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PREFACE 

The Subject 

For over 20 years, businesses have been moving their data processing activities 
on-line. Many businesses, such as airlines and banks, are no longer able to 
function when their on-line computer systems are down. Their on-line data- 
bases must be up-to-date and correct at all times. 

In part, the requirement for correctness and reliability is the burden of the 
application programming staff. They write the application programs that 
perform the business’s basic functions: make a deposit or withdrawal, reserve 
a seat or purchase a ticket, buy or sell a security, etc. Each of these programs is 
designed and tested to perform its function correctly. However, even the most 
carefully implemented application program is vulnerable to certain errors that 
are beyond its control. These potential errors arise from two sources: concur- 
rency and failures. 

Multiprogramming is essential for attaining high performance. Its effect is 
to allow many programs to interleave their executions. That is, they execute 
concwrently. When such programs interleave their accesses to the database, 
they can interfere. Avoiding this interference is called the concurrency control 
problem. 

Computer systems are subject to many types of failures. Operating systems 
fail, as does the hardware on which they run. When a failure occurs, one or 
more application programs may be interrupted in midstream. Since the 
program was written to be correct only under the assumption that it executed 
in its entirety, an interrupted execution can lead to incorrect results. For exam- 
ple, a money transfer application may be interrupted by a failure after debiting 
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one account but before crediting the other. Avoiding such incorrect results due 
to failures is called the recocery problem. 

Systems that solve the concurrency control and recovery problems allow 
their users to assume that each of their programs executes atomically - as if 
no other programs were executing concurrently - and reliably - as if there 
were no failures. This abstraction of an atomic and reliable execution of a 
program is called a transaction. 

A concurrency control algorithm ensures that transactions execute atomi- 
cally. It does this by controlling the interleaving of concurrent transactions, to 
give the illusion that transactions execute serially, one after the next, with no 
interleaving at all. Interleaved executions whose effects are the same as serial 
executions are called serializable. Serializable executions are correct, because 
they support this illusion of transaction atomicity. 

A recozjery algorithm monitors and controls the execution of programs so 
that the database includes only the results of transactions that run to a nor- 
mal completion. If a failure occurs while a transaction is executing, and the 
transaction is unable to finish executing, then the recovery algorithm must 
wipe out the effects of the partially completed transaction. That is, it must 
ensure that the database does not reflect the results of such transactions. More- 
over, it must ensure that the results of transactions that do execute are never 
lost. 

This book is about techniques for concurrency control and recovery. It 
covers techniques for centralized and distributed computer systems, and for 
single copy, multiversion, and replicated databases. These techniques were 
developed by researchers and system designers principally interested in trans- 
action processing systems and database systems. Such systems must process a 
relatively high voIume of short transactions for data processing. Example 
applications include electronic funds transfer, airline reservation, and order 
processing. The techniques are useful for other types of applications too, such 
as electronic switching and computer-aided design - indeed any application 
that requires atomicity and reliability of concurrently executing programs that 
access shared data. 

The book is a blend of conceptual principles and practical details. The 
principles give a basic understanding of the essence of each probIem and 
why each technique solves it. This understanding is essential for applying the 
techniques in a commercial setting, since every product and computing 
environment has its own restrictions and idiosyncrasies that affect the 
implementation. It is also important for applying the techniques outside the 
realm of database systems. For those techniques that we consider of most 
practical vaIue, we explain what’s needed to turn the conceptual prin- 
ciples into a workable database system product. We concentrate on those 
practical approaches that are most often used in today’s commercial 
systems. 
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Serializability Theory 

Whether by its native capabilities or the way we educate it, the human mind 
seems better suited for reasoning about sequential activities than concurrent 
ones. This is indeed unfortunate for the study of concurrency control algo- 
rithms. Inherent to the study of such algorithms is the need to reason about 
concurrent executions. 

Over the years, researchers have developed an abstract model that 
simplifies this sort of reasoning. The model, called serializability theory, 
provides two important tools. First, it provides a notation for writing down 
concurrent executions in a clear and precise format, making it easy to talk and 
write about them. Second, it gives a straightforward way to determine when a 
concurrent execution of transactions is serializable. Since the goal of a concur- 
rency control algorithm is to produce serializable executions, this theory helps 
us determine when such an algorithm is correct. 

To understand serializability theory, one only needs a basic knowledge of 
directed graphs and partial orders. A comprehensive presentation of this mate- 
rial appears in most undergraduate textbooks on discrete mathematics. We 
briefly review the material in the Appendix. 

We mainly use serializability theory to express example executions and to 
reason abstractly about the behavior of concurrency control and recovery 
algorithms. However, we also use the theory to produce formal correctness 
proofs of some of the algorithms. Although we feel strongly about the impor- 
tance of understanding such proofs, we recognize that not every reader will 
want to take the time to study them. We have therefore isolated the more 
complex proofs in separate sections, which you can skip without loss of conti- 
nuity. Such sections are marked by an asterisk (*). Less than 10 percent of the 
book is so marked. 

Chapter Organization 

Chapter 1 motivates concurrency control and recovery problems. It defines 
correct transaction behavior from the user’s point of view, and presents a 
model for the internal structure of the database system that implements this 
behavior - the model we will use throughout the book. Chapter 2 covers 
serializability theory. 

The remaining six chapters are split into two parts: Chapters 3-5 on 
concurrency control and Chapters 6-8 on recovery. 

In Chapter 3 we cover two phase locking. Since locking is so popuIar in 
commercial systems, we cover many of the variations and implementation 
details used in practice. The performance of locking algorithms is discussed 
in a section written for us by Dr. YC. Tay. We also discuss non-two-phase 
locking protocols used in tree structures. 

In Chapter 4 we cover concurrency control techniques that do not use 
locking: timestamp ordering, serialization graph testing, and certifiers (i.e., 
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optimistic methods). These techniques are not widely used in practice, so the 
chapter is somewhat more conceptual and less implementation oriented than 
Chapter 3. We show how locking and non-locking techniques can be inte- 
grated into hundreds of variations. 

In Chapter 5 we describe concurrency control for multiversion databases, 
where the history of values of each data object is maintained as part of the 
database. As is discussed later in Chapter 6, old versions are often retained for 
recovery purposes. In this chapter we show that they have value for concur- 
rency control too. We show how each of the major concurrency control and 
recovery techniques of Chapters 3 and 4 can be used to manage multiversion 
data. 

In Chapter 6 we present recovery algorithms for centralized systems. We 
emphasize undo-redo logging because it demonstrates most of the recovery 
problems that all techniques must handle, and because it is especially popular 
in commercial systems. We cover other approaches at a more conceptual level: 
deferred updating, shadowing, checkpointing, and archiving. 

In Chapter 7 we describe recovery algorithms for distributed systems 
where a transaction may update data at two or more sites that only communi- 
cate via messages. The critical problem here is atomic commitment: ensuring 
that a transaction’s resuIts are installed either at all sites at which it executed or 
at none of them. We describe the two phase and three phase commit protocols, 
and explain how each of them handles site and communications failures. 

In Chapter 8 we treat the concurrency control and recovery problem for 
replicated distributed data, where copies of a piece of data may be stored at 
multiple sites. Here the concurrency control and recovery problems become 
closely intertwined. We describe several approaches to these problems: 
quorum consensus, missing writes, virtual partitions, and available copies, In 
this chapter we go beyond the state-of-the-art. No database systems that we 
know of support general purpose access to replicated distributed data. 

Chapter Prerequisites 

This book is designed to meet the needs of both professional and academic 
audiences. It assumes background in operating systems at the level of a one 
semester undergraduate course. In particular, we assume some knowledge of 
the following concepts: concurrency, processes, mutual exclusion, sema- 
phores, and deadlocks. 

We designed the chapters so that you can select whatever ones you wish 
with few constraints on prerequisites. Chapters 1 and 2 and Sections 3.1, 3.2, 
3.4, and 3.5 of Chapter 3 are all that is required for later chapters, The sub- 
sequent material on concurrency control (the rest of Chapter 3 and Chapters 
4-5) is 1argeIy independent of the material on recovery (Chapters 6-8). You 
can go as far into each chapter sequence as you like. 
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Chapter 1 

I 
Chapter 2 

I 
Chapter 3 

Sections 3.1, 3.2, 3.4, 3.5 

/ \ 
Chapte; 3 

Sections 3.3, 3.6 - 3.12 

I 
Chapter 4 Chapter 7 

Sections 4.1 - 4.2 

/\ I 
Chapter 4 Chapter 5 Chapter 8 

Sections 4.3 - 4.5 

FIGURE 1 
Dependencies between Chapters 

A minimal survey of centralized concurrency control and recovery would 
include Sections 3.1-3.7, 3.12, and 3.13 of Chapter 3 and Sections 6.1-6.4 
and 6.8 of Chapter 6. This material covers the main techniques used in 
commercial database systems, namely, locking and logging. In length, it’s 
about a quarter of the book. 

