
The Google File System 

CSE 490h,  Autumn 2008



Today …

 Disks
 File systems
 GFS



A trip down memory lane …

 IBM 2314
 About the size of 6 

refrigerators
 Capacity: 8 x 29MB 

(M!)



Today …

 Seagate Barracuda 7200.11
 Form factor: 3.5”
 Capacity: 1500 GB

 6500 times the capacity of those 
six refrigerators!!!!!



Physical disk structure

 Disk components
 platters
 surfaces
 tracks
 sectors
 cylinders
 arm
 heads

platter

surface

track
sector

cylinder

arm

head



Disk performance

 Performance depends on a number of steps
 seek: moving the disk arm to the correct cylinder

 depends on how fast disk arm can move
• seek times aren’t diminishing very quickly (why?)

 rotation (latency): waiting for the sector to rotate under 
head
 depends on rotation rate of disk

• rates are increasing, but slowly (why?)
 transfer: transferring data from surface into disk 

controller, and from there sending it back to host
 depends on density of bytes on disk

• increasing, relatively quickly

 When the OS uses the disk, it tries to minimize the 
cost of all of these steps
 How?



OS / file system accommodations to 
disk performance

 Seek reduction
 Increase block size to reduce seeking
 Co-locate “related” items in order to reduce seeking

 blocks of the same file
 data and metadata for a file

 Scheduling of requests
 FCFS, SSTF, SCAN, C-SCAN

 Log-structured file systems



 Caching and pre-fetching
 Keep data or metadata in memory to reduce physical disk 

access
 But what if a crash occurs??

 If file access is sequential, fetch blocks into memory before 
requested

 Faster re-boot after a crash
 Journaling file systems



 Seagate Barracuda 7200.11
 form factor: 3.5”
 capacity: 1500 GB
 rotation rate: 7,200 RPM (120 RPS)
 platters: 4
 heads: 8
 average sector size: 512 bytes
 cylinders: 16,383
 cache: 32 MB
 sustained transfer rate: 135 MB/s
 average seek: 10 ms (how  many 

bytes worth??)
 adjacent track seek:  1 ms
 average latency:  4 ms

Example disk characteristics



File systems:  Basic operations

NT
• CreateFile(name, CREATE)

• CreateFile(name, OPEN)

• ReadFile(handle, …)

• WriteFile(handle, …)

• FlushFileBuffers(handle, …)

• SetFilePointer(handle, …)

• CloseHandle(handle, …)

• DeleteFile(name)

• CopyFile(name)

• MoveFile(name)

Unix
• create(name)

• open(name, mode)

• read(fd, buf, len)

• write(fd, buf, len)

• sync(fd)

• seek(fd, pos)

• close(fd)

• unlink(name)

• rename(old, new)



The original Unix file system

 Dennis Ritchie and Ken Thompson, Bell Labs, 1969
 “UNIX rose from the ashes of a multi-organizational 

effort in the early 1960s to develop a dependable 
timesharing operating system” – Multics

 Designed for a “workgroup” sharing a single system
 Did its job exceedingly well

 Although it has been stretched in many directions and made 
ugly in the process

 A wonderful study in engineering tradeoffs



All disks are divided into five parts …

 Boot block
 can boot the system by loading from this block

 Superblock
 specifies boundaries of next 3 areas, and contains head of 

freelists of inodes and file blocks
 i-node area

 contains descriptors (i-nodes) for each file on the disk; all i-
nodes are the same size; head of freelist is in the 
superblock

 File contents area
 fixed-size blocks; head of freelist is in the superblock

 Swap area
 holds processes that have been swapped out of memory



So …

 You can attach a disk to a dead system …
 Boot it up …
 Find, create, and modify files …

 because the superblock is at a fixed place, and it tells you 
where the i-node area and file contents area are

 by convention, the second i-node is the root directory of the 
volume



i-node format

 User number, Group number, Protection bits
 Times (file last read, file last written, inode last 

written)
 File code:  specifies if the i-node represents a 

directory, an ordinary user file, or a “special file”
(typically an I/O device)

 Size:  length of file in bytes
 Block list:  locates contents of file (in the file 

contents area)
 more on this soon!

