
UW CSE490H // fall 2008 // gribble@cs 1

CSE490H: Virtualization
It’s turtles all the way down…

Steve Gribble
Associate Professor, CSE
[on sabbatical at Google as a visiting scientist]

UW CSE490H // fall 2008 // gribble@cs

VM demo

2

a virtual machine:
  a software-based implementation of some real (hardware-based) computer

  in its pure form, supports booting and execution of unmodified OSs and apps

a virtual machine monitor:
•  the software that creates and manages the execution of virtual machines

•  a VMM is essentially a simple operating system

Some simple terms

UW CSE490H // fall 2008 // gribble@cs

Outline

•  The history of virtualization

•  How virtualization works

•  Applications of virtualization

3

UW CSE490H // fall 2008 // gribble@cs

Before there were data centers…
Many early commercial computers were mainframes:
•  originally housed in enormous, room-sized metal frames

•  computationally powerful, though less so than a supercomputer

•  highly reliable, with redundancy engineered into hardware and software

•  extensive I/O capabilities for data-intensive business and scientific apps

•  “IBM and the seven dwarfs” – their heyday was the late ‘50s through ‘70s

4

IBM 704 (1954)

$250K - millions

IBM z9 (2005)

$100k - millions

UW CSE490H // fall 2008 // gribble@cs

Issues with early mainframes

Early mainframe families had some disadvantages
•  successive (or even competing!) models were not architecturally compatible

  massive headache to upgrade HW: gotta port software!

•  the systems were primarily batch-oriented

In the meantime, project MAC at MIT was kicking off
•  responsible for developing Multics

•  invented many of the modern ideas behind time-sharing operating systems
•  e.g., fundamentals of protection systems (access control lists, capabilities)

•  the computer was becoming a multiplexed tool for a community of users,
instead of being a batch tool for wizard programmers

•  and the mainframe companies were about to be left in the dust

5

UW CSE490H // fall 2008 // gribble@cs

Big blue’s bold move

IBM bet the company on the System/360 hardware family [1964]
•  S/360 was the first to clearly distinguish architecture and implementation

•  its architecture was virtualizable (with the addition of virtual memory support
in the 360-67)

And, unexpectedly, the CP/CMS system software is a hit [1968]
•  CP: a “control program” that created and managed virtual S/360 machines

•  CMS: the “Cambridge monitor system” -- a lightweight, single-user OS
•  run several different OSs concurrently on the same HW

•  one CMS instance per user: CP/CMS is now great for timesharing!
•  older, batch-oriented jobs on batch-oriented OSs (PCP)
•  presumably, any of the other s/360 compatible OSs (OS/360, DOS/360, etc.)
•  any S/360 software could run in a VM, and hence became time-sharable

•  CP/CMS also enabled OS development and experimentation

6

UW CSE490H // fall 2008 // gribble@cs

Thus began the family tree of IBM mainframes

•  system/360 (1964-1970)
•  ended up supporting virtualization via CP/CMS, channel I/O, virtual memory, byte-

addressable, 32-bit registers with 24 bit addressing, EBCDIC, …

•  several orders of magnitude of performance and cost

•  system/370 (1970-88)
•  shipped as dual-processors, virtual memory support via DAT boxes, moved to 31-

bit architecture; reimplementation of CP/CMS OS as VM/370

•  system/390 (1990-2000)
•  clustering, aka “parallel sysplex”

•  zSeries (2000-present)
•  hot hardware swap and failover, redundant software execution, wide-area failover

Huge moneymaker for IBM, and many business still depend on these!

7

UW CSE490H // fall 2008 // gribble@cs

In the meantime…the PC revolution happened

PCs are much less powerful, but enjoy massive economies of scale
•  “a computer for every desktop” (1980s)

•  ship hundreds of millions of units, not hundreds of units

•  much better price/performance (operations per $)

•  much lower reliability

8

mainframe

PC cluster

Cluster computing (1990s)
•  build a cheap mainframe or

supercomputer out of a cluster
of commodity PCs

•  use clever software to get fault
tolerance

UW CSE490H // fall 2008 // gribble@cs

Mendel Rosenblum makes it big

VMware co-founded by Mendel Rosenblum and Diane Green in 1998
•  commercialized ideas incubated in Stanford DISCO project

•  brought CP/CMS-style virtualization to PC computers

Their initial market was software developers
•  often need to develop and test software on multiple OSs (windows, linux, …)

  (or, similar to CP/CMS, might want to do OS development)

•  can afford multiple PCs, or could dual-boot, but this is very inconvenient

•  instead, run multiple OSs simultaneously in separate VMs
•  very similar to mainframe VM motivation, but for opposite reason – too many

computers now, not too few!

