A massively parallel approach to understanding genomic information

Alexander Rosenberg, Rupali Pathwardan, Jay Shendure, Georg Seelig

Electrical Engineering and Computer Science & Engineering, University of Washington

Sequencing genome.

Complete.

Compiling list of variants.

Complete.

Interpreting genome

Understanding the impact of variant with machine learning

- Build a sequence-function model using machine learning
- Model are limited by data (e.g. "only" 50K splice events)

More data is better

A massively parallel approach to understanding the genome

Overview

- A massively parallel approach to understanding sequence-function relationship: 5'alternative splicing
- Cell-type specific effects in alternative splicing
 Skipped exons: attempt 1
- Skipped exons and 3' alternative splicing: exon definition

RNA-Splicing

Core splicing signals

Splicing is regulated by cis-regulatory sequences motifs and a trans-acting RNA-protein complex, the spliceosome

Alternative Splicing

- Different isoforms can have distinct protein functions
- 95% of coding genes are alternatively spliced
- Misregulation of splicing can lead to disease and cancer

Isoform A

Isoform B

Regulation of Alternative Splicing

What are the sequence determinants of alternative splicing?

The splice site sequences (splice donors)

Sequences around the splice sites

Effects of Single Nucleotide Polymorphisms (SNPs) on Alternative Splicing in Humans

Can we create a model that predict the effects of nucleotide changes on alternative splicing?

Massively Parallel Splicing Assay

- Alternatively spliced plasmid mini-gene with 3 splice donors
- Introduced degenerate nucleotide sequences between the splice donors
- How does sequence variation in these positions affect alternative splicing?

Massively Parallel Splicing Assay

Let's give a cell lots of DNA sequences and record what happens

Massively Parallel Splicing Assay

- Used RNA-seq to quantify isoform levels
- For every mRNA molecule that we sequenced we determined:
 - how it spliced
 - which plasmid variant it was transcribed from (barcode in 3'UTR)

Resulting Data

	SD	SD ₂	SD ₃	SD _{NEW}
	0	26	0	0
\bigcirc	0	2	0	27
\bigcirc	113	4		0

- - • •

267,000 Different Sequences

Resulting Data - Summary

SDI	SD ₂	SD ₃	SD _{NEW}
28%	47%	6%	15%

Short Sequence Motif Effect Sizes

All 6-mer Effect Sizes

 78% of 6-mers have statistically significant effect on usage of the first splice donor

Combinatorial Regulation of Alternative Splicing

Two Possible Models of Combinatorial Sequence Regulation:

- Additive: Sequence motifs act independently of each other
 - Effect Size(GTGG & CTGC) = Effect Size(GTGG) + Effect Size(CTGC)
- Cooperative: Sequence motifs interact with other motifs

Combinatorial Regulation of Alternative Splicing

Short motifs act additively and independently of each other

N₂₀

Building an Additive Model of Splicing

- Effect Size(ACTGTACGTGTGTGGGGCCATGTCCG) = Effect Size (ACTGTA)
 - + Effect Size (CTGTAC)
 - + Effect Size (TGTACG)
 - + Effect Size (TGTCCG)

Individual Contribution of a Nucleotide to Splicing

- Effect Size(G at position 12) = (Effect Size (CGTGTG)
 - + Effect Size (GTGTGT)
 - + Effect Size (TGTGTG)
 - + Effect Size (GTGTGG)
 - + Effect Size (TGTGGG)
 - + Effect Size (GTGGGC)) / 6

Testing An Additive Model

- Trained model using multinomial logistic regression
- Tested the accuracy of model predictions on a test set
- For each intron variant:
 - Score every potential splice site
 - Convert splice donor scores into splicing probabilities (softmax function)

Effects of Single Nucleotide Polymorphisms (SNPs) on Alternative Splicing in Humans

Can our model predict the effects of nucleotide changes on alternative splicing?

Measuring the Effects of SNPs on Alternative Splicing

- Started with a list of alternatively spliced human genes
- Used Thousand Genomes data and RNA-seq data from GEUVADIS to calculate isoform percentage for:
 - Individuals with a SNP
 - Individuals with no SNP

Predicting Effects of SNPs between Alternative Splice Donors

- Wild type RNA-Seq
- Heterozygous SNP RNA-Seq
- Homozygous SNP RNA-Seq
- Heterozygous SNP Model Prediction
- Homozygous SNP Model Prediction

Predicting Effects of SNPs in an Alternative Splice Donor

Overview

A massively parallel approach to understanding sequence-function relationship: 5'alternative splicing
 Cell-type specific effects in alternative splicing
 Skipped exons: attempt 1
 Skipped exons and 3' alternative splicing: exon definition

RBFOX1/2 Binding Site Differences in HEK293 and MCF7 Cells

Rank	Motif
1	TGCATG
2	GCATGC
3	CGCATG
4	TCGCCT
5	ATGCAT
6	ACGACA
7	ACGACG
8	AGCCCC
9	CTCGGC
10	CATGCA
11	CCCCAC
12	AGCATG
13	AACGAC

RBFOX2 Expression in HEK293 vs MCF7

The Human Protein Atlas

RBFOX1/2 Binding Site Differences in HEK293 and MCF7 Cells

Ray, Debashish, et al. "A compendium of RNA-binding motifs for decoding gene regulation." *Nature* 499.7457 (2013): 172-177.

