Nutch, and Search Engine History

Michael J. Cafarella CSE 490H October 21, 2008

- Nutch in-depth
- A Technical History of Search Engines

Nutch

- Built to encourage public search work
 - Open-source, w/pluggable modules
 - Cheap to run, both machines & admins
- Search engine is usable, not great
 - Pretty good ranking (last rigorous test several years ago showed roughly Inktomi-level quality)
 - Has done ~ 200M pages, more possible
- Hadoop is a spinoff

Timeline

- Fall, 2002 Nutch started with ~2 people
- Summer, 2003 50M pages demo'ed
- Fall, 2003 Google File System paper
- Summer, 2004 Distributed indexing, started work on GFS clone
- Fall, 2004 MapReduce paper
- 2005 Started work on MapReduce. Massive Nutch rewrite, to move to GFS & MapReduce framework
- 2006 Hadoop spun out, Nutch work slows
- 2007 Widespread Hadoop adoption

Outline

- Nutch design
 - Link database, fetcher, indexer, etc...
- Hadoop support
 - Distributed filesystem, job control

Moving Parts

- Acquisition cycle
 - WebDB
 - Fetcher
- Index generation
 - Indexing
 - Link analysis (maybe)
- Serving results

WebDB

- Contains info on all pages, links
 - URL, last download, # failures, link score, content hash, ref counting
 - Source hash, target URL
- Must always be consistent
- Designed to minimize disk seeks
 - 19ms seek time x 200m new pages/mo
 - $= \sim 44$ days of disk seeks!
- Single-disk WebDB was huge headache

Fetcher

- Fetcher is very stupid. Not a "crawler"
- Pre-MapRed: divide "to-fetch list" into k pieces, one for each fetcher machine
- URLs for one domain go to same list, otherwise random
 - Politeness" w/o inter-fetcher protocols
 - Can observe robots.txt similarly
 - Better DNS, robots caching
 - Easy parallelism
- Two outputs: pages, WebDB edits

WebDB/Fetcher Updates

URL: <u>http://www.about.com/index.html</u>

LastUpdated: 3/22/05

ContentHash: MD5_sdflkjweroiwelksd

URL: http://www.cnn.com/index.html

LastUpdated: Neday!

ContentHash: No 5e_balboglerropewolefbag

URL: http://www.fladko/comd/andhexahtml

LastUpdated: 40/20/05

ContentHash: NO 5 to ewkekqmekkalekaa

URL: <u>http://www.yahoo.com/index.html</u>

LastUpdated: TodaWebDB

ContentHash: MD5_toewkekqmekkalekaa

Edit: DOWNLOAD_CONTENT

URL: http://www.yahoo/index.html

ContentHash: MD5_toewkekqmekkalekaa

Edit: DOWNLOAD_CONTENT

URL: http://www.cnn.com/index.html

ContentHash: MD5_balboglerropewolefbag

Edit: NEW_LINK

URL: http://www.flickr.com/index.html

ContentHash: None

Fetcher edits

9. Repicted feeterhead at the secret sage were detabase

Indexing

- Iterate through all k page sets in parallel, constructing inverted index
- Creates a "searchable document" of:
 - URL text
 - Content text
 - Incoming anchor text
- Other content types might have a different document fields
 - Eg, email has sender/receiver
 - Any searchable field end-user will want
- Uses Lucene text indexer

Link analysis

- A page's relevance depends on both intrinsic and extrinsic factors
 - Intrinsic: page title, URL, text
 - Extrinsic: anchor text, link graph
- PageRank is most famous of many
- Others include:
 - HITS
 - OPIC
 - Simple incoming link count
- Link analysis is sexy, but importance generally overstated

Link analysis (2)

- Nutch performs analysis in WebDB
 - Emit a score for each known page
 - At index time, incorporate score into inverted index
- Extremely time-consuming
 - In our case, disk-consuming, too (because we want to use low-memory machines)
- Fast and easy:
 - 0.5 * log(# incoming links)

Administering Nutch

- Admin costs are critical
 - It's a hassle when you have 25 machines
 - Google has >100k, probably more
- Files
 - WebDB content, working files
 - Fetchlists, fetched pages
 - Link analysis outputs, working files
 - Inverted indices
- Jobs
 - Emit fetchlists, fetch, update WebDB
 - Run link analysis
 - Build inverted indices

Administering Nutch (2)

- Admin sounds boring, but it's not!
 - Really
 - I swear
- Large-file maintenance
 - Google File System (Ghemawat, Gobioff, Leung)
 - Nutch Distributed File System
- Job Control
 - Map/Reduce (Dean and Ghemawat)
 - Pig (Yahoo Research)
- Data Storage (BigTable)

Nutch Distributed File System

- Similar, but not identical, to GFS
- Requirements are fairly strange
 - Extremely large files
 - Most files read once, from start to end
 - Low admin costs per GB
- Equally strange design
 - Write-once, with delete
 - Single file can exist across many machines
 - Wholly automatic failure recovery

NDFS (2)

- Data divided into blocks
- Blocks can be copied, replicated
- Datanodes hold and serve blocks
- Namenode holds metainfo
 - Filename \rightarrow block list
 - Block \rightarrow datanode-location
- Datanodes report in to namenode every few seconds

