1 \mod \varphi(n)$
 - Public key = (e,n); private key = (d,n)
- Encryption of m: c = m^e mod n
 - Modular exponentiation by repeated squaring
- Decryption of c: c^d mod n = (m^e)^d mod n = m

Sample RSA Decryption

- 26 2 15 13 7 14 13 13 1 28 14 15 13
 14 20 9 6 31 25 26 14 16 23 15 26 2 6 13 1
- p=3, q=11, n=33, e=7, d=3

A-1 B-2 C-3 D-4 E-5 F-6 G-7 H-8 I-9 J-10 K-11
 L-12 M-13 N-14 O-15 P-16 Q-17 R-18 S-19 T-20
 U-21 V-22 W-23 X-24 Y-25 Z-26

Sample RSA Decryption

- How to compute d?
 - Recall: $ed = 1 \mod \varphi(n)$ (where $\varphi(n) = (p-1)(q-1)$)
 - So d is inverse of e mod $\varphi(n)$.
 - How to compute modular inverse?
 - Use extended Euclidean algorithm
 - ... or Wolfram Alpha 😊
 - Note that this is hard if you don't know φ(n) (i.e., can't factor n).

Public Key Crypto Summary

- Diffie-Hellman: Why is it secure?
 - Discrete log; computational DH problem; decisional DH problem are hard.
- RSA: Why is it secure?
 - Taking eth root is hard; Factoring is hard.

Cryptography Summary

- Goal: Privacy
 - One-time pad
 - Block ciphers w/ symmetric keys (e.g., DES, AES)
 - Modes: EBC, CBC, CTR
 - Public key crypto (e.g., Diffie-Hellman, RSA)
- Goal: Integrity
 - MACs, often using hash functions (e.g, MD5, SHA-256)
- Goal: Privacy and Integrity
 - Encrypt-then-MAC (why?)
- Goal: Authenticity (and Integrity)
 - Digital signatures (e.g., RSA, DSS)

Certificate Authorities

- CAs sign certificates; root CAs can authorize intermediate CAs (certificate chains).
- Problems with this model?
- Ideas for alternate solutions?
 - Examples: Perspectives (http://perspectives-project.org/),
 Convergence (http://convergence.io/)
 - Both rely on notary servers (chosen by the user): browser checks certificates it sees against those seen over time by trusted notaries. How does this help?

SSL Strip Attack

SSL Strip Attack

SSL User Interface Attacks

SSL User Interface Attacks

SSL User Interface Attacks