Overview

A massively parallel approach to understanding sequence-function relationship: 5'alternative splicing
 Cell-type specific effects in alternative splicing
 Skipped exons: attempt I
 Skipped exons and 3' alternative splicing: exon definition

Alternative Splicing

Bradley, R., et al. "Alternative Splicing of RNA Triplets Is Often Regulated and Accelerates Proteome Evolution." *Plos Biol* 10 (2013):e1001229

Skipped exons

Skipped exons

Exon skipping

Skipped exons

mRNAA

mRNA B

Massively Parallel Exon Skipping Assay

- Exon skipping minigene base on SMN1/2 exon7
- Randomized two intronic 25 nucleotides regions
- Tested ~I million different sequences (for perspective: ~25,000 genes in the human genome)

Short Sequence Effects

Introns without GGGGGG (N= 973,471)

Effects of Genetic Variation on Alternative Splicing in Humans

...GTGCATGCTAGGACTACCAGGTAGGATGTGACCXCGTAGTCGATCGATCAGGTCCAGTCAGCTAGC...

Predicted Effects of SMN2 Mutations

SMNI/2 exon 7

- Works only for intronic mutations
- And works only for SMN1/2

Overview

A massively parallel approach to understanding sequence-function relationship: 5'alternative splicing
 Cell-type specific effects in alternative splicing
 Skipped exons: attempt 1
 Skipped exons and 3' alternative splicing: exon definition

Alternative Splicing Libraries

Nearly identical exon definition in 3' and 5' alternative splicing

~1.7 million 3'alternative splice events

Predicting the Effects of Mutations in Skipped Exons

Predicting the Effects of Mutations in SMN and CFTR proteins

Nearly identical exon definition in 3' and 5' alternative splicing

SPANR: Ailpanahi et al., Science (2015)

Exon definition

- Human exons are short: typically 50-250 bp
- ▶ Human introns are long: often 10⁵ bp
- Splice sites are recognized in pairs across exons

Summary

We presented a new approach to learn the regulatory rules governing alternative splice site selection

- A model that was trained only on synthetic data predicts splice site selection better than any previous model directly trained on the genome
- A model that was not trained on skipped exon can predict the effect of mutations in skipped exons
- Our approach makes it possible to identify cell-types specific differences in splicing

A broadly applicable method for understanding gene regulation

Transcription Alternative Splicing **Translation** Poly-adenylation

Acknowledgements

Yuan-Jyue Chen

Sergii Pochekailov

Groves

Gourab Chatterjee

Rebecca Black

Alex

Rosenberg

Paul Sample

Alex Baryshev

Sumit **Mukherjee**

Sifang Chen

Nick Bogard

Arjun Khakhar

Randolph Lopez

Short Sequence Motif Effect Sizes

Predicting the Effects of Mutations in Survival Motor Neuron (SMN) protein

- Mutations in SMN proteins alter RNA splicing and cause spinal muscular atrophy (SMA)
- SMA can severely affect muscle control
- SMA affects between 1/6,000 to 1/10,000 people
- Can we predict which mutations will alter splicing of SMN proteins?

A massively parallel approach to studying translation

Work flow

Flow cytometry results for 7 random and 3 designed 5'UTRs

W. L. Noderer, et al. "Quantitative analysis of mammalian translation initiation sites by FACS-seq." *Mol. Sys. Biol.* 10,748 (2014).

Sequencing confirms random 5'UTR

Upstream ATGs modulate translation

Nucleotides at -3:-1 strongly influence translation

Translation Summary

- We are developing a massively parallel approach to understanding the 5'UTR sequence-function relationship
 Very large "super-biological"data sets enable predictive models
 - This approach can in principle be applied in the context of your favorite gene and cell type

Flow cytometry results for 7 random and 3 designed 5'UTRs

В Α Native 5'-UTR Median YFP ATAAATTACTATACTTCTATAGACACACAAAC Fluorescence ACAAATACACACACTAAATTAATAatg 7000 6000 CGC 5'-UTR 5000 ATAAATTACTATACTTCTATAGACACACAAAC 4000 ACAAATACACACACTAAATTACGCatg 3000 2000 Stem-loop 5'-UTR 1000 **TCCGAAACGCGGCCGCTCGGGCCGCGAAA**atg Stemloop CSCS JUTR Natives' UTR AAAata

Example Growth Traces for a Few Library Members

Regulation of Alternative Splicing

What are the sequence determinants of alternative splicing?

The splice site sequences

Sequences in the introns

Experimental Methods

Resulting Data

Sequences

Predicting the Effects of Mutations in Survival Motor Neuron (SMN) protein

- Mutations in SMN proteins alter RNA splicing and cause spinal muscular atrophy (SMA)
- SMA can severely affect muscle control
- SMA affects between 1/6,000 to 1/10,000 people
- Can we predict which mutations will alter splicing of SMN proteins?

Definition: Percent Spliced In

Percent Spliced In (PSI)=mRNA↓A /mRNA↓A + mRN A↓B

mRNA B

Dataset: Mutations Tested in Studies on SMN2 Splicing

 .GTGCATGCTAGGACTACCAG	GTAGGATGTGACC&CGTAGTCGATCGATCAGGTCCAGTCAGCTAGC
	Ĝ

Position	Mutation	ΔΡSI
3	C>G	+21.2%
5	A>T	-20.8%
12	G>A	+3.3%
•••		
50	A>C	+65.2%

Uncovering cell type specific splicing

Logistic regression: R²=0.14

Logistic regression: R^2=0.16

Ray, Debashish, et al. "A compendium of RNA-binding motifs for decoding gene regulation." *Nature* 499.7457 (2013): 172-177.