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1. The Basics - What’s a Transaction?

• The execution of a program that performs an 

administrative function by accessing a shared 

database, usually on behalf of an on-line user.

Examples

• Reserve an airline seat. Buy an airline ticket

• Withdraw money from an ATM.

• Verify a credit card sale. 

• Order an item from an Internet retailer

• Place a bid at an on-line auction

• Submit a corporate purchase order
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The “ities” are What Makes 

Transaction Processing (TP) Hard
• Reliability - system should rarely fail

• Availability - system must be up all the time

• Response time - within 1-2 seconds

• Throughput - thousands of transactions/second

• Scalability - start small, ramp up to Internet-scale

• Security – for confidentiality and high finance

• Configurability - for above requirements + low cost

• Atomicity - no partial results

• Durability - a transaction is a legal contract

• Distribution - of users and data
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What Makes TP Important?

• It’s at the core of electronic commerce

• Most medium-to-large businesses use TP for their 

production systems. The business can’t operate 

without it.

• It’s a huge slice of the computer system market. One 

of the largest applications of computers.
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System Characteristics

• Typically < 100 transaction types per application

• Transaction size has high variance. Typically,

– 0-30 disk accesses

– 10K - 1M instructions executed

– 2-20 messages

• A large-scale example: airline reservations

– hundreds of thousands of active display devices

– plus indirect access via Internet

– tens of thousands of transactions per second, peak
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Availability
• Fraction of time system is able to do useful work

• Some systems are very sensitive to downtime

– airline reservation, stock exchange, telephone switching

– downtime is front page news

• Contributing factors

– failures due to environment, system mgmt, h/w, s/w

– recovery time 

Downtime Availability

1 hour/day 95.8%

1 hour/week 99.41%

1 hour/month 99.86%

1 hour/year 99.9886%

1 hour/20years 99.99942%
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2. The ACID Properties

• Transactions have 4 main properties

– Atomicity - all or nothing

– Consistency - preserve database integrity

– Isolation - execute as if they were run alone

– Durability - results aren’t lost by a failure
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Atomicity
• All-or-nothing, no partial results.

– E.g. in a money transfer, debit one account, credit the other. 

Either debit and credit both run, or neither runs.

– Successful completion is called Commit.

– Transaction failure is called Abort.

• Commit and abort are irrevocable actions.

• An Abort undoes operations that already executed

– For database operations, restore the data’s previous value from 

before the transaction

– But some real world operations are not undoable. They require 

special treatment

Examples - transfer money, print ticket, fire missile
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Consistency

Every transaction should maintain DB consistency

– Referential integrity - E.g. each order references an existing 

customer number and existing part numbers

– The books balance (debits = credits, assets = liabilities)

 Consistency preservation is a property of a transaction, 

not of the TP system 

(unlike the A, I, and D of ACID)

• If each transaction maintains consistency, 

then serial executions of transactions do too.
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Isolation

• Intuitively, the effect of a set of transactions should be 

the same as if they ran independently

• Formally, an interleaved execution of transactions is 

serializable if its effect is equivalent to a serial one.

• Implies a user view where the system runs each user’s 

transaction stand-alone.

• Of course, transactions in fact run with lots of 

concurrency, to use device parallelism.
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Durability
• When a transaction commits, its results will survive 

failures (e.g. of the application, OS, 

DB system … even of the disk).

• Makes it possible for a transaction to be a legal contract.

• Implementation is usually via a log

– DB system writes all transaction updates to its log

– To commit, it adds a record “commit(Ti)” to the log

– When commit(Ti) is on disk, Ti is committed.

– System waits for disk ack before acking to user
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3. Atomicity and Two-Phase Commit

• Distributed systems make atomicity harder

• Suppose a transaction updates data managed by two DB 

systems.

• One DB system could commit the transaction,  but a 

failure could prevent the other system from committing.

• The solution is the two-phase commit protocol.

– Abstract “DB system” by resource manager 

– Could be a SQL DBMS, message mgr, queue mgr, file system, 

OO DBMS, etc.
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Two-Phase Commit

• Main idea - all resource managers (RMs) save a durable
copy of the transaction’s updates before any of them 
commit.

• If one RM fails after another commits, the failed RM can 
still commit after it recovers.

• The protocol to commit transaction T

– Phase 1 - T’s coordinator asks all participant RMs to “prepare 
T”.  Each participant RM replies “prepared” after T’s updates 
are durable.