You can extend your survey to distributed (nonreplicated) data by adding 
Sections 3.10 and 3.11 (distributed locking) and Chapter 7 (distributed recov- 
ery). You can extend it to give a more complete treatment of centralized 
systems by adding the remaining sections of Chapters 3 and 6, on locking and 
recovery, and Chapter 5, on multiversion techniques (Section 5.3 requires 
Section 4.2 as a prerequisite). As we mentioned earlier, Chapter 4 covers non- 
locking concurrency control methods, which are conceptually important, but 
are not used in many commercial products. 

Chapter 8, on replicated data, requires Chapters 3, 6, and 7 as prerequi- 
sites; we also recommend Section 5.2, which presents an analogous theory for 
multiversion data. Figure 1 summarizes these prerequisite dependencies. 

We have included a substantial set of problems at the end of each chapter. 
Many problems explore dark corners of techniques that we didn’t have the 
space to cover in the chapters themselves. We think you’ll find them interesting 
reading, even if you choose not to work them out. 
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For Instructors 

We designed the book to be useful as a principal or supplementary textbook in 
a graduate course on database systems, operating systems, or distributed 
systems. The book can be covered in as little as four weeks, or could consume 
an entire course, depending on the breadth and depth of coverage and on the 
backgrounds of the students. 

You can augment the book in several ways depending on the theme of the 
course: 

CI Distributed Databases - distributed query processing, distributed data- 
base design. 

u Transaction Processing - communications architecture, applications 
architecture, fault-tolerant computers. 

o Distributed Computing - Byzantine agreement, network topology 
maintenance and message routing, distributed operating systems. 

u Fault Tolerance - error detecting codes, Byzantine agreement, fault- 
tolerant computers. 

u Theory of Distributed Computing - parallel program verification, 
analysis of parallel algorithms. 

In a theoretical course, you can augment the book with the extensive mathe- 
matical material that exists on concurrency control and recovery 

The exercises supply problems for many assignments. In addition, you 
may want to consider assigning a project. We have successfully used two styles 
of project. 

The first is an implementation project to program a concurrency contro1 
method and measure its performance on a synthetic workload. For this to be 
workable, you need a concurrent programming environment in which process- 
ing delays can be measured with reasonable accuracy, Shared memory between 
processes is also very helpful. We have successfully used Concurrent Euclid for 
such a project [Halt 831. 

The second type of project is to take a concurrency controI or recovery 
algorithm described in a research paper, formahze its behavior in serializability 
theory, and prove it correct. The bibliography is full of candidate examples. 
Also, some of the referenced papers are abstracts that do not contain proofs. 
Filling in the proofs is a stimulating exercise for students, especially those with 
a theoretica inclination. 
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7 
DISTRIBUTED RECOVERY 

7.1 lNTRQDUCTlDN 

In this chapter we discuss the reliability issues that arise when transactions are 
processed in a distributed database system. We are assuming that data items 
are not replicated, that is, each data item is stored at a single site. This means 
that there is a unique scheduler and data manager in charge of controlling 
access to any given data item. Data replication is addressed in the next chapter. 

A distributed transaction T has a “home site” - the site where it origi- 
nated. T submits its operations to the TM at its home site, and the TM subse- 
quently forwards the operations to the appropriate sites. A Read(x) or Write(x) 
operation is forwarded to the site where x is stored and is processed by the 
scheduler and DM of that site as if it were an operation submitted by a local 
transaction. The result of the operation is then returned to the TM of T’s 
home site. Thus, aside from the straightforward matter of routing requests and 
responses between sites, the processing of Read and Write operations in a 
distributed DBS is no different than in a centralized one. 

Consider now the Commit operation of T. To which sites should this oper- 
ation be forwarded? Unlike Read(x) or Write(x), which concern only the site 
where x is stored, a Commit operation concerns all sites involved in the 
processing of T. Consequently, the TM of T’s home site should pass the 
Commit operation of T to all sites where Taccessed data items. The same is 
true for Abort. Thus, the processing of a logically single operation (Commit 
or Abort) must take place in multiple places in a distributed DBS. This is 
a substantial difference between centralized and distributed transaction pro- 
cessing. 
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The problem is more subtle than it may appear at first. Merely having the 
TM of a distributed transaction’s home site send Commit operations to all 
other sites is not enough. This is because a transaction is not committed by 
virtue of the TM’s sending a Commit, but rather by virtue of the DM’s execut- 
ing the Commit. It is possible that the TM sends Commit to the scheduler but 
rhe scheduler rejects it and aborts the transaction. In this case, if the transac- 
tion is distributed, it should abort at all other sites where it accessed data 
items. 

Another significant difference between transaction processing in a central- 
ized and a distributed DBS concerns the nature of failures. In a centralized 
system, a failure is an all-or-nothing affair. Either the system is working and 
transactions are processed routinely, or the system has failed and no transac- 
tion can be processed at all. In a distributed system, however, we can have 
partial failures. Some sites may be working while others have failed. 

The fact that failures in distributed systems do not necessarily have the 
crippling effect they do in centralized ones creates opportunities for greater 
reliability. This is one of the most widely advertised features of distribution. 
Less widely advertised is the fact that the partial failures that make this possi- 
ble are often the source of non-trivial problems that must be solved before the 
“opportunities for greater reliability” can be realized. 

In transaction processing (and in the absence of data replication), the only 
such non-trivial problem is that of consistent termination. As we saw, the 
Commit or Abort operation of a distributed transaction must be processed at 
all sites where rhe transaction accessed data items. Ensuring that a single logi 
cal action (Commit or Abort) is consistently carried out at multiple sites is 
complicated considerably by the prospect of partial failures. 

An algorithm rhat ensures this consistency is calIed an ntomic commitment 
protocol (AU). Our main goal in this chapter is to present ACPs that are as 
resilient to failures as possible. Before we do so, we must examine in more 
detail the nature of failures that the protocol must worry about. 

7.2 FAILURES IN A DISTRIBUTED SYSTEM 

A distributed system consists of two kinds of components: sites, which process 
information, and communication links, which transmit information from site 
to site. A distributed system is commonly depicted as a graph where nodes 
are sites and undirected edges are bidirectional communication links (see 
Fig. 7-l). 

We assume that this graph is connected, meaning that there is a path from 
every site to every other. Thus, every two sites can communicate either directly 
via a link joining them, or indirectly via a chain of links. The combination of 
hardware and software that is responsible for moving messages between sites is 
called a comptrter network. We won’t worry about how to route messages 
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FIGURE 7-l 
A Computer Network 

from one site to another, since routing is a computer network service normally 
available to the distributed database system. 

Site Failures 

When a site experiences a system failure, processing stops abruptly and the 
contents of volatile storage are destroyed. In this case, we’ll say the site has 
failed. When the site recovers from a failure it first executes a recovery proce- 
dure (called Restart in Chapter 6), which brings the site to a consistent state so 
it can resume normal processing. 

In this model of failure, a site is always either working correctly (is opera- 
tional) or not working at all (is down). It never performs incorrect actions. 
This type of behavior is called fail-stop, because sites fail only by stopping. 

Surely this is an idealization of a site’s possible faulty behavior. Computers 
can occasionally act incorrectly due to software or hardware bugs. By using 
extensive testing during implementation and manufacturing, and built-in 
redundancy in hardware and software, one can build systems that approxi- 
mate fail-stop behavior. But we will not discuss these techniques in this book. 
We’ll simply assume that sites are fail-stop. The correctness of the protocols 
we’ll discuss in this chapter depends on this assumption. 

Even though each site either is functioning properly or has failed, different 
sites may be in different states. A partial failure is a situation where some sites 
are operational while others are down. A total failure occurs when all sites are 
down. 

Partial failures are tricky to deal with. Fundamentally, this is because 
operational sites may be uncertain about the state of failed ones. As we’ll see, 
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operational sires may become blocked, unable to commit or abort a transac- 
tion, until such uncertainty is resolved. An important design goal of atomic 
commitment protocols is to minimize the effect of one site’s failure on other 
sites’ ability to continue processing. 

Communication Failures 

Communication links are also subject to failures. Such failures may prevent 
processes at different sites from communicating. A variety of communication 
failures are possible: A message may be corrupted due to noise in a link; a link 
may malfunction temporarily, causing a message to be completely lost; or a 
link may be broken for a while, causing all messages sent through it to be lost. 

Message corruption can be effectively handled by using error detecting 
codes, and by retransmitting a message in which the receiver detects an error. 
Loss of messages due to transient link failures can be handled by retransmitting 
lost messages. Also, the probability of losing messages due to broken links can 
be reduced by rerouting. If a message is sent from site A to site B, but the 
network is unable to deliver the message due to a broken link, it may attempt 
to find another path from A to B whose intermediate links and sites are func- 
tioning properly. Error correcting codes, message retransmission, and rerout- 
ing are usually provided by computer network protocols. We’ll take them for 
granted. 

