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With Great Scale Comes Great 
Responsibility

A billion Internet users
Small fraction is still huge

Must please users
Bad press is expensive - never lose data
Support is expensive - minimize confusion
No unplanned downtime
No planned downtime
Low latency

Must also please developers, admins



Making Everyone Happy

 



Technology Options
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Megastore

Started in 2006 for app development at Google
Service layered on:

Bigtable (NoSQL scalable data store per datacenter)
Chubby (Config data, config locks)

Turnkey scaling (apps, users)
Developer-friendly features
Wide-area synchronous replication

partition by "Entity Group"



Entity Groups

Entity Groups are sub-databases



Entity Groups

Cheap transactions within an entity group (common)



Entity Groups

Expensive or loosely-consistent operations across Entity 
Groups (rare)



Scale Axis vs. Wide Replication Axis

 



Entity Group Mapping Examples

Applications must choose their partitioning
Common operations within an EG

Application Entity Groups Cross-EG Operations

Email User accounts none (out-of-system)

Blogs Users, Blogs Access control, notifications, 
global indexes

Mapping Local patches Patch-spanning ops (2PC)

Social Users, Groups Messages, bi-directional 
relationships, notifications

Resources Sites Shipments



Achieving Technical Goals

Scale
Bigtable within a datacenter
Easy to add Entity Groups (storage, throughput)

ACID Transactions
Write-ahead log per Entity Group
2PC or Queues between Entity Groups

Wide-Area Replication
Paxos
Tweaks for optimal latency



Paxos: Quorum-based Consensus

"While some consensus algorithms, such as Paxos, 
have started to find their way into [large-scale 
distributed storage systems built over failure-prone 
commodity components], their uses are limited 
mostly to the maintenance of the global configuration 
information in the system, not for the actual 
data replication."

-- Lamport, Malkhi, and Zhou, May 2009



Paxos:  Megastore Tweaks

Replicates transaction log entries on each write
Writes: one WAN round-trip (avg.)
Strong Reads: zero WAN round-trips (avg.)

per-replica bitmap invalidated on faults
Reads/Writes from any replica (no master)

no pipelining:  limited per-EG throughput
batching will improve throughput

Background scanners finish all operations



Comparison with Other Approaches

 NoSQL Megastore RDBMS

Minimal features Scalable 
features

Full-featured

Highly scalable Highly scalable Medium scale with effort

PK lookup and 
scan

Indexes, scans, 
physical 
clustering

Storage abstraction, 
complex query planning 
and execution

Limited/eventual 
consistency

Partitioned 
consistency

Global consistency



Features

Declarative schema
Serializable Transactions (within Entity Group)
Queues and 2PC (between Entity Groups)
Indexes

declared fields
full-text

Online backup and restore
Built-in encryption and compression



Omissions (current)

(currently) No query language
Apps must implement query plans
Apps have fine-grained control of physical placement

(currently) Limited per-Entity Group update rate



Is Everybody Happy?

Admins
linear scaling, transparent rebalancing (Bigtable)
instant transparent failover
symmetric deployment

Developers
ACID transactions (read-modify-write)
many features (indexes, backup, encryption, scaling)
single-system image makes code simple
little need to handle failures

End Users
fast up-to-date reads, acceptable write latency
consistency



Take-Aways

Sync WAN replication on each write
Constraints acceptable to most apps

EG partitioning
High write latency
Limited per-EG throughput

Turnkey scaling achieved
>100 apps
>3 billion writes/day
>20 billion reads/day
~1PB data (before index, replication)
Most apps get carrier-grade (five 9's) availability

In production use for over 4 years



For more information

Read our full paper
Become a Megastore customer:

Use Google App Engine ("high replication")
Ask a question...



Extra Slides

 



Megastore Architecture



Why Not Lots of RDBMS's?

Functional
Need a place to store global and full-text indexes

Space and Time
Create new local EG in ~10ms
Overhead of <1KB per EG

Administration
Load-rebalancing
Fault recovery
Monitoring
Operational team



Schema

CREATE SCHEMA PhotoApp;

CREATE TABLE User {
 required int64 user_id;
 required string name;
} PRIMARY KEY(user_id), ENTITY GROUP ROOT;

CREATE TABLE Photo {
 required int64 user_id;
 required int32 photo_id;
 required int64 time;
 required string full_url;
 optional string thumbnail_url;
 repeated string tag;
} PRIMARY KEY(user_id, photo_id), IN TABLE User,
  ENTITY GROUP KEY(user_id) REFERENCES User;

CREATE LOCAL INDEX PhotosByTime ON Photo(user_id, time);
CREATE GLOBAL INDEX PhotosByTag ON Photo(tag) STORING (thumbnail_url);



Locality

Bigtable
column-oriented storage
faster access to nearby rows

Row key User.name Photo.time Photo.tag Photo.url Photo.-I.
PhotosByTime

101 John

101,500 12:30:01 Dinner, Paris http://...
101,502 12:15:22 Betty, Paris http://...
101,12:15:22,502 X

101,12:30:01,500 X

102 Mary



Timeline of read algorithm



Timeline of write algorithm



Operations Across Entity Groups

  