– Phase 2 - After receiving “prepared” from all participant RMs, 
the coordinator tells all participant RMs to commit.
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Two-Phase Commit 
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4. Replication Basics

• Replication - using multiple copies of a server or 

resource for better availability and performance.

– Replica and Copy are synonyms

• If you’re not careful, replication can lead to 

– worse performance - updates must be applied to all replicas 

and synchronized

– worse availability - some algorithms require multiple 

replicas to be operational for any of them to be used
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Synchronous Replication

• Replicas function just like a non-replicated resource

– Txn writes data item x. System writes all replicas of x.

– Synchronous – replicas are written within the update txn

– Asynchronous – One replica is updated immediately. 

Other replicas are updated later

• Problems with synchronous replication
– Expensive due to 2-phase commit

– Can’t control when updates are applied to replicas

Write(x1)

Write(x2)

Write(x3)

x1

x2

x3

Start

Write(x)

Commit
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Asynchronous Replication
• Asynchronous replication 

– Each transaction updates one replica.

– Updates are propagated later to other replicas.

• Primary copy: Each data item has a primary copy

– All transactions update the primary copy

– Other copies are for queries and failure handling

• Multi-master: Transactions update different copies

– Useful for disconnected operation, partitioned network, mobile

– Useful when weak consistency is good enough

• Both approaches ensure that 

– Updates propagate to all replicas

– If new updates stop, replicas converge to the same state

• We focus here on primary copy
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5. Primary-Copy Replication

• Designate one replica as the primary copy (publisher)

• Transactions may update only the primary copy

• Updates to the primary are sent later to secondary replicas 

(subscribers) in the order they were applied to the primary

T1: Start

… Write(x1) ...

Commit

x1T2

Tn

... Primary 

Copy

x2

xm

...

Secondaries 
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Update Propagation
• Collect updates at the primary using triggers or 

by post-processing the log 

– Triggers: on every update at the primary, a trigger fires 
to store the update in the update propagation table.

– Log post-processing:  “sniff” the log to generate update 
propagations 

• Log post-processing (vs. triggers)

– Saves triggered update overhead during on-line txn.

– But R/W log synchronization has a (small) cost

– Requires admin (what if the log sniffer fails?)

• Optionally identify updated fields to compress log

• Most DB systems support this today.
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Failure & Recovery Handling

• Secondary failure - nothing to do till it recovers

– At recovery, apply the updates it missed while down

– Needs to determine which updates it missed, 

just like non-replicated log-based recovery

– If down for too long, may be faster to get a whole copy

• Primary failure 

– Normally, secondaries wait till the primary recovers

– Can get higher availability by electing a new primary

• Hold that thought ….
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Communications Failures

• Secondaries can’t distinguish a primary failure from a 

communication failure that partitions the network.

• If the secondaries elect a new primary and the old primary 

is still running, there will be a reconciliation problem 

when they’re reunited. This is multi-master.

• To avoid this, one partition must know it’s the only one 

that can operate. It can’t communicate with other 

partitions to figure this out.

• Could make a static decision. 

E.g., the partition that has the primary wins.

• Dynamic solutions are based on Majority Consensus



23

Majority Consensus
• Whenever a set of communicating replicas detects a 

replica failure or recovery, they test if they have a 

majority (more than half) of the replicas. 

• If so, they can elect a primary

• Only one set of replicas can have a majority.

• Doesn’t work with an even number of copies.

– Useless with 2 copies

• Quorum consensus

– Give a weight to each replica

– The replica set that has a majority of the weight wins

– E.g. 2 replicas, one has weight 1, the other weight 2



Electing a New Primary
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• A secondary S that detects primary’s failure starts a new 
election by sending invitations to all secondaries

– Other secondaries reply with their replica identifier

– If S gets replies from a majority, it selects the largest 
replica identifier as the winner

– If not, it tells everyone to wait for more recoveries

• What if replicas fail and recover during the election?

– Use Paxos. S includes a unique epoch number in its 
invitation.

– A recipient accepts the invitation only if it hasn’t 
accepted another invitation with higher epoch

– S backs off on retries, to avoid an arms race
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After Electing a New Primary

• All replicas must now check that they have the 

same updates from the failed primary

• During the election, each replica reports the id of the last 

log record it received from the primary

• The most up-to-date replica sends its latest updates to (at 

least) the new primary.

• Could still lose an update that committed at the primary 

and wasn’t forwarded before the primary failed … but 

solving it requires synchronous replication (2-phase 

commit to propagate updates to replicas)



Conclusion

• Primary copy is just one replication

• Other models

– Multi-master replication

– Shared storage

• All 3 models are used commercially
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