
Megastore: Providing Scalable,
Highly Available Storage for

Interactive Services

J. Baker, C. Bond, J.C. Corbett, JJ Furman, A. Khorlin,
J. Larson, J-M Léon, Y. Li, A. Lloyd, V. Yushprakh

Google Inc.

CIDR 2011, Jan. 12 2011

With Great Scale Comes Great
Responsibility

A billion Internet users
Small fraction is still huge

Must please users
Bad press is expensive - never lose data
Support is expensive - minimize confusion
No unplanned downtime
No planned downtime
Low latency

Must also please developers, admins

Making Everyone Happy

Technology Options

Technology Options

Megastore

Started in 2006 for app development at Google
Service layered on:

Bigtable (NoSQL scalable data store per datacenter)
Chubby (Config data, config locks)

Turnkey scaling (apps, users)
Developer-friendly features
Wide-area synchronous replication

partition by "Entity Group"

Entity Groups

Entity Groups are sub-databases

Entity Groups

Cheap transactions within an entity group (common)

Entity Groups

Expensive or loosely-consistent operations across Entity
Groups (rare)

Scale Axis vs. Wide Replication Axis

Entity Group Mapping Examples

Applications must choose their partitioning
Common operations within an EG

Application Entity Groups Cross-EG Operations

Email User accounts none (out-of-system)

Blogs Users, Blogs Access control, notifications,
global indexes

Mapping Local patches Patch-spanning ops (2PC)

Social Users, Groups Messages, bi-directional
relationships, notifications

Resources Sites Shipments

Achieving Technical Goals

Scale
Bigtable within a datacenter
Easy to add Entity Groups (storage, throughput)

ACID Transactions
Write-ahead log per Entity Group
2PC or Queues between Entity Groups

Wide-Area Replication
Paxos
Tweaks for optimal latency

Paxos: Quorum-based Consensus

"While some consensus algorithms, such as Paxos,
have started to find their way into [large-scale
distributed storage systems built over failure-prone
commodity components], their uses are limited
mostly to the maintenance of the global configuration
information in the system, not for the actual
data replication."

-- Lamport, Malkhi, and Zhou, May 2009

Paxos: Megastore Tweaks

Replicates transaction log entries on each write
Writes: one WAN round-trip (avg.)
Strong Reads: zero WAN round-trips (avg.)

per-replica bitmap invalidated on faults
Reads/Writes from any replica (no master)

no pipelining: limited per-EG throughput
batching will improve throughput

Background scanners finish all operations

Comparison with Other Approaches

 NoSQL Megastore RDBMS

Minimal features Scalable
features

Full-featured

Highly scalable Highly scalable Medium scale with effort

PK lookup and
scan

Indexes, scans,
physical
clustering

Storage abstraction,
complex query planning
and execution

Limited/eventual
consistency

Partitioned
consistency

Global consistency

Features

Declarative schema
Serializable Transactions (within Entity Group)
Queues and 2PC (between Entity Groups)
Indexes

declared fields
full-text

Online backup and restore
Built-in encryption and compression

Omissions (current)

(currently) No query language
Apps must implement query plans
Apps have fine-grained control of physical placement

(currently) Limited per-Entity Group update rate

Is Everybody Happy?

Admins
linear scaling, transparent rebalancing (Bigtable)
instant transparent failover
symmetric deployment

Developers
ACID transactions (read-modify-write)
many features (indexes, backup, encryption, scaling)
single-system image makes code simple
little need to handle failures

End Users
fast up-to-date reads, acceptable write latency
consistency

Take-Aways

Sync WAN replication on each write
Constraints acceptable to most apps

EG partitioning
High write latency
Limited per-EG throughput

Turnkey scaling achieved
>100 apps
>3 billion writes/day
>20 billion reads/day
~1PB data (before index, replication)
Most apps get carrier-grade (five 9's) availability

In production use for over 4 years

For more information

Read our full paper
Become a Megastore customer:

Use Google App Engine ("high replication")
Ask a question...

Extra Slides

Megastore Architecture

Why Not Lots of RDBMS's?

Functional
Need a place to store global and full-text indexes

Space and Time
Create new local EG in ~10ms
Overhead of <1KB per EG

Administration
Load-rebalancing
Fault recovery
Monitoring
Operational team

Schema

CREATE SCHEMA PhotoApp;

CREATE TABLE User {
 required int64 user_id;
 required string name;
} PRIMARY KEY(user_id), ENTITY GROUP ROOT;

CREATE TABLE Photo {
 required int64 user_id;
 required int32 photo_id;
 required int64 time;
 required string full_url;
 optional string thumbnail_url;
 repeated string tag;
} PRIMARY KEY(user_id, photo_id), IN TABLE User,
 ENTITY GROUP KEY(user_id) REFERENCES User;

CREATE LOCAL INDEX PhotosByTime ON Photo(user_id, time);
CREATE GLOBAL INDEX PhotosByTag ON Photo(tag) STORING (thumbnail_url);

Locality

Bigtable
column-oriented storage
faster access to nearby rows

Row key User.name Photo.time Photo.tag Photo.url Photo.-I.
PhotosByTime

101 John

101,500 12:30:01 Dinner, Paris http://...
101,502 12:15:22 Betty, Paris http://...
101,12:15:22,502 X

101,12:30:01,500 X

102 Mary

Timeline of read algorithm

Timeline of write algorithm

Operations Across Entity Groups