NDFS File Read

NDFS Replication

- 1. Always keep at least *k* copies of each blk
- 2. Imagine datanode 4 dies; blk 90 lost
- 3. Namenode loses heartbeat, decrements blk 90's reference count. Asks datanode 5 to replicate blk 90 to datanode 0
- 4. Choosing replication target is tricky

Nutch & Hadoop

- NDFS stores the crawl and indexes
- MapReduce for indexing, parsing, WebDB construction, even fetching
 - Broke previous 200M/mo limit
 - Index-serving?
- Required massive rewrite of almost every Nutch component

Nutch Conclusion

- <u>http://www.nutch.org/</u>
 - Partial documentation
 - Source code
 - Developer discussion board
- Nutch has been only moderately successful, but led to Hadoop
- "Lucene in Action" by Hatcher, Gospodnetic is a useful resource

Search: A Technical History

- Search engines have been around a lot longer than you think
- Almost all of them are dead and gone, but their ideas live on
- Search existed before the Web, though it was a very different beast

Primordial Era: 1960s-1994

- Electronic content was rare and expensive
- Only large organizations with huge wellcurated archives (libraries, govts) had any need for search
- CPU & storage were expensive, networked systems very rare
- Most systems were small, searched only metadata (like card catalogs)

Primordial Era (2)

- Two important technical contributions
 - Inverted index
 - Tf/idf & vector document model
- Document ranking was not a huge problem
 - Relatively few documents
 - Clean metadata
 - Boolean operators commonplace

Inverted Index: why bother?

- Disk access: 1-10ms
 - Depends on seek distance, published average is 5ms
 - Thus perform 200 seeks / sec
 - (And we are ignoring rotation and transfer times)
- Clock cycle: 2 GHz
 - Typically completes 2 instructions / cycle
 - ~10 cycles / instruction, but pipelining & parallel execution
 - Thus: 4 billion instructions / sec
- Disk is 20 Million times slower
- Inverted index allows us to read all of the docs for a single search term, usually with a single seek.
- # seeks grows with # terms, not # documents.

Tf = term frequency, idf = inverse document frequency; tf/idf for a term places it in N-dim space
Documents that are "close together" in space are similar in meaning.

The Web (1994-)

- The popularization of the Web in the 1990s led to a crazy explosion of search engine companies
- Web search was a vastly different problem compared to previous systems
 - Content was cheap but messy
 - Storage was becoming cheap
 - Finding a document became harder
 - Users were much less sophisticated

Search Engine Size over Time

Number of indexed pages, self-reported

Information from searchenginewatch.com

Search Engine Storage Costs

- Figure 10kb to index one Web page plus a compressed cached copy
- In 2008, 1GB costs ~0.15
 - 100k docs per gig, so \$0.0000015/doc
 - 50M docs costs \$75.00
- In 1990, 1GB costs \$1000.00
 - 100k docs per gig, so \$0.01/doc
 - 50M docs costs \$500k
 - Just about within reach for startup search companies

WebCrawler

- Created in 1994 by a UW student!
- Notable features:
 - First dynamic crawler (rather than using hand-curated corpus)
- Fate:
 - Bought by AOL, then Excite, then InfoSpace
 - Now a meta-engine, serving results from elsewhere

Excite (aka Architext)

- Created in 1994 by Stanford ugrads
- Notable features:
 - Full-text indexing for Web pages
 - "Related search" suggestions
 - Famous in mid-90s for consuming tons of expensive high-end Sun machines
- Fate:
 - Went public, bought many other companies, merged with @Home, collapsed in bankruptcy, then sold for parts

Infoseek

- Created in 1994
- Notable features:
 - Very fancy query language (booleans, NEAR, etc)
 - Performed some linguistic analysis, including stemming. Gave stemming a bad name for a decade.
- Fate:
 - Bought by Disney in 1998

Inktomi

- Created in 1996 by UCB grad student
- Notable features:
 - Distributed commodity-box infrastructure
 - Resold its search engine to other destination sites (Hotbot, Yahoo, others)
 - Search was just one of several products (others were caches and video serving)
- Fate:
 - Went public, stock collapsed in crash, sold to Yahoo in 2002

AltaVista

- Created in 1995 as a DEC research project
- Notable Features:
 - Originally meant to demo new 64-bit Alpha processor: high speed & huge address space
 - First really high-quality multithreaded crawler: 30m pages at launch!
 - Recognized that page ranking was an issue, but used awful solution: URL length
- Fate:
 - Compaq bought DEC, then sold AV to CMGI, which sold AV to Overture, which was then bought by Yahoo

Google

- Founded in 1998. Have you heard of it?
- Major feature was PageRank (Page, 1998)
 - Largely solved page-ranking problem faced by AltaVista
 - First major commercial deployment of link-based methods
 - Really miraculous when compared to other methods at the time
- However, link-based methods were common in academia
 - Authoritative Sources in a Hyperlinked Environment, Kleinberg. JACM, 1999.
 - "Silk from a sow's ear", Pirolli, Pitkow, Rao. CHI, 1996.

Google (2)

- PageRank is its best-known contribution, but Google was helped by its predecessors:
 - Full-text indexing, like Excite
 - An aggressive large-scale crawler, like WebCrawler and AltaVista
 - Distributed processing from Inktomi
- The last interesting Web search engine?
 - Probably. Previous search engines got a ton of traffic. They just didn't have ad revenue
 - The period 1994-1998 was very unusual, made possible by the Web's split between search and content ownership