Unfortunately, even with automatic rerouting, a combination of site and 
link failures can disable the communication between sites. This will happen if 
all paths between two sites A and B contain a failed site or a broken link. This 
phenomenon is caIled a network partition. In general, a network partition 
divides up the operationa sites into two or more components, where every two 
sites within a component can communicate with each other, but sites in differ- 
ent components cannot. For example, Fig. 7-2 shows a partition of the system 
of Fig. 7-l. The partition consists of two components, (B, C} and {D, E}, 
and is caused by the failure of site A and links (C, D) and (C, E). 

As sites recover and broken links are repaired, communication is reestab- 
lished between sites that could not previously exchange messages, thereby 
merging components. For example, in Fig. 7-2, if site A recovers or if either 
link (C, D) or (C, E) is repaired, the two components merge and every pair of 
operational sites can communicate. 

We can reduce the probability of a network partition by designing a highly 
connected network, that is, a network where the failure of a few sites and links 
will not disrupt all paths between any pair of sites. However, making a 
network highly connected requires the use of more components and therefore 
entails more expense. Moreover, the network’s topology is often constrained 
by other factors, such as geography or the communication medium. Thus, our 
ability to avoid partitions is limited. 
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FIGURE 7-2 
A Network Partition 
Components shown in broken lines are faulty. 

To sum up, a communication failure occurs when a site A is unable to 
communicate with site B, even though neither site is down. Network partitions 
are one cause of communication failures. (We’ll see another one shortly.) If two 
sites can communicate, messages are delivered correctly (uncorrupted). 

Undeliverable Messages 

Site and communication failures require us to deal with undeliverable 
messages. A message may be undeliverable because its recipient is down when 
the message arrives, or because its sender and recipient are in different compo- 
nents of a network partition. There are two options: 

1. The message persists. The computer network stores the message, and 
delivers it to its destination when that becomes possible. 

2. The message is dropped. The computer network makes no further 
attempt to deliver it. 

We’ll adopt option (2) - as, alas, many postal services do. Option (1) is 
not routinely supported by computer networks. It requires fairly elaborate 
protocols, quite similar to ACPs, and therefore merely moves the atomic 
commitment problem to a different part of the system (see Exercise 7.1). 

Some computer networks that adopt option (2) attempt to notify the 
sender of an undeliverable message that the message was dropped. But this is 
inherently unreliable. If a site fails to acknowledge the receipt of a message, the 
network cannot tell whether the site did not receive the message or it received 
the message but failed before acknowledging it. Even if it could make this 
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distinction, notifying the sender of nondelivery may lead to unbounded recur- 
sion. If a notification message itself cannot be delivered, its sender (the 
notifier) must be notified and SO on. Thus, such notifications of nondelivery 
cantzot be relied upon. We will therefore assume they don’t exist. For our 
purposes, undeliverable messages simply vanish. 

Detecting Failures by Timeouts 

Both site failures and communication failures manifest themselves as the 
inability of one site to exchange messages with another. That is, if site A 
cannot communicate with site B, it is either because B has f,tiled or because A 
and B belong to different components of a partition. In general, A cannot 
distinguish these two cases. It just knows that it can’t communicate with B. 

How can A find out that it can’t communicate with B? Usually this is done 
by using timeouts. A sends a message to B and waits for a reply within a prede- 
termined period of time 6 called the timeout period. If a reply arrives, clearly A 
and B can communicate, as evidenced by the pair of messages just exchanged. 
If the period 6 elapses and A has not yet received a reply, A concludes that it 
cannot communicate with B. 6 must be chosen to be the maximum possible 
time it can take for the message to travel from A to B, for B to process the 
message and generate the reply, and for the reply to travel back to A. Comput- 
ing a value for the timeout period is not a simple matter. It depends on many 
hard-to-quantify variables: the physical characteristics of the sites and commu- 
nication lines, the system load, message routing algorithms, and accuracy of 
clocks, among others. Pragmatically, it is usually possible to select a timeout 
period that works well most of the time. When we use the timeout mechanism, 
we assume that an appropriate value for 6 has been determined. 

If the timeout period is underestimated, a site may think it cannot commu- 
nicate with another when, in fact, it can. This can also happen because the 
clock that’s measuring the timeout period is too fast. Such errors are called 
timeout failures or performance failures. Timeout failures are, in effect, 
communication failures. However, unlike network partitions, they can give 
rise to very peculiar situations, such as A thinking that it can communicate 
with B bur B thinking it can’t communicate with A; or A thinking it can 
communicate with B and B with C, but A thinking it cannot communicate 
with C. 

In Chapters 7 and 8, we’ll be careful to indicate whether each algorithm 
under consideration can tolerate site failures only, or both site and communica- 
tion failures. 

7.3 ATOMIC COMMITMENT 

Consider a distributed transaction Twhose execution involves sites S,, &, .,., 
S,. Suppose the TM at site S, supervises T’s execution. Before the TM at S, can 
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send Commit operations for T to S,, S,, . . . , S,, it must make sure that the 
scheduler and DM at each of these sites is ready and willing to process that 
Commit. Otherwise, T might wind up committing at some sites and aborting 
at others, thereby terminating inconsistently. Let’s look at the conditions that a 
scheduler or DM must satisfy to be “ready and willing” to commit a trans- 
action. 

The scheduler at a site may agree to process Commit(T) as long as T satis- 
fies the recoverability condition at that site. That is, every value read by Tat 
that site was written by a transaction that has committed. Note that if the 
scheduler produces executions that avoid cascading aborts (or a fortiori, are 
strict), then this is true at all times. In this case, since the scheduler is allvays 
able to process Commit(T), S1’s TM need not get the scheduler’s approval to 
send a Commit. 

The DM at a site may agree to process Commit(T) as long as T satisfies the 
Redo Rule at that site. That is, all values written by Tat that site are in stable 
storage - the stable database or the log, depending on the DM’s recovery 
algorithm. If T has submitted only Reads to some site, it need not request the 
consent of that site’s DM. 

The TM at S, can issue Commit( T) to the schedulers and DMs of S,, S,, . . . , 
S, only after having received the schedulers’ and DMs’ consent from all these 
sites. In essence, this is the two phase commit (2PC) protocol that we’ll study 
in detail in the next section. Why must we devote a separate section to what 
seems like such a simple idea? The reason is that the preceding discussion does 
not address site or communication failures. What if one or more sites fail 
during this process? What if one or more messages are lost? The real difficulty 
of atomic commitment is to design protocols that provide maximum resistance 

, to such failures. 
As an aside, we have already encountered a protocol analogous to 2PC in 

our discussion of distributed certifiers (cf. Section 4.4). To certify a distributed 
transaction T, the local certifiers of all sites where Texecuted had to agree. If 
even one site did not certify T, the transaction had to be aborted at all sites. In 
our discussion of distributed certification, we evaded the issue of site and 
communication failures. Our discussion of how to handle failures in 2PC will 
apply to the distributed certification protocol as well. In practice, the two 
protocols would be combined. 

To simplify the discussion and concentrate on the essentials of atomic 
commitment, it is convenient to deviate from the TM-scheduler-DM model. 
To separate atomic commitment from the other aspects of transaction process- 
ing, we’ll assume that for each distributed transaction T, there is a process at 
every site where Texecuted. These processes carry out the atomic commitment 
protocol for T. The process at T’s home site is called T’s coordinator. The 
remaining processes are T’s participants. The coordinator knows the names of 
all the participants, so it can send them messages. The participants know the 
name of the coordinator, but they don’t necessarily know each other. 
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We emphasize that the coordinator and participants are abstractions that 
we adopt only for pedagogical convenience. Do not imagine that implementing 
an atomic commitment protocol necessarily requires one process per transac- 
tion ar each site involved in the transaction’s execution. In most cases, such an 
implementation would be inefficient because managing so many processes 
would be too expensive. The coordinator and participant processes are ab- 
stractions whose functionality can be provided at each site by one or more pro- 
cesses, possibly shared by many transactions. 

We’ll also assume that each site contains a distributed transaction log (DT 
log) where coordinators and participants at that site can record information 
about distributed transactions. The DT log must be kept in stable storage, 
because its contents must survive site failures. In practice, the DT log may be 
part of the site’s DM log. Again, for expository convenience we’ll assume it’s a 
separate entity. 

Roughly speaking, an atomic commitment protocol (ACE’) is an algorithm 
for the coordinator and participants such that either the coordinator and all 
participants commit the transaction or they all abort it. We can state this more 
precisely as follows. Each process may cast exactly one of two votes: Yes or 
No, and can reach exactly one of two decisions: Commit or Abort. An ACP is 
an algorithm for processes to reach decisions such that: 

ACI: All processes that reach a decision reach the same one. 

