
1

Transactions and

Replication

CSE 490H

Philip A. Bernstein
October 24, 2008

Copyright ©2008 Philip A. Bernstein

2

1. The Basics - What’s a Transaction?

• The execution of a program that performs an

administrative function by accessing a shared

database, usually on behalf of an on-line user.

Examples

• Reserve an airline seat. Buy an airline ticket

• Withdraw money from an ATM.

• Verify a credit card sale.

• Order an item from an Internet retailer

• Place a bid at an on-line auction

• Submit a corporate purchase order

3

The “ities” are What Makes

Transaction Processing (TP) Hard
• Reliability - system should rarely fail

• Availability - system must be up all the time

• Response time - within 1-2 seconds

• Throughput - thousands of transactions/second

• Scalability - start small, ramp up to Internet-scale

• Security – for confidentiality and high finance

• Configurability - for above requirements + low cost

• Atomicity - no partial results

• Durability - a transaction is a legal contract

• Distribution - of users and data

4

What Makes TP Important?

• It’s at the core of electronic commerce

• Most medium-to-large businesses use TP for their

production systems. The business can’t operate

without it.

• It’s a huge slice of the computer system market. One

of the largest applications of computers.

Web Server

Request Controller

Transaction Server Transaction Server

intranet

Message

Inputs

TP System Architecture

Queues

other TP

systems

5

6

System Characteristics

• Typically < 100 transaction types per application

• Transaction size has high variance. Typically,

– 0-30 disk accesses

– 10K - 1M instructions executed

– 2-20 messages

• A large-scale example: airline reservations

– hundreds of thousands of active display devices

– plus indirect access via Internet

– tens of thousands of transactions per second, peak

7

Availability
• Fraction of time system is able to do useful work

• Some systems are very sensitive to downtime

– airline reservation, stock exchange, telephone switching

– downtime is front page news

• Contributing factors

– failures due to environment, system mgmt, h/w, s/w

– recovery time

Downtime Availability

1 hour/day 95.8%

1 hour/week 99.41%

1 hour/month 99.86%

1 hour/year 99.9886%

1 hour/20years 99.99942%

8

2. The ACID Properties

• Transactions have 4 main properties

– Atomicity - all or nothing

– Consistency - preserve database integrity

– Isolation - execute as if they were run alone

– Durability - results aren’t lost by a failure

9

Atomicity
• All-or-nothing, no partial results.

– E.g. in a money transfer, debit one account, credit the other.

Either debit and credit both run, or neither runs.

– Successful completion is called Commit.

– Transaction failure is called Abort.

• Commit and abort are irrevocable actions.

• An Abort undoes operations that already executed

– For database operations, restore the data’s previous value from

before the transaction

– But some real world operations are not undoable. They require

special treatment

Examples - transfer money, print ticket, fire missile

10

Consistency

Every transaction should maintain DB consistency

– Referential integrity - E.g. each order references an existing

customer number and existing part numbers

– The books balance (debits = credits, assets = liabilities)

 Consistency preservation is a property of a transaction,

not of the TP system

(unlike the A, I, and D of ACID)

• If each transaction maintains consistency,

then serial executions of transactions do too.

11

Isolation

• Intuitively, the effect of a set of transactions should be

the same as if they ran independently

• Formally, an interleaved execution of transactions is

serializable if its effect is equivalent to a serial one.

• Implies a user view where the system runs each user’s

transaction stand-alone.

• Of course, transactions in fact run with lots of

concurrency, to use device parallelism.

12

Durability
• When a transaction commits, its results will survive

failures (e.g. of the application, OS,

DB system … even of the disk).

• Makes it possible for a transaction to be a legal contract.

• Implementation is usually via a log

– DB system writes all transaction updates to its log

– To commit, it adds a record “commit(Ti)” to the log

– When commit(Ti) is on disk, Ti is committed.

– System waits for disk ack before acking to user

13

3. Atomicity and Two-Phase Commit

• Distributed systems make atomicity harder

• Suppose a transaction updates data managed by two DB

systems.

• One DB system could commit the transaction, but a

failure could prevent the other system from committing.

• The solution is the two-phase commit protocol.

– Abstract “DB system” by resource manager

– Could be a SQL DBMS, message mgr, queue mgr, file system,

OO DBMS, etc.

14

Two-Phase Commit

• Main idea - all resource managers (RMs) save a durable
copy of the transaction’s updates before any of them
commit.

• If one RM fails after another commits, the failed RM can
still commit after it recovers.

• The protocol to commit transaction T

– Phase 1 - T’s coordinator asks all participant RMs to “prepare
T”. Each participant RM replies “prepared” after T’s updates
are durable.

– Phase 2 - After receiving “prepared” from all participant RMs,
the coordinator tells all participant RMs to commit.

