
Nutch,
and Search Engine History

Michael J. Cafarella
CSE 490H

October 21, 2008

Agenda
 Nutch in-depth
 A Technical History of Search Engines

Nutch
 Built to encourage public search work

 Open-source, w/pluggable modules
 Cheap to run, both machines & admins

 Search engine is usable, not great
 Pretty good ranking (last rigorous test several

years ago showed roughly Inktomi-level quality)
 Has done ~ 200M pages, more possible

 Hadoop is a spinoff

Timeline
 Fall, 2002 - Nutch started with ~2 people
 Summer, 2003 - 50M pages demo’ed
 Fall, 2003 - Google File System paper
 Summer, 2004 - Distributed indexing, started

work on GFS clone
 Fall, 2004 - MapReduce paper
 2005 - Started work on MapReduce. Massive

Nutch rewrite, to move to GFS & MapReduce
framework

 2006 - Hadoop spun out, Nutch work slows
 2007 - Widespread Hadoop adoption

Outline
 Nutch design

 Link database, fetcher, indexer, etc…

 Hadoop support
 Distributed filesystem, job control

WebDB

Fetcher 2 of N
Fetcher 1 of N

Fetcher 0 of N

Fetchlist 2 of N
Fetchlist 1 of N

Fetchlist 0 of N
Update 2 of NUpdate 1 of NUpdate 0 of N

Content 0 of NContent 0 of NContent 0 of N

Indexer 2 of N
Indexer 1 of N

Indexer 0 of N

Searcher 2 of N
Searcher 1 of N

Searcher 0 of N

WebServer 2 of M
WebServer 1 of M

WebServer 0 of M

Index 2 of NIndex 1 of NIndex 0 of N

Inject

Moving Parts
 Acquisition cycle

 WebDB
 Fetcher

 Index generation
 Indexing
 Link analysis (maybe)

 Serving results

WebDB

 Contains info on all pages, links
 URL, last download, # failures, link score,

content hash, ref counting
 Source hash, target URL

 Must always be consistent
 Designed to minimize disk seeks

 19ms seek time x 200m new pages/mo
 = ~44 days of disk seeks!

 Single-disk WebDB was huge headache

Fetcher
 Fetcher is very stupid. Not a “crawler”
 Pre-MapRed: divide “to-fetch list” into k

pieces, one for each fetcher machine
 URLs for one domain go to same list,

otherwise random
 “Politeness” w/o inter-fetcher protocols
 Can observe robots.txt similarly
 Better DNS, robots caching
 Easy parallelism

 Two outputs: pages, WebDB edits

2. Sort edits (externally, if necessary)

WebDB/Fetcher Updates

ContentHash: None

LastUpdated: Never

URL: http://www.flickr/com/index.html

ContentHash: None

LastUpdated: Never

URL: http://www.cnn.com/index.html

ContentHash: MD5_toewkekqmekkalekaa

LastUpdated: 4/07/05

URL: http://www.yahoo/index.html

ContentHash: MD5_sdflkjweroiwelksd

LastUpdated: 3/22/05

URL: http://www.about.com/index.html

ContentHash: MD5_balboglerropewolefbag

URL: http://www.cnn.com/index.html

Edit: DOWNLOAD_CONTENT

ContentHash: MD5_toewkekqmekkalekaa

URL: http://www.yahoo/index.html

Edit: DOWNLOAD_CONTENT

ContentHash: None

URL: http://www.flickr.com/index.html

Edit: NEW_LINK

WebDB Fetcher edits

1. Write down fetcher edits3. Read streams in parallel, emitting new database4. Repeat for other tables

ContentHash: MD5_balboglerropewolefbag

LastUpdated: Today!

URL: http://www.cnn.com/index.html

ContentHash: MD5_toewkekqmekkalekaa

LastUpdated: Today!