AC2: A process cannot reverse its decision after it has reached one. 

AU: The Commit decision can only be reached if all processes 
voted Yes. 

AC4: If there are no failures and all processes voted Yes, then the 
decision will be to Commit. 

AC.5: Consider any execution containing only failures that the algo- 
rithm is designed to tolerate. At any point in this execution, if all exist- 
ing failures are repaired and no new failures occur for sufficiently long, 
then all processes will eventually reach a decision. 

This abstract formulation of the problem relates to transaction processing 
in the TM-scheduler-DM model in the following way. The process at site A 
votes Yes only if A’s scheduler and DM are “ready and willing” to commit the 
transaction (as we explained earlier in this section). If the process decides 
Commit (or Abort), then A’s DM will execute the Commit (or Abort) opera- 
tion. In executing that operation, site A acts exactly like an autonomous 
centralized DBS, using one of the algorithms from Chapter 6. Indeed, different 
sites processing a transaction could be using different DM algorithms. 

Some discussion of these conditions is now in order. Condition AC1 says 
that the transaction terminates consistently. Note that we do not require that 
all processes reach a decision. This would be an unattainable goal, since a 
process may fail and never recover. (We say that a process fails when the site on 
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which it runs fails.) We do not even require that all processes that remain 
operational reach a decision. This is also unattainable, though the reason why 
is less obvious (see Proposition 7.1 at the end of this section). However, we do 
require that all processes be able to reach a decision once failures are repaired 
(AC.5). This requirement excludes from consideration uninteresting protocols 
that allow processes to remain forever undecided in any execution where some 
failure has taken place. 

Condition AC2 says that the termination of a transaction at a site is an 
irrevocable decision. If a transaction commits (or aborts), it cannot be later 
aborted (or committed). 

Condition AC3 says that a transaction cannot commit unless all sites 
involved in its execution agree to do so. AC4 is a weak version of the converse 
of AC3. Among other things, it assures that there are circumstances in which 
Commit must be decided and thus excludes from consideration trivial (and 
useless) protocols in which processes always decide Abort! However, we do 
not require the converse of AC3, in its full generality. It is possible (if failures 
occur) for all processes to have voted Yes, and yet the decision to be Abort (see 
Exercise 7.2). Avery important consequence of AC3 is that each process can 
unilaterally decide Abort at any time, if it has not yet voted Yes. On the other 
hand, after voting Yes a process cannot take unilateral action. The period 
between the moment a process votes Yes and the moment it has received suffi- 
cient information to know what the decision will be is called the uncertainty 
period for that process. A process is called uncertain while it is in its uncer- 
tainty period. During this period the process does not know whether it will 
eventually decide Commit or Abort, nor can it unilaterally decide Abort. 

Scenario I: A failure disables communication between a process p and all 
other processes, while p is uncertain. By the definition of uncertainty period, 
p cannot reach a decision until after the communication failure has been 
repaired. 

When a process must await the repair of failures before proceeding, we say 
that it is blocked. Blocking is undesirable, because it can cause processes 
to wait for an arbitrarily long period of time. A transaction may remain unter- 
minated, uselessly consuming resources (such as holding locks), for arbitrarily 
long at the blocked process’s site. Scenario I shows how communication fail- 
ures can cause a process to become blocked. 

Scenario II: p fails while in its uncertainty period. When p recovers, it 
cannot reach a decision on its own. It must communicate with other 
processes to find out what the decision was. 

The ability of a recovering process to reach a decision without communi- 
cating with other processes is called independent recovery. This ability is very 
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attractive, because it makes recovery cheaper and simpler. Moreover, lack of 
independent recovery in conjunction with totrrl failures (when all processes 
fail) gives rise to blocking. To see this, suppose that p in Scenario II is the first 
process to recover from a total failure. Since p is uncertain, it must com- 
municate with other processes before it can reach a decision. But it can’t 
communicate with them, since they all are down. Thus p is blocked. 

These two scenarios show that failures while a process is uncertain can 
cause serious problems. Can we design an ACP that eliminates uncertainty 
periods? Unfortunately, not. Doing so would essentially require that a process 
cast its vote and learn the votes of all other processes all at once. In general, 
this is impossible. Thus, we have the following important observations. 

Proposition 7.1: If communication failures or total failures are possible, 
then every ACP may cause processes to become blocked. z 

Proposition 7.2: No ACP can guarantee independent recovery of failed 
processes. C 

Proposition 7.1 does not preclude the existence of a non-blocking ACP if 
only site failures, but not total site failures, can occur. In fact, such a protocol 
exists, as we’ll see in Section 7.5. 

Propositions 7.1 and 7.2 can be formulated as theorems. Unfortunately, 
we lack a precise enough model of distributed computation to carry out 
rigorous proofs, the keys to which are Scenarios I and II. Developing such a 
model would lead us astray. The Bibliographic Notes cite proofs of these prop- 
ositions. 

7.4 THE TWO PHASE COMMIT PROTOCOL 

The simplest and most popular ACP is the two phase commit (2PC) protocol, 
Assuming no failures, it goes roughly as follows: 

2. The coordinator sends a VOTE-REQ' (i.e., vote request) message to all 
participants. 

2. When a participant receives a VOTE-REQ, it responds by sending to the 
coordinator a message containing that participant’s vote: YES or NO. If 
the participant votes No, it decides Abort and stops. 

3. The coordinator collects the vote messages from all participants, If all of 
them were YES and the coordinator’s vote is also Yes, then the coordina- 
tor decides Commit and sends COMMIT messages to all participants, 
Otherwise, the coordinator decides Abort and sends ABORT messages to 

‘We use ail small capital letters to indicate messages. 
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all participants that voted Yes (those that voted No already decided 
Abort in step (2)). In either case, the coordinator then stops. 

4. Each participant that voted Yes waits for a COMMIT or ABORT message 
from the coordinator. When it receives the message, it decides accord- 
ingly and stops. 

The two phases of 2PC are the voting phase (steps (1) and (2)) and the 
decision phase (steps (3) and (4)). A participant’s uncertainty period starts 
when it sends a YES to the coordinator (step (2)) and ends when it receives a 
COMMIT or ABORT (step (4)). The coordinator has no uncertainty period since 
it decides as soon as it votes - with the knowledge, of course, of the partici- 
pants’ votes (step (3)). 

It is easy to see that 2PC satisfies conditions AC1 - AC4. Unfortunately, as 
presented so far, it does not satisfy AC5 for two reasons. First, at various 
points of the protocol, processes must wait for messages before proceeding. 
However, such messages may not arrive due to failures. Thus, processes may 
be waiting forever. To avoid this, timeouts are used. When a process’ waiting is 
interrupted by a timeout, the process must take special action, called a timeout 
action. Thus, to satisfy AC.5, we must supply suitable timeout actions for each 
protocol step in which a process is waiting for a message. 

Second, when a process recovers from a failure, AC5 requires that the 
process attempt to reach a decision consistent with the decision other processes 
may have reached in the meanwhile. (It may be that such a decision can’t be 
made until after some other failures have been repaired as well.) Therefore, a 
process must keep some information in stable storage, specifically in the DT 
log. To satisfy AC5 we must indicate what information to keep in the DT log 
and how to use it upon recovery. 

We consider these two issues in turn. 

Timeout Actions 

There are three places in 2PC where a process is waiting for a message: in the 
beginning of steps (2), (3) and (4). In step (2), a participant waits for a VOTE- 

REQ from the coordinator. This happens before the participant has voted. 
Since any process can unilaterally decide Abort before it votes Yes, if a partici- 
pant times out waiting for a VOTE-REQ, it can simply decide Abort and stop. 

In step (3) the coordinator is waiting for YES or NO messages from all the 
participants. At this stage, the coordinator has not yet reached any decision. In 
addition, no participant can have decided Commit. Therefore, the coordinator 
can decide Abort but must send ABORT to every participant from which it 
received a YES. 

In step (4), a participant e that voted Yes is waiting for a COMMIT or ABORT 

from the coordinator. At this point e is uncertain. Therefore, unlike the 
previous two cases where a process can unilaterally decide, in this case the 
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participant must consult with other processes to find out what to decide. This 
consultation is carried out in a termination protocol (for 2PC).2 

The simplest termination protocol is the following: p remains blocked 
until it can re-establish communication with the coordinator. Then, the coor- 
dinator can tell p the appropriate decision. The coordinator can surely do so, 
since it has no uncertainty period. This termination protocol satisfies condi- 
tion AU, because if all failures are repaired, p will be able to communicate 
with the coordinator and thereby reach a decision. 

The drawback of this simple termination protocol is that p may be blocked 
unnecessarily, For example, suppose there are two participants p and q. The 
coordinator might send a COMMIT or ABORT to q but fail just before sending it 
to p. Thus, even though p is uncertain, q is not. If p can communicate with q, 
it can find out the decision from q. It need not block waiting for the coordina- 
tor’s recovery. 

