CSE 484 / CSE M 584
Computer Security:
Web Security

TA: Franzi Roesner
franzi@cs.washington.edu

Logistics

* Homework #2 (crypto) due 2/22 5pm.
* Lab #2 (web security) due 2/27 5pm.

e Lab #1 looks AWESOME! ©

Same-Origin Policy

Website origin = (scheme, domain, port)

Compared URL Outcome
http//www.example.com/dir/page.htmi Success
http//www.example.com/dir2/other.html | Success

http//www.example.com:81/dir/other.ntml | Failure

https://www.example.com/dir/other.html Failure
http://en.example.com/dir/other.htm| Failure
http://example.com/dir/other.html Failure

http://v2.www.example.com/dir/other.html | Failure

Reason
Same protocol and host
Same protocol and host
Same protocol and host but different port
Different protocol
Different host
Different host (exact match required)

Different host (exact match required)

[Example thanks to Wikipedia.]

Same-Origin Policy (DOM)

* Only code from same origin can access HTML
elements on another site (or in an iframe).

www.example.com

www.example.com www.example.com
/iframe.html /iframe.html

www.example.com (the www.evil.com (the parent)
parent) can access HTML cannot access HTML
elements in the iframe elements in the iframe

(and vice versa). (and vice versa).

Same-Origin Policy (Cookies)

* For cookies: Only code from same origin can
read/write cookies associated with an origin.

— Can be set via Javascript (document.cookie=..) Or Via
Set-Cookie header in HTTP response.

— Can narrow to subdomain/path (e.g.,
http://example.com can set cookie scoped to
http://account.example.com/login.)

— Secure cookie: send only via HTTPS.
— HttpOnly cookie: can’t access using JavaScript.

Same-Origin Policy (Cookies)

* Browsers automatically include cookies with
HTTP requests.

* First-party cookie: belongs to top-level domain.

* Third-party cookie: belongs to domain of
embedded content.

WWw.bar.com’s . =2 Bar’s Server
www.bar.com 1 cookie (1 party)

www.foo.com’s

T T Foo’s Server

www.foo.com

Same-Origin Policy (Scripts)

* When a website includes a script, that script
runs in the context of the embedding website.

www.example.com

<head>

<script src="http://
otherdomain.com/
library.js"></script>
</head>

The code from
http://otherdomain.com
can access HTML elements
and cookies on
www.example.com.

* |f code in the script sets a cookie, under what

origin will it be set?

XSS: Cross-Site Scripting

Idea: Place user-provided data in the page.
— Makes page more interactive and personal.

Threat: Improperly used data can be
interpreted as code.

Demo...
Solutions?

— Sanitize/validate input. (e.g., htmlspecialchars())
— Browser detection/prevention.

XSSI: Cross-Site Script Inclusion

* |ldea: Include scripts (e.g., libraries) to run in
context of current domain.

Example:

<head> <script src="//ajax.googleapis.com/ajax/libs/
jquery/1.9.1/jquery.min.js"></script> </head>

Threat: Attacker provides malicious library,
can execute code in your domain’s context.

Solution: Make sure included code comes
from trusted site.

XSRF: Cross-Site Request Forgery

e |dea: Protect sensitive actions (e.g., Amazon
purchase) by authenticating users w/ cookies.

 Threat: Attacker tricks user’s browser into
visiting sensitive URL. For example:

http://amazon.com/purchase.php?
oneclick=true&item=523586

* Why does this work?

— Browsers automatically attach cookies to requests.

XSRF Defense

Include XSRF token (e.g., based on user session):

<form action="purchase.php" method="post">

<input type="hidden" name="csrf"
value="<?php echo S$key; ?2>" />

<input type="submit" wvalue="One-Click
Purchase">

</form>

Why does this work?
Attacker can’t read token due to same-origin policy.

Lab #2 Explained

(2) Okay!
search?v=x&q=evil
S/

(3) Evil page renders:
search?v=x&qg=evil

(4) Cookie steal (1) Click this: (5) Use cookie to
search?v=x&g=evil change grade

authToken=aet38f authToken=34gae8

Lab #2 Guidelines

Email me your group members, group name, and
desired password.

Your script must run on abstract.cs.washington.edu.

Some versions of some browsers provide XSS
protections, so testing might fail. (Try Firefox.)

Make sure exploits work locally before submitting
links to y.um.my.

See lab FAQ for links to add-ons to modify cookies.

Extra credit is hard/unexpected, based on real bug
from previous TAs (don’t waste your time).

Clickjacking

* Trick users into interacting with sensitive user
interfaces in another domain.

— Using invisible iframes:

www.evil.com

Prime Quantity: [1 »:)
Buy New

(@ Add to Cart '

or 1-Click Checkout

— Exploit predictable user timing:
http://lcamtuf.coredump.cx/ffeen2/