URL: http://www.yahoo.com/index.html

Indexing
 Iterate through all k page sets in parallel,

constructing inverted index
 Creates a “searchable document” of:

 URL text
 Content text
 Incoming anchor text

 Other content types might have a different
document fields
 Eg, email has sender/receiver
 Any searchable field end-user will want

 Uses Lucene text indexer

Link analysis
 A page’s relevance depends on both intrinsic

and extrinsic factors
 Intrinsic: page title, URL, text
 Extrinsic: anchor text, link graph

 PageRank is most famous of many
 Others include:

 HITS
 OPIC
 Simple incoming link count

 Link analysis is sexy, but importance
generally overstated

Link analysis (2)
 Nutch performs analysis in WebDB

 Emit a score for each known page
 At index time, incorporate score into

inverted index
 Extremely time-consuming

 In our case, disk-consuming, too (because
we want to use low-memory machines)

 Fast and easy:
 0.5 * log(# incoming links)

Administering Nutch
 Admin costs are critical

 It’s a hassle when you have 25 machines
 Google has >100k, probably more

 Files
 WebDB content, working files
 Fetchlists, fetched pages
 Link analysis outputs, working files
 Inverted indices

 Jobs
 Emit fetchlists, fetch, update WebDB
 Run link analysis
 Build inverted indices

Administering Nutch (2)
 Admin sounds boring, but it’s not!

 Really
 I swear

 Large-file maintenance
 Google File System (Ghemawat, Gobioff, Leung)
 Nutch Distributed File System

 Job Control
 Map/Reduce (Dean and Ghemawat)
 Pig (Yahoo Research)

 Data Storage (BigTable)

Nutch Distributed File System
 Similar, but not identical, to GFS
 Requirements are fairly strange

 Extremely large files
 Most files read once, from start to end
 Low admin costs per GB

 Equally strange design
 Write-once, with delete
 Single file can exist across many machines
 Wholly automatic failure recovery

NDFS (2)
 Data divided into blocks
 Blocks can be copied, replicated
 Datanodes hold and serve blocks
 Namenode holds metainfo

 Filename block list
 Block datanode-location

 Datanodes report in to namenode every
few seconds

NDFS File Read

Namenode

Datanode 0 Datanode 1 Datanode 2

Datanode 3 Datanode 4 Datanode 5

1. Client asks datanode for filename info
2. Namenode responds with blocklist, and

location(s) for each block
3. Client fetches each block, in sequence, from

a datanode

“crawl.txt”(block-33 / datanodes 1, 4)
(block-95 / datanodes 0, 2)
(block-65 / datanodes 1, 4, 5)

NDFS Replication

Namenode

Datanode 0
(33, 95)

Datanode 1
(46, 95)

Datanode 2
(33, 104)

Datanode 3
(21, 33, 46)

Datanode 4
(90)

Datanode 5
(21, 90, 104)

1. Always keep at least k copies of each blk
2. Imagine datanode 4 dies; blk 90 lost
3. Namenode loses heartbeat, decrements blk

90’s reference count. Asks datanode 5 to
replicate blk 90 to datanode 0

4. Choosing replication target is tricky

(Blk 90 to dn 0)

Nutch & Hadoop
 NDFS stores the crawl and indexes
 MapReduce for indexing, parsing,

WebDB construction, even fetching
 Broke previous 200M/mo limit
 Index-serving?

 Required massive rewrite of almost
every Nutch component

Nutch Conclusion
 http://www.nutch.org/

 Partial documentation
 Source code
 Developer discussion board

 Nutch has been only moderately
successful, but led to Hadoop

 “Lucene in Action” by Hatcher,
Gospodnetic is a useful resource

Search: A Technical History
 Search engines have been around a lot

longer than you think
 Almost all of them are dead and gone,

but their ideas live on
 Search existed before the Web, though

it was a very different beast

Primordial Era: 1960s-1994
 Electronic content was rare and

expensive
 Only large organizations with huge well-

curated archives (libraries, govts) had
any need for search

 CPU & storage were expensive,
networked systems very rare

 Most systems were small, searched only
metadata (like card catalogs)

Primordial Era (2)
 Two important technical contributions

 Inverted index
 Tf/idf & vector document model

 Document ranking was not a huge
problem
 Relatively few documents
 Clean metadata
 Boolean operators commonplace

Inverted Index: why bother?
 Disk access: 1-10ms

 Depends on seek distance, published average is 5ms
 Thus perform 200 seeks / sec
 (And we are ignoring rotation and transfer times)

 Clock cycle: 2 GHz
 Typically completes 2 instructions / cycle

 ~10 cycles / instruction, but pipelining & parallel execution
 Thus: 4 billion instructions / sec

 Disk is 20 Million times slower
 Inverted index allows us to read all of the docs for a

single search term, usually with a single seek.
 # seeks grows with # terms, not # documents.