 Link count:  number of directories referencing this i-
node



The flat (i-node) file system

 Each file is known by a number, which is the number 
of the i-node
 seriously – 1, 2, 3, etc.!
 why is it called “flat”?

 Files are created empty, and grow when extended 
through writes



The tree (directory, hierarchical) 
file system

 A directory is a flat file 
of fixed-size entries

 Each entry consists of 
an i-node number and a 
file name 

a_directory144

oh_my_god93

another_file4

my_file216

..18

.152

File namei-node number



The “block list” portion of the i-node 
(Unix Version 7)

 Points to blocks in the file contents area
 Must be able to represent very small and very large 

files



 Each inode contains 13 block pointers
 first 10 are “direct pointers” (pointers to 512B blocks of file 

data)
 then, single, double, and triple indirect pointers

0
1

10
11
12

…

…

…

…

…

… …



So …

 Only occupies 13 x 4B in the i-node
 Can get to 10 x 512B = a 5120B file directly

 (10 direct pointers, blocks in the file contents area are 512B)
 Can get to 128 x 512B = an additional 65KB with a single indirect 

reference
 (the 11th pointer in the i-node gets you to a 512B block in the file 

contents area that contains 128 4B pointers to blocks holding file 
data)

 Can get to 128 x 128 x 512B = an additional 8MB with a double 
indirect reference
 (the 12th pointer in the i-node gets you to a 512B block in the file 

contents area that contains 128 4B pointers to 512B blocks in the 
file contents area that contain 128 4B pointers to 512B blocks 
holding file data)



 Can get to 128 x 128 x 128 x 512B = an additional 1GB 
with a triple indirect reference
 (the 13th pointer in the i-node gets you to a 512B block in 

the file contents area that contains 128 4B pointers to 512B 
blocks in the file contents area that contain 128 4B pointers 
to 512B blocks in the file contents area that contain 128 4B 
pointers to 512B blocks holding file data)

 Maximum file size is 1GB + a smidge



 A later version of Bell Labs Unix utilized 12 direct 
pointers rather than 10
 Why?

 Berkeley Unix went to 1KB block sizes
 What’s the effect on the maximum file size?

 256x256x256x1K = 17 GB + a smidge
 What’s the price?

 Suppose you went to 4KB blocks?
 1Kx1Kx1Kx4K = 4TB + a smidge
 Impact on performance?
 Impact on disk utilization?



Quick comment on crash recovery

 iCheck and dCheck are hugely expensive
 Worse as disks get bigger

 Journaling file systems solve this
 Keep a change log; avoid scanning entire disk

 Will discuss journaling and logs in the “transactions”
module



GFS:  Environment

 Thousands of computers
 Distributed

 Computers have their own disks, and the file system spans 
those disks

 Failures are the norm
 Disks, networks, processors, power supplies, application 

software, operating system software, human error
 Files are huge

 Multi-gigabyte files, each containing many objects
 Read/write characteristics

 Files are mutated by appending
 Once written, files are typically only read
 Large streaming reads and small random reads are typical



 Bandwidth is more important than latency
 Its helpful if the file system provides 

synchronization for concurrent appends



General architecture

 A GFS cluster has one master and many chunkservers
 Files are divided into 64 MB chunks
 Chunks are replicated and stored in the Unix file 

systems of the chunkservers
 The master holds metadata
 Clients get metadata from the master, and data 

directly from chunkservers



File read

 From byte offset within the file, client computes 
chunk index

 Client sends filename and chunk index to master
 Master returns a list of replicas of the chunk
 Client interacts with a replica to access data



Metadata

 Three types of metadata
 File and chunk namespaces
 Mapping from files to chunks (each chunk has a unique ID)
 Locations of each chunk’s replicas

 All metadata kept in memory
 First two types are made persistent via a change log

 Punt discussion to a later module
 Chunk replica locations learned by polling 

chunkservers at startup
 Chunkserver is final arbiter of what chunks it holds



File write

 Primary orders concurrent 
requests, and triggers disk 
writes at all replicas

 Primary reports success or 
failure to client

 Client asks master for identity of primary and 
secondary replicas

 Client pushes data to memory at all replicas via a 
replica-to-replica “chain”

 Client sends write request to primary



Replica failure

 Master detects a failed “heartbeat” of a chunkserver
 Re-creates contents elsewhere
 Write eventually succeeds