15

Two-Phase Commit

System Architecture

Resource

Manager

Transaction

Manager (TM)

Application Program

Other

Transaction

Managers

1. Start transaction returns a unique transaction identifier

2. Resource accesses include the transaction identifier.

For each transaction, RM registers with TM

3. When application asks TM to commit, the TM runs

two-phase commit.

Start

Commit, Abort

Read,
Write

16

4. Replication Basics

• Replication - using multiple copies of a server or

resource for better availability and performance.

– Replica and Copy are synonyms

• If you’re not careful, replication can lead to

– worse performance - updates must be applied to all replicas

and synchronized

– worse availability - some algorithms require multiple

replicas to be operational for any of them to be used

17

Synchronous Replication

• Replicas function just like a non-replicated resource

– Txn writes data item x. System writes all replicas of x.

– Synchronous – replicas are written within the update txn

– Asynchronous – One replica is updated immediately.

Other replicas are updated later

• Problems with synchronous replication
– Expensive due to 2-phase commit

– Can’t control when updates are applied to replicas

Write(x1)

Write(x2)

Write(x3)

x1

x2

x3

Start

Write(x)

Commit

18

Asynchronous Replication
• Asynchronous replication

– Each transaction updates one replica.

– Updates are propagated later to other replicas.

• Primary copy: Each data item has a primary copy

– All transactions update the primary copy

– Other copies are for queries and failure handling

• Multi-master: Transactions update different copies

– Useful for disconnected operation, partitioned network, mobile

– Useful when weak consistency is good enough

• Both approaches ensure that

– Updates propagate to all replicas

– If new updates stop, replicas converge to the same state

• We focus here on primary copy

19

5. Primary-Copy Replication

• Designate one replica as the primary copy (publisher)

• Transactions may update only the primary copy

• Updates to the primary are sent later to secondary replicas

(subscribers) in the order they were applied to the primary

T1: Start

… Write(x1) ...

Commit

x1T2

Tn

... Primary

Copy

x2

xm

...

Secondaries

20

Update Propagation
• Collect updates at the primary using triggers or

by post-processing the log

– Triggers: on every update at the primary, a trigger fires
to store the update in the update propagation table.

– Log post-processing: “sniff” the log to generate update
propagations

• Log post-processing (vs. triggers)

– Saves triggered update overhead during on-line txn.

– But R/W log synchronization has a (small) cost

– Requires admin (what if the log sniffer fails?)

• Optionally identify updated fields to compress log

• Most DB systems support this today.

21

Failure & Recovery Handling

• Secondary failure - nothing to do till it recovers

– At recovery, apply the updates it missed while down

– Needs to determine which updates it missed,

just like non-replicated log-based recovery

– If down for too long, may be faster to get a whole copy

• Primary failure

– Normally, secondaries wait till the primary recovers

– Can get higher availability by electing a new primary

• Hold that thought ….

22

Communications Failures

• Secondaries can’t distinguish a primary failure from a

communication failure that partitions the network.

• If the secondaries elect a new primary and the old primary

is still running, there will be a reconciliation problem

when they’re reunited. This is multi-master.

• To avoid this, one partition must know it’s the only one

that can operate. It can’t communicate with other

partitions to figure this out.

• Could make a static decision.

E.g., the partition that has the primary wins.

• Dynamic solutions are based on Majority Consensus

23

Majority Consensus
• Whenever a set of communicating replicas detects a

replica failure or recovery, they test if they have a

majority (more than half) of the replicas.

• If so, they can elect a primary

• Only one set of replicas can have a majority.

• Doesn’t work with an even number of copies.

– Useless with 2 copies

• Quorum consensus

– Give a weight to each replica

– The replica set that has a majority of the weight wins

– E.g. 2 replicas, one has weight 1, the other weight 2

Electing a New Primary

24

• A secondary S that detects primary’s failure starts a new
election by sending invitations to all secondaries

– Other secondaries reply with their replica identifier

– If S gets replies from a majority, it selects the largest
replica identifier as the winner

– If not, it tells everyone to wait for more recoveries

• What if replicas fail and recover during the election?

– Use Paxos. S includes a unique epoch number in its
invitation.

– A recipient accepts the invitation only if it hasn’t
accepted another invitation with higher epoch

– S backs off on retries, to avoid an arms race

25

After Electing a New Primary

• All replicas must now check that they have the

same updates from the failed primary

• During the election, each replica reports the id of the last

log record it received from the primary

• The most up-to-date replica sends its latest updates to (at

least) the new primary.

• Could still lose an update that committed at the primary

and wasn’t forwarded before the primary failed … but

solving it requires synchronous replication (2-phase

commit to propagate updates to replicas)

Conclusion

• Primary copy is just one replication

• Other models

– Multi-master replication

– Shared storage

• All 3 models are used commercially

26