This suggests the need for participants to know each other, so they can 
exchange messages directly (without the mediation of the coordinator). Recall 
that our description of the atomic commitment problem states that the coordi- 
nator knows the participants and the participants know the coordinator, but 
that the participants do not initially know each other. This does not present 
any great difficulty. We can assume that the coordinator attaches the list of the 
participants’ identities to the VOTE-REQ message it sends to each of them. 
Thus, participants get to know each other when they receive that message. The 
fact that they do not know each other earlier is of no consequence for our 
purposes, since a participant that times out before receiving VOTE-REQ will 
unilaterally decide Abort. 

This example leads us to the cooperative termination protocol: A partici- 
pant p that times out while in its uncertainty period sends a DECISION-REQ 

message to every other process, q, to inquire whether q either knows the deci- 
sion or can unilaterahy reach one. In this scenario, p is the initiator and q a 
responder in the termination protocol. There are three cases: 

1. q has already decided Commit (or Abort): q simply sends a COMMIT (or 
ABORT) to p, and p decides accordingly, 

2. q has not voted yet: q can unilaterally decide Abort. It then sends an 
ABORT to p, and p therefore decides Abort. 

3. q has voted Yes but has not yet reached a decision: q is also uncertain 
and therefore cannot help p reach a decision. 

With this protocol, if p can communicate with some q for which either (1) 
or (2) holds, then p can reach a decision without blocking. On the other hand, 

‘In general, a termination protocol is invoked by a process when it fails to receive an antici- 
pated message while in its uncertainty period. Different ACPs have different termination proto- 
cols associated with them. 
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if (3) holds for all processes with which p can communicate, then p is blocked. 
This predicament will persist until enough failures are repaired to enable p to 
communicate with a process q for which either (1) or (2) applies. At least one 
such process exists, namely, the coordinator. Thus this termination protocol 
satisfies AC5. 

In summary, even though the cooperative termination protocol reduces the 
probability of blocking, it does not eliminate it. In view of Proposition 7.1, 
this is hardly surprising. However, even with the cooperative termination 
protocol, 2PC is subject to blocking even if only site failures occw (see Exer- 
cise 7.3). 

Recovery 

Consider a process p recovering from a failure. To satisfy AC5, p must reach a 
decision consistent with that reached by the other processes - if not immedi- 
ately upon recovery, then some time after all other failures are also repaired. 

Suppose that when p recovers it remembers its state at the time it failed - 
we’ll discuss later how this is done. If p failed before having sent YES to the 
coordinator (step (2) of 2PC), then p can unilaterally decide Abort. Also, if p 
failed after having received a COMMIT or ABORT from the coordinator or after 
having unilaterally decided Abort, then it has already decided. In these cases, p 
can recover independently. 

However, if p failed while in its uncertainty period, then it cannot decide 
on its own when it recovers. Since it had voted Yes, it is possible that all other 
processes did too, and they decided Commit while p is down. But it is’also 
possible that some processes either voted No or didn’t vote at all and Abort 
was decided. p can’t distinguish these two possibilities based on information 
available locally and must therefore consult with other processes to make a 
decision. This is a reflection of the inability to have independent recovery 
(Proposition 7.2). 

In this case, p is in exactly the same state as if it had timed out waiting for a 
COMMIT or ABORT from the coordinator. (Think of p as having used an 
extraordinarily long timeout period, lasting for the duration of its failure.) 
Thus, p can reach a decision by using the termination protocol. Note that p 
may be blocked, since it may be able to communicate only with processes that 
are themselves uncertain. 

To remember its state at the time it failed, each process must keep some 
information in its site’s DT log, which survives failures. Of course, each 
process has access only to its local DT log. Assuming that the cooperative 
termination protocol is used, here is how the DT log is managed. 

1. When the coordinator sends VOTE-REQS, it writes a start-2PC record in 
the DT log. This record contains the identities of the participants, and 
may be written before or after sending the messages. 
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2. If a participant votes Yes, it writes a yes record in the DT log, before 
sending YES to the coordinator. This record contains the name of the 
coordinator and a list of the other participants (which is provided by the 
coordinator in VOTE-REQ). If the participant votes No, it writes an abort 
record either before or after the participant sends NO to the coordinator. 

3. Before the coordinator sends COMMIT to the participants, it writes a 
commit record in the DT Iog. 

4. When the coordinator sends ABORT to the participants, it writes an 
abort record in the DT log. The record may be written before or after 
sending the messages. 

5. After receiving COMMIT (or ABORT), a participant writes a commit (or 
abort) record in the DT log. 

In this discussion, writing a commit or abort record in the DT log is the act by 
which a process decides Commit or Abort. 

At this point it is appropriate to comment briefly on the interaction 
between the commitment process and the rest of the transaction processing 
activity. Once the commit (or abort) record has been written in the DT log, the 
DM can execute the Commit (or Abort) operation. There are a number of 
details regarding how writing commit or abort records to the DT log relates to 
the processing of the commit or abort operations by the D&l. For example, if 
the DT log is implemented as part of the DM log, the writing of the commit or 
abort record in the DT log may be carried out via a call to the Commit or 
Abort procedure of the local DM. In general, such details depend on which 
of the algorithms we discussed in Chapter 6 is used by the local DM (see Exer- 
cise 7.4). 

When a site S recovers from a failure, the fate of a distributed transaction 
executing at S can be determined by examining its DT Iog: 

q If the DT log contains a start-2PC record, then S was the host of the 
coordinator. If it also contains a commit or abort record, then the coor- 
dinator had decided before the failure. If neither record is found, the 
coordinator can now unilaterally decide Abort by inserting an abort 
record in the DT log. For this to work, it is crucial that the coordinator 
first insert the commit record in the DT log and then send COMMITS 

(point (3) in the preceding list). 

~7 If the DT log doesn’t contain a start-2PC record, then S was the host of 
a participant. There are three cases to consider: 

1. The DT log contains a commit or abort record. Then the partici- 
pant had reached its decision before the failure. 

2. The DT log does not contain a yes record. Then either the partici- 
panr failed before voting or voted No (but did not write an abort 
record before failing). (This is why the yes record must be written 
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before YES is sent; see point (2) in the preceding list.) It can there- 
fore unilaterally abort by inserting an abort record in the DT log. 

3. The DT log contains a yes but no commit or abort record. Then the 
participant failed while in its uncertainty period. It can try to reach 
a decision using the termination protocol. Recall that a yes record 
includes the name of the coordinator and participants, which are 
needed for the termination protocol. 

Figures 7-3 and 7-4 give the 2PC protocol and the cooperative termina- 
tion protocol, incorporating the preceding discussion on timeout actions and 
DT logging activity. The algorithms employed by each process are expressed in 
an ad hoc, but hopefully straightforward, language. We use send and wait for 
statements for inter-process communication. The statement “send m to p,” 
where m is a message and p is one or more processes, causes the executing 
process to send m to all processes in p. The statement “wait for m from p,” 
where m is one or more messages and p is a process, causes the executing 
process to suspend until m is received from p. If messages from multiple desti- 
nations are expected, the statement takes one of two forms: “wait for m from 
all p,” in which case the waiting persists until messages m have been received 
from all processes in p, and “wait for m from any p,” in which case waiting 
ends when m is received from some process in p. To avoid indefinite waiting, a 
wait for statement can be followed by a clause of the form “on timeout S,” 
where S is some statement. This means that if the messages expected in the 
preceding wait for statement do not arrive within a predetermined timeout 
p’eriod, waiting is discontinued, statement S is executed, and control flows 
normally to the statement after the interrupted wait for, unless otherwise speci- 
fied by S. If the expected messages arrive within the timeout period, S is 
ignored. We assume the timeout period is magically set to an appropriate 
value. 

Although we have been presenting ACPs for a single transaction’s termina- 
tion, it is clear that the DT log will contain records describing the status of 
different transactions relative to atomic commitment. Thus to avoid confusing 
records of different transactions, the start-2PC, yes, commit, and abort 
records must contain the name of the transaction to which they refer. In addi- 
tion, it is important to garbage collect DT log space taken up by outdated 
information. There are two basic principles regarding this garbage collection: 

GC1: A site cannot delete log records of a transaction T from its DT 
log until at least after its RM has processed RM-Commit( T) or RM- 
Abort(T). 