9

UW CSE490H // fall 2008 // gribble@cs

The real PC virtualization moneymaker

Enterprise consolidation
•  big companies usually have their own machine rooms or data centers

•  operate many services: mail servers, file servers, Web servers, remote cycles

•  want to run at most one service per machine (administrative best practices)

•  leads to low utilization, lots of machines, high power bills, administrative hassles

•  instead, run one service per virtual machine
•  and consolidate many VMs per physical machine

•  leads to better utilization, easier management

10

UW CSE490H // fall 2008 // gribble@cs

The forefront of virtualization

Large-scale, hosted cloud computing (e.g., Amazon EC2)
•  the cloud provider buys a bazillion computers and operates a data center

•  your run your software in a VM on their computers, and pay them rent
  the VM is a convenient container for uploading software, and is a safe sandbox

that prevents you and other customers from harming each other

•  run 1,000 VMs images for a day, and pay just $2400.00.

11

UW CSE490H // fall 2008 // gribble@cs

Outline

•  The history of virtualization

•  How virtualization works

•  Applications of virtualization

12

UW CSE490H // fall 2008 // gribble@cs

How do virtual machines work?

Start with a “simpler” question: how do (regular) machines work?

13

hardware

operating system

application application

hardware / software
interface

system call
interface

UW CSE490H // fall 2008 // gribble@cs

What is computer hardware?

Just a bag of devices…
•  CPU

  defines the instruction set of the machine

  provides registers, processes instructions, handles interrupts

  defines privilege modes (e.g., supervisor, user)

•  memory hierarchy
  physical memory words accessible via load/store instructions

  MMU provides paging / segmentation, and therefore virtual memory support

  MMU controlled via special registers, and via page tables (see CSE451)

•  I/O devices
  disks, NICs, etc., controlled by programmed I/O (inb, outb) or by DMA (load/store)

  events delivered to software via polling or interrupts

•  Other devices
  graphics cards, clocks, USB controllers, etc.

14

UW CSE490H // fall 2008 // gribble@cs

What is an OS?

It’s just a program!
•  you write it in some language (C/C++), and compile it into a program image

•  it runs like any other program, but in a privileged (supervisor) CPU mode
•  this allows it to interact with hardware devices using “sensitive” instructions

Looking downwards:
•  an OS issues instructions to control hardware devices

•  it does so to allocate and manage hardware resources on behalf of programs

Looking upwards:

•  OS gives apps a high-level programming interface (system call interface)

•  OS implements this interface using low-level hardware devices
•  file open / read / write close vs. disk block read / write

15

UW CSE490H // fall 2008 // gribble@cs

What’s an application?

A program that relies on the system call interface
•  While executing it, the CPU runs in unprivileged (user) mode

•  a special instruction (“intc” on x86) lets a program call into the OS
•  the OS uses this to expose system calls

•  the program uses system calls to manipulate file system, network stack, etc.

•  OS provides a program with the illusion of its own memory
•  MMU hardware lets the OS define the “virtual address space” of the program

Is this safe?
•  most instructions run directly on the CPU (fast)

•  but sensitive instructions cause the CPU to throw an exception to the OS

•  address spaces prevent program from stomping on OS memory, each other

•  it’s as though each program runs in its own, private machine (the “process”)

16

UW CSE490H // fall 2008 // gribble@cs

Here’s the goofy idea…

What if we run the Windows kernel as a user-level program?

17

hardware

VMM

Windows guest OS

app app

Linux guest OS

app app

(physical) hardware /
software interface

system call
interface

virtual hardware /
software interface

UW CSE490H // fall 2008 // gribble@cs

The goofy idea almost works, but…

What happens when Windows issues a sensitive instruction?

What (virtual) hardware devices should Windows see?

How do you prevent apps running on Windows from hurting Windows?
•  or apps from hurting the VMM…

•  or Windows from hurting Linux…or the VMM…

18

UW CSE490H // fall 2008 // gribble@cs

Trap-and-emulate, and Goldberg

Answer: rely on CPU to trap sensitive instructions and hand off to VMM
•  VMM emulates the effect of sensitive instruction on the virtual hardware that

it provides to its guest OSs

•  instead of OS providing high-level abstractions to process via system calls…
•  VMM provides a virtual HW/SW interface to guest OSs by trapping and emulating

sensitive instructions

Goldberg (1974): two classes of instructions

•  privileged instructions: those that trap when CPU is in user-mode

•  sensitive instructions: those that modify hardware configuration or
resources, and those whose behavior depends on HW configuration

A VMM can be constructed efficiently and safely if the set of sensitive
instructions is a subset of the set of privileged instructions.