Tf/idf: Vector Model

•Tf = term frequency, idf = inverse document
frequency; tf/idf for a term places it in N-dim space
•Documents that are “close together” in space are
similar in meaning.

The Web (1994-)
 The popularization of the Web in the

1990s led to a crazy explosion of search
engine companies

 Web search was a vastly different
problem compared to previous systems
 Content was cheap but messy
 Storage was becoming cheap
 Finding a document became harder
 Users were much less sophisticated

Information from
searchenginewatch.com

Number of indexed pages, self-reported

Search Engine Size over Time

Search Engine Storage Costs
 Figure 10kb to index one Web page

plus a compressed cached copy
 In 2008, 1GB costs ~0.15

 100k docs per gig, so $0.0000015/doc
 50M docs costs $75.00

 In 1990, 1GB costs $1000.00
 100k docs per gig, so $0.01/doc
 50M docs costs $500k
 Just about within reach for startup search

companies

WebCrawler
 Created in 1994 by a UW student!
 Notable features:

 First dynamic crawler (rather than using
hand-curated corpus)

 Fate:
 Bought by AOL, then Excite, then

InfoSpace
 Now a meta-engine, serving results from

elsewhere

Excite (aka Architext)
 Created in 1994 by Stanford ugrads
 Notable features:

 Full-text indexing for Web pages
 “Related search” suggestions
 Famous in mid-90s for consuming tons of

expensive high-end Sun machines

 Fate:
 Went public, bought many other companies,

merged with @Home, collapsed in bankruptcy,
then sold for parts

Infoseek
 Created in 1994
 Notable features:

 Very fancy query language (booleans,
NEAR, etc)

 Performed some linguistic analysis,
including stemming. Gave stemming a bad
name for a decade.

 Fate:
 Bought by Disney in 1998

Inktomi
 Created in 1996 by UCB grad student
 Notable features:

 Distributed commodity-box infrastructure
 Resold its search engine to other

destination sites (Hotbot, Yahoo, others)
 Search was just one of several products

(others were caches and video serving)

 Fate:
 Went public, stock collapsed in crash, sold

to Yahoo in 2002

AltaVista
 Created in 1995 as a DEC research project
 Notable Features:

 Originally meant to demo new 64-bit Alpha
processor: high speed & huge address space

 First really high-quality multithreaded crawler:
30m pages at launch!

 Recognized that page ranking was an issue, but
used awful solution: URL length

 Fate:
 Compaq bought DEC, then sold AV to CMGI, which

sold AV to Overture, which was then bought by
Yahoo

Google
 Founded in 1998. Have you heard of it?
 Major feature was PageRank (Page, 1998)

 Largely solved page-ranking problem faced by AltaVista
 First major commercial deployment of link-based methods
 Really miraculous when compared to other methods at the

time

 However, link-based methods were common in
academia
 Authoritative Sources in a Hyperlinked Environment,

Kleinberg. JACM, 1999.
 “Silk from a sow’s ear”, Pirolli, Pitkow, Rao. CHI, 1996.

Google (2)
 PageRank is its best-known contribution, but Google was helped

by its predecessors:
 Full-text indexing, like Excite
 An aggressive large-scale crawler, like WebCrawler and

AltaVista
 Distributed processing from Inktomi

 The last interesting Web search engine?
 Probably. Previous search engines got a ton of traffic. They

just didn’t have ad revenue
 The period 1994-1998 was very unusual, made possible by

the Web’s split between search and content ownership