GC2: At least one site must not delete the records of transaction T 
from its DT log until that site has received messages indicating that RM- 
Commit(T) or RM-Abort( T) has been processed at all other sites where 
T executed. 
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Coordinator’s algorithm 

send VOTE-REQ to all participants; 
write start-2PC record in DT log; 
wait for vote messages (YES or NO) from all participants 

on timeout begin 
let Py be the processes from which YES was received; 
write abort record in DT log; 
send ABORT to all processes in Py; 
return 

end; 
if all votes were YES and coordinator votes Yes then begin 

write commit record in DT log; 
send COMMIT to all participants 

end 
else begin 

ler Py be the processes from which YES was received; 
write abort record in DT Iog; 
send ABORT to all processes in Py 

end; 
return 

Participant’s algorithm 

wait for VOTE-REQ from coordinator 
on timeout begin 

write abort record in DT log; 
return 

end; 
if participant votes Yes then begin 

write a yes record in DT log; 
send YES to coordinator; 
wait for decision message (COMMIT or ABORT) from coordinator 

on timeout initiate termination protocol /* cf. Fig. 7-4 “/ 
if decision message is COMMIT then write commit record in DT log 
else write abort record in DT log 

end 
else /” participant’s vote is No “/ begin 

write abort record in DT log; 
send NO to coordinator 

end; 
return 

FIGURE 7-3 
Two Phase Commit Protocol 
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Initiator’s algorithm 

start: send DECISION-REQ to all processes; 
wait for decision message from any process 

on timeout goto start; / * blocked! * / 
if decision message is COMMMIT then 

write commit record in DT log 
else /‘) decision message is ABORT :'/ 

write abort record in DT log; 
return 

Responder’s algorithm 

wait for D~cIs1oN-REcj from any process e; 
if responder has not voted Yes or has decided to Abort (i.e., has an 

abort record in DT log) then send ABORT to e 
else if responder has decided to Commit (i.e., has a commit 

record in DT log) then send COMMIT to e 
else / * responder is in its uncertainty period ” / ~kip;~ 
return 

FIGURE 7-4 
Cooperative Termination Protocol for 2PC 

GCl states that a site involved in T’s execution can’t forget about Tuntil 
after T’s effects at that site have been carried out. GC2 says that some site 
involved in T’s execution must remember T’s fate until that site knows that T’s 
effects have been carried out at all sites. If this were not true and a site recov- 
ered from a failure and found itself uncertain about T’s fate, it would never be 
able to find out what to decide about T, thus violating AU. 

GCl can be enforced using information available locally at each site. 
However, GC2 calls for communication between sites. In particular, site A 
involved in T’s execution must acknowledge the processing of RM-Commit( T) 
or RM-Abort( T) at site A to each site for which GC2 must hold. There are two 
extremes in the spectrum of possible strategies for achieving GC2: GC2 is true 
for only one site, typically T’s coordinator, or GC2 is true for all sites involved 
in T’s execution (see Exercise 7.5). 

Our study of ACPs from the viewpoint of a single transaction has also 
hidden the issue of site recovery. When a site recovers, it must complete the 
ACP for all transactions that might not have committed or aborted before the 

3“Skip” is the “do-nothing” statement (no-op). 
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failure. At vvhat point can the site resume normal transaction processing? After 
the recovery of a centralized DBS, transactions cannot be processed until 
Restart has terminated, thereby restoring the committed database state. A 
similar strategy for the recovery of a site in a distributed DBS is unattractiv,e, in 
view of the possibility that some transactions are blocked. In this case, the DBS 
at the recovered site would remain inaccessible until all transactions blocked at 
that site were committed or aborted. 

hlethods to avoid this problem depend on the type of scheduler being 
used. Consider Strict 2PL. After a site’s recovery procedure has made decisions 
for all unblocked transactions, it should ask its scheduler to reacquire the locks 
that blocked transactions owned before the failure. In fact, a blocked transac- 
tion T need only reacquire its write locks. Read locks may’ be left released 
because doing so does not violate either the two phase rule (T must have 
obtained all of its locks, or else it vvould have been aborted, instead of blocked) 
or the strictness condition (which requires that write locks be held until after 
Commit is processed). The problem is that lock tables are usually stored in 
main memory and are therefore lost in 3 system failure. To avoid losing this 
information, the process that manages T’s atomic commitment at a site musr 
record T’s write locks at that site in the yes record it writes in the DT log. This 
is unnecessary if that information can be determined from the log maintained 
by the Rhl at that site. This is the case, for example, in the undo/redo algo- 
rithm described in Chapter 6, since before T votes Yes at a site all of its update 
records will be in the log (and therefore in stable storage). These records can be 
used to determine the set of T’s write locks. which can then be set. 

Evaluation of 2PC 

One can evaluate an ACP according to many criteria: 

L Resiliency: What failures can it tolerate? 

L; Blocking: Can processes be blocked? If so, under what conditions? 

2 Time Complexity: How long does it take to reach the decision? 

0 Message Compleyity: How many messages are exchanged to reach a 
decision? 

The first two criteria measure the protocol’s reliability, and the other two 
its qfficiency. Reliability and efficiency are conflicting goals; each can be 
achieved at the expense of the other. The choice of protocol depends largely on 
which goal is more important to a specific application. However, whatever 
protocol is chosen, we should usually optimize for the case of no failures - 
hopefully the system’s normal operating state. 

We’ll measure an ACP’s time comIjlexity by counting the number of 
message exchange rounds needed for unbIocked sites to reach a decision, in the 
worst case. A round is the maximum time for a message to reach its destina- 
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tion. The use of timeouts to detect failures is founded on the assumption that 
such a maximum message delay is known. Note that many messages can be 
sent in a single round - as many as there are sender-destination pairs. Two 
messages must belong to different rounds if and only if one cannot be sent until 
the other is received. For example, a COMMIT and a YES in 2PC belong to differ- 
ent rounds because the former cannot be sent until after the latter is received. 
On the other hand, all VOTE-REQ messages are assigned to the same round, 
because they can 311 be in transit to their destination concurrently, The same 
goes for 311 COMMIT messages. An easy way to count the number of rounds is to 
pretend that all messages in a round are sent at the same time and experience 
the same delay to 311 sites. Thus each round begins the moment the messages 
are sent, and ends at the moment the messages arrive. 

Using rounds to measure time complexity neglects the time needed to 
process messages. This is a reasonable abstraction in the common case where 
message delays far exceed processing delays. However, two other factors might 
be taken into account to arrive at a more precise measure of time complexity. 

First, as we have seen, a process must record the sending or receipt of 
certain messages in the DT log. In some cases, such as 3 file server in a local 
area network, accessing stable storage incurs a delay comparable to that of 
sending 3 message. The number of accesses to stable storage may then be a 
significant factor in the protocol’s time complexity. 

Second, in some rounds a process sends the same message to all other 
processes. For instance, in the first round the coordinator sends VOTE-REQS to 

all participants. This activity is called broadcasting. To broadcast a message, 3 

process must place n copies of the message in the network,4 where II is the 
number of receivers. Usually, the time to place a message in the network is 
negligible compared with the time needed to deliver that message. However, if 
II is sufficiently large, the time to prepare a broadcast may be significant and 
should be accounted for. 

Thus, a more accurate measure of time complexity might be a weighted 
sum of the number of rounds, accesses to stable storage, and broadcast 
messages. However, we’ll ignore the latter two factors and concern ourselves 
only with the number of rounds. 

We’ll measure message complexity by the number of messages used by the 
protocol. This is reasonable if individual messages are not too long. If they are, 
we should count the length of the messages, not merely their number. In 311 the 
protocols of this chapter messages are short, so we’ll be content with counting 
the number of messages. 

Let us now examine how 2PC fares with respect to resiliency, blocking, 
and time and message complexity. 

4We are assuming, of course, that the communication medium is not a multiple access channel. 
In that case only one message needs to be placed in the channel; the receivers are all tapping the 
common channel and can “hear” the broadcast message. 
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Resiliency: 2PC is resilient to both site failures and communication failures, 
be they network partitions or timeout failures. To see this, observe that our 
justification for the timeout actions in the previous subsection did not depend 
on the timeout’s cause. The timeout could be due to a site failure, a partition, 
or merely a false timeout. 

Blocking: 2PC is subject to blocking. A process will become blocked if it 
times out while in its uncertainty period and can only communicate with 
processes that are also uncerrain. In fact, 2PC may block even in the presence 
of only site failures. To calculate the probability of blocking precisely, one must 
know the probability of failures. This type of analysis is beyond the scope of 
this book (see the Bibliographic Notes). 

Time Complexity: In the absence of failures, 2PC requires three rounds: (1) 
the coordinator broadcasts VOTE-REQS; (2) the participants reply with their 
votes; and (3) the coordinator broadcasts the decision. If failures happen, then 
the termination protocol may need two additional rounds: one for a partici- 
pant that timed out to send a DECISION-REQ, and the second for a process that 
receives that message and is outside its uncertainty period to reply. Several 
participants may independently invoke the termination protocol. However, 
the two rounds of different invocations can overlap, so the combined effect of 
all invocations of the termination protocol is only two rounds. 