19

UW CSE490H // fall 2008 // gribble@cs

Performance implications of trap-and-emulate

There is almost no overhead to non-sensitive instructions
•  they execute directly on the CPU, and do not cause traps

•  CPU-bound code (e.g., many SPEC benchmarks, some scientific programs)
execute at the same speed on a VM as on a physical machine

There is a large potential performance hit to sensitive instructions

•  they raise a trap and must be vectored to and emulated by VMM

•  I/O or system-call intensive applications get hit hard
  recent hardware extensions try to improve this by letting the hardware handle

instructions that used to cause trap/emulate

  in essence, these extensions make the CPU aware of VM boundaries

20

UW CSE490H // fall 2008 // gribble@cs

A hard problem (and why VMware made $$)

Until 2005, the Intel architecture did not meet Goldberg’s requirement
•  17 instructions were not virtualizable

•  they do not trap, and they behave differently in supervisor vs. user mode
•  some leak processor mode (e.g., SMSW, or store machine status word)

•  some behave differently (e.g., CALL or JMP to addresses that reference the
protection mode of the destination)

21

UW CSE490H // fall 2008 // gribble@cs

How to make Intel virtualizable

You have four choices…
1.  Emulate: do not execute instructions directly, but instead interpret each

•  very slow (Virtual PC on the Mac)

2.  Paravirtualize: modify the guest OS to avoid non-virtualizable instructions
•  very fast and safe, but not “pure” or backwards compatible (Denali, Xen)

3.  Use binary translation instead of trap-and-emulate.
•  this is rocket science; and it is what VMware does

4.  Fix the CPUs.
•  In 2005/2006, Intel introduced “VT”, and AMD introduced “Pacifica”

•  re-implemented ideas from VM/370 virtualization support
•  basically added a new CPU mode to distinguish VMM from guest/app

•  now building a VMM is easy!
•  and VMware must make money some other way…

22

UW CSE490H // fall 2008 // gribble@cs

Outline

•  The history of virtualization

•  How virtualization works

•  Applications of virtualization

23

UW CSE490H // fall 2008 // gribble@cs

Cool properties of VM-based systems

A full-blown computer image can be stored in a file
•  VMM manifestly sees all of the state of the virtual hardware

•  virtual disk blocks, virtual (physical) memory pages, virtual CPU registers, virtual
I/O device state, etc.

•  if the VMM saves all this state into a file, it has created a VM snapshot
  and if it loads this state from a file, it is restoring a VM from a snapshot

•  Pop quiz: if all you save in the snapshot is the disk state, what do you have?

You can copy VM image to a new machine and run it there (migration)
•  install a complicated app in an image, and ship it (virtual appliances)

•  optimize the copy, and do the copy while the VM is running (live migration)

24

UW CSE490H // fall 2008 // gribble@cs

More cool properties of VMs

A virtual machine is a (pretty) secure sandbox

•  run malicious code in a VM, and it won’t harm other VMs or the host OS
  e.g., run a web browser in a VM and not worry about malware

  what assumption does this make?

The VMM can observe and log all HW/SW interactions of its guest OSs

•  log non-deterministic interactions to build a flight-data-recorder for replay
  forensics, software-based fault tolerance, time-travel debugging, …

25

UW CSE490H // fall 2008 // gribble@cs

The virtual data center

A cluster of machines, each running a set of VMs
•  drive up utilization by packing many VMs onto each cluster node

•  fault recovery is simplified
•  if hardware fails, copy VM image elsewhere

•  if software fails, restart VM from snapshot

•  can safely allow third parties to inject VM images into your data center
•  hosted VMs in the sky, commercial computing grids

Pop quiz:

•  should a big cloud app provider (Google, Yahoo, Microsoft, …) run VMs on
all of its machines?

26

UW CSE490H // fall 2008 // gribble@cs

Amazon web services

EC2, S3 etc.

•  customer uploads and runs Xen virtual machines; Amazon charges:
•  10 cents per CPU hour

•  10 cents per GB-month of storage

•  10 cents per million I/O requests

•  10 cents per wide-area network EC GB in, 17 per GB out.

•  is very much a low-level utility
•  you decide what software images to run

•  you must manage your fleet of virtual machine images

•  you get to worry about fault tolerance, scalability (sharding), etc.

•  ecosystem is growing around it
•  third-party companies like RightScale help solve these problems, if you run LAMP

27

UW CSE490H // fall 2008 // gribble@cs

For comparison, Google’s AppEngine

Let’s customers implement and execute Web services on Google’s machines

•  programmers write to a Python-based execution environment
  you implement code to handle a Web request

  your code can store and retrieve data from something that looks like BigTable

•  Google figures out…
  how many machines to run your code on

  how to route requests to your machines

  where to store your data, and how to manage data replication

  how to hide faults from you and your users

  the geolocation of your code

•  Google chose to rely on Python + OS as sandbox, rather than a VM

28