Thus, in the presence of failures it will take up to five rounds for all 
processes that aren’t blocked or failed to reach a decision. This is independent 
of the number of failures! The catch is that some processes may be blocked. By 
definition, a blocked process may remain blocked for an unbounded period of 
time. Therefore, to get meaningful results, we must exclude blocked processes 
from consideration in measuring time complexity. 

Message Complexity: Let n be the number of participants (so the total 
number of processes is n + 1). In each round of 2PC, n messages are sent. 
Thus, in the absence of failures, the protocol uses 3n messages. 

The cooperative termination protocol is invoked by all participants that 
voted Yes but didn’t receive COMMIT or ABORT from the coordinator. Let there 
be m such participants, ‘: m I n. Thus m processes will initiate the termina- 
tion protocol, each sending n DECISION-REQ messages. At most n -m + 1 
processes (the maximum that might not be in their uncertainty period) will 
respond to the first DECISION-REQ message. As a result of these responses, one 
more process may move outside its uncertainty period and thus respond to the 
DECISION-REQ message of another initiator of the termination protocol. Thus, 
in the worst case, the number of messages sent by the termination protocol 
(with m initiators) will be 
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Particbants 

FIGURE 7-5 
Communication Topology for 2PC with Five Processes 

m 

nm + c (n-m-+-i) = 2nm -m2/2+m/2. 
i=l 

Elementary calculus shows that this quantity is maximized when n = m (recall 
that 0 I m I n), that is, when all participants time out during their uncer- 
tainty period. Thus, the termination protocol contributes up to n(3n + 1)/2 
messages, for a total of n(3n + 7)/2 for the entire 2PC protocol. 

Alternative Communication Topologies for 2PC 

The communication topology of a protocol is the specification of who sends 
messages to whom. For example, 2PC without the termination protocol has a 
communication topology in which the coordinator sends messages to the 
participants and vice versa. Participants do not send messages directly to each 
other. This communication topology is represented by a tree of height 1, with 
the coordinator as the root and the participants as the leaves (see Fig. 7-S.) 

In an attempt to reduce the time and message complexity of 2PC, two 
other protocols have been proposed, the decentralized 2PC protocol and the 
linear (or nested) 2PC protocol. Both have the same fundamental properties as 
centralized 2PC, the 2PC protocol we have studied so far. But they use differ- 
ent communication topologies than centralized 2PC. 

Decentralized 2PC is designed to improve time complexity, Instead of fun- 
neling messages through the coordinator, processes may communicate directly 
with one another. Thus, the communication topology is represented as a com- 
plete graph, one that has an edge between every pair of nodes (see Fig. 7-6.) 

Decentralized 2PC works as follows. Depending on its vote, the coordina- 
tor sends YES or NO to the participants. This message has a dual role: It 
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FIGURE 7-6 
Communication Topology for Decentralized 2PC with Five Processes 

informs the participants that it is time to vote (recall VOTE-REQ in centralized 
2PC) and also tells them the coordinator’s vote. If the message is NO, each 
participant simply decides Abort and stops. Otherwise, it responds by sending 
its own vote to all other processes. After receiving all the votes, each process 
makes a decision: If all were Yes and its own vote was Yes, the process decides 
Commit; otherwise it decides Abort. Timeout actions can be supplied just as in 
centralized 2PC (see Exercise 7.6). 

In the absence of failures, decentralized 2PC requires only two rounds: one 
for the coordinator’s YES or NO and another in which the participants broad- 
cast their own votes. By not funneling the votes through the coordinator, we 
reduce the round complexity. Unfortunately, we also increase the message 
complexity. Let n be the number of participants. We now need n messages for 
the coordinator’s vote and PZ? messages for the participants’ votes, because each 
participant must send its vote to every other process, for a total of n’+ n 
messages. We need these messages even in the absence of failures, a case that 
centralized 2PC handles with only 3n messages. 

Linear 2PC, on the other hand, is designed to reduce the number of 
messages. The processes are linearly ordered as shown in Fig. 7-7. Each 
process can communicate with its left and right neighbors. The protocol is 
initiated by the coordinator, which is the leftmost process in the linear order 
(numbered 1 in Fig. 7-7). The coordinator sends a message to its right neigh- 
bor (process 2) containing its vote, Yes or No. This message informs process 2 
of the coordinator’s vote and tells it to vote too. In general, a process p waits 
for a message from its left neighbor. If e receives a YES and its own vote is Yes, 
it forwards a YES to its right neighbor. If p receives a YES and its own vote is 
No, or if it receives a NO, then p forwards a NO to its right neighbor. If these 
rules are observed, then the rightmost process will have all the information ir 
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FIGURE 7-7 
Communication Topology for Linear 2PC with Five Processes 

needs to make a decision: If it receives a YES and its own vote is Yes, then the 
decision is Commit; otherwise the decision is Abort. Having made the deci- 
sion, the rightmost process sends a COMMIT or ABORT to its left neighbor 
informing it of the decision. Each process that receives the decision message 
decides accordingly and then forwards that message to its left neighbor. Even- 
tually the message reaches the leftmost process, at which time the protocol 
ends. It is possible to define timeout actions in this protocol similar to those 
we discussed for centralized 2PC (see Exercise 7.7). The timeout period for 
each process should depend on its position in the linear order because this 
influences the amount of time it will take for a message to arrive (see Exer- 
cise 7.8). 

This protocol requires 2n messages (where iz is the number of partici- 
pants): 71 traveling left to right conveying votes, and n traveling right to left 
conveying the decision. Unfortunately, the economizing in messages is 
achieved at the expense of rounds. Linear 2PC requires as many rounds as 
messages because no two messages are sent concurrently. Thus linear 2PC 
uses 2n rounds, as compared with 3 for centralized 2PC and 2 for decentral- 
ized 2PC. 

There are various ways to improve linear 2PC. The decision messages 

could all be sent concurrently by the rightmost process. That is, we could have 
a hybrid protocol that uses the communication topology of Fig. 7-7 for the 
voting phase of 2PC and that of Fig. 7-5 for the decision distribution phase 
(where the rightmost process is the tree’s root). The resulting protocol still has 
message complexity 2n but uses n + 1, rather than 2n rounds. Another 
improvement is suggested in Exercise 7.9. 

Figure 7-8 summarizes the message and time complexities of the three 
variants of 2PC in the absence of failures for IZ + 1 processes (n partici- 
pants and the coordinator). If messages are too expensive, linear 2PC may 
be most appropriate. If end-to-end delays must be minimized, decentralized 
2PC could be used. Centralized 2PC is a good middle ground. The choice of 
protocol might also be influenced by the physical characteristics of the 
network. A linear bus or ring network may be well suited for linear 2PC while 
a (nearly) completely connected network may be appropriate for decentral- 
ized 2PC. 
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Decentralized 2PC 

Linear 2PC 

Messages Rounds 

FIGURE 7-8 
Comparison of 2PC Variants (No-Failures Case) 

7.5 THE THREE PHASE COMMIT PROTOCOL 

By Proposition 7.1, we cannot hope to devise a non-blocking protocol that 
tolerates communication failures or total site failures. Unfortunately, 2PC may 
cause blocking even if only non-total site failures5 take place. fn this section we 
study the three phase commit (3PC) protocol. In particular, we’ll examine two 
variations of 3PC. The first, to which we devote most of the section, is 
designed to tolerate only site failures. The protocol is non-blocking in the 
absence of total site failures. In the event of a total failure, blocking may occur 
but correctness is still assured. Unfortunately, this protocol may cause incon- 
sistent decisions to be reached in the event of communication failures. 

The second variation of 3PC, discussed in the last subsection, can tolerate 
both communication and site failures. However, it is prone to blocking. 
Indeed, blocking may occur even if only processes have failed. This is unavoid- 
able, in view of Proposition 7.1 and the fact that communication and site fail- 
ures manifest themselves in the same manner, namely, as the inability to 
exchange messages within a pre-determined timeout period. 

Both variations are more involved and have greater message and round 
complexity than 2PC. For systems built to tolerate only site failures, the first 
variation of 3PC has the advantage over 2PC that it completely eliminates 
blocking (except, unavoidably, in the event of total failures). 

The second variation of 3PC can be used in systems designed to tolerate 
both site and communication failures. It does not completely eliminate block- 
ing but causes blocking less frequently than 2PC. For instance, in 2PC 
processes may be blocked even if just one process - the coordinator - fails; in 
the second variation of 3PC no process will be blocked (in the absence of 
communication failures), as long as a majority of the processes are still opera- 
tional. 

“Henceforth, in this section, “site failures” means “non-total site failures” unless otherwise 
specified. 
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In most practical applications, the circumstances under which 2PC causes 
blocking are sufficiently rare that blocking is usually not considered a big 
problem. Consequently, almost all systems we know of that employ atomic 
commitment protocols use some version of 2PC.6 Even though 3PC is not used 
in practice, it is an interesting protocol both in its own right and also because it 
illustrates a number of important techniques used in the design of fault- 
tolerant communication protocols. For these reasons, we feel that its study is a 
worthwhile endeavor. However, the rest of this section can be skipped without 
loss of continuity 

Basic Structure of 3PC 

The first version of 3PC we’ll describe is designed to handle site but not 
communication failures. Consequently, we assume that only site failures occur. 
Communication failures do not happen. There is a subtlety in this assumption. 
Depending on the network topo!ogy, site failures may cause communication 
failures as a side effect. For instance, in Fig. 7-1 if sites A and C fail, then sites 
B.and E cannot communicate even though both are operational. Such site fail- 
ures count as communication failures, too. 

There are two major implications of assuming that only site failures 
happen. First, all operational processes can communicate with each other. 
Second, a process that times out waiting for a message from process 4 knows 
that 4 is down and therefore that no processing can be taking place there. In 
particular, no other process can be communicating with 4. Neither of these 
statements is true if communication failures are possible. 

In 2PC, if all operational processes are uncertain, they are blocked. They 
can’t decide Abort, even if they know that processes they cannot communicate 
with have failed, because some failed process could have decided Commit 
before failing. 

Suppose we’ve managed to design an ACP with the following “non- 
blocking property”: 

NB: If any operational process is uncertain then no process (whether 
operational or failed) can have decided to Commit. 

If the operational sites discover they are all uncertain, they can decide 
Abort, safe in their knowledge that the failed processes had not decided 
Commit. When the failed processes recover they can be told to decide Abort 
too. This way blocking is prevented. 

3PC is a protocol that satisfies NB. The idea is simple. Consider why 2PC 
violates NB. The coordinator sends COMMITS to the participants while the 

6A notable exception is SDD-1, which uses a peculiar protocol that resembles 2PC in some 
respects and 3PC in others (see Exercise 7.13). 
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latter are uncertain. Thus if participant p receives a COMMIT before participant 
q, the former will decide Commit while the latter is still uncertain. 3PC avoids 
this as follows: After the coordinator has found that all votes were Yes, it sends 
PRE-COMMIT messages to the participants. When a participant e receives that 
message, it knows that al1 processes voted Yes and is thereby moved outside its 
uncertainty period. p does not, however, decide Commit yet. At this point p 
knows that it u~ill decide Commit provided it does not fail. 

Each participant acknowledges the receipt of PRE-COMMIT. When the 
coordinator has received all the acknowledgments to PRE-COMMITS, it knows 
that no participant is uncertain anymore. It then sends COMMITS to all partici- 
pants. When a participant receives a COMhlfT~ it can decide Commit. This deci- 
sion does not violate NB since no process is uncertain any longer. 

If a process votes No, then 3PC behaves just like 2PC. The coordinator 
sends ABORTS to all processes. We now give the full description of the 3PC 
protocol. 

1. The coordinator sends a VOTE-REQ to all participants. 

2. When a participant receives a VOTE-REQ, it responds with a YES or NO 

message, depending on its vote. If a participant sends NO, it decides 
Abort and stops. 

3. The coordinator coIlects the vote messages from all participants. If any 
of them was NO or if the coordinator voted No, then the coordinator 
decides Abort, sends ABORT to all participants that voted Yes, and stops. 
Otherwise, the coordinator sends PRE-COMMIT messages to all partici- 
pants. 

4. A participant that voted Yes waits for a PRE-COUWT or ABORT message 
from the coordinator. If it receives an ABORT, the participant decides 
Abort and stops. If it receives a PRE-COMMIT, it responds with an ACK 

(i.e., acknowledgment) message to the coordinator. 

5. The coordinator collects the ACKS. When they have all been received, it 
decides Commit, sends COMMITS to all participants, and stops. 

6. A participant waits for a COMMIT from the coordinator. When it receives 
that message, it decides Commit and stops. 

Messages received at steps (5) and (6) have the peculiar property of being 
known to their recipients even before they are received! In step (5) the coordi- 
nator knows it may only receive ACKS, and in step (6) a participant knows it 
can only receive a COMMIT. This casts some doubt on the utility of such 
messages. Their importance is that they inform their recipients of the occur- 
rence of certain events. The receipt of ACK from participant p tells the coordi- 
nator that p is no longer uncertain. And since a COMMIT is sent only after all 
ACKS have been received, a participant that receives the COMMIT knows that y2o 
participant is uncertain. Thus it can decide Commit without violating NB. 
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This protocol works fine as long as there are no failures. To handle failures 
we must supply timeout actions describing what a process must do if an 
expected message does not arrive and must explain how a process can reach a 
decision after recovering from a failure. We address these issues in turn. 

Timeout Actions 

What a process should do when it times out depends on the message it was 
waiting for. There are five places in which a process waits for some message 
in 3PC: 

1. In Step (2) paI%CipantS Wait for VOTE-REQ. 

2. In step (3) the coordinator waits for the votes. 

3. In step (4) participants wait for a PRE-COMMIT or ABORT. 

4. In step (5) the coordinator waits for ACKS. 

5. In Step (6) participants wait for COMMIT. 

Cases (1) and (2) are handled exactly as in 2PC. In both cases the process 
that times out knows that no process can have decided Commit. Thus, it can 
unilaterally decide Abort. In case (1) the participant can simply stop once it 
has decided Abort; in case (2) the coordinator should also send ABORTS to all 
participants that had voted Yes. 

In case (4) the coordinator times out because one or more participants 
failed before sending an ACK. The coordinator does not know whether these 
participants failed before or after receiving a PRE-COMMIT. But it does know 
that these participants had voted Yes and were therefore prepared to decide 
Commit. Thus it ignores the failures and proceeds to send COMMIT to the 
operational participants as if it had received all ACKS. The failed participants, 
when they recover, are responsible for finding out that the decision was to 
Commit. With this timeout action, processes might decide Commit while some 
failed participant is uncertain. This will happen if some participant that did 
not send an ACK had actually failed before even receiving the PRE-COMMIT from 
the coordinator (cf. step (4) of 3PC). This does not violate NB, which requires 
only that no operational or failed process has decided Commit while some 
operational process is uncertain. 

Cases (3) and (5) are more problematic. Here processes cannot act autono- 
mously in response to the timeout. They must communicate with other 
processes to reach a consistent decision. It is clear why such communication is 
necessary in case (3); the timeout of an uncertain participant can’t be handled 
unilaterally. But why does a participant p that times out in case (5) need to 
communicate with others? p has already received a PRE-COMMIT and is there- 
fore not uncertain. After all, p knows that only COMMIT could possibly arrive 
from the coordinator. Why can’t p ignore the timeout and simply decide 
Commit? 
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The reason is that by deciding Commit, p could be violating condition NB. 
To see this, suppose that the coordinator failed after having sent the DRE- 

COMMIT to p but before sending it to some other participant q. Thus p will time 
out in case (5) - outside its uncertainty period - while q will time out in case 
(3) - inside its uncertainty period. If p, on timeout, were to decide Commit 
while q (which is operational) is still uncertain, it would violate NB. This 
suggests that before deciding Commit, p should make sure that all operational 
participants have received a PRE-COMMIT, and have therefore moved outside 
their uncertainty periods. The termination protocol that a participant invokes 
if it times out in cases (3) and (5) does just that. 

To explain how the termination protocol works, it is convenient to define 
the state of a process relative to the messages it has sent or received. There are 
four possible states:- 

c Aborted: the process has not voted, has voted No, or has received an 
ABORT (i.e., it has either decided Abort or can unilaterally decide so). 

q Uncertain: the process is in its uncertainty period. 

s Committable: the process has received a PRE-COMMIT but has not yet 
received a COMMIT. 

o Committed: the process has received a COMMIT (i.e., it has decided 
Commit). 

First, note that any process is in precisely one state at any time. Second, some 
pairs of states cannot coexist, that is, cannot be occupied at the same time by 
two operational processes. Figure 7-9 shows which states can coexist and 
which cannot: A “Y” entry means that the states in the corresponding row and 
column can coexist, while an “M’ means they cannot (see Exercise 7.14). 

The termination protocol works as follows. when a participant times out 
in case (3) or (5), it initiates an election protocol. This protocol involves all 
processes that are operational and results in the “election” of a new coordina- 
tor. (The old one must have failed; otherwise no participant would have timed 
out!) We’ll describe an election protocol later. For now let’s just assume we 
have one. Once the new coordinator has been elected, the termination proto- 
col proceeds as follows: The coordinator sends a STATE-REQ message to all 
processes that participated in the election. (By our assumption about failures, 
all operational sites will participate.) A participant in the termination protocol 
(i.e., any operational process other than the new coordinator) responds to this 
message by sending its state to the coordinator. The coordinator collects these 
states and proceeds according to the following termination rule: 

TRI: If some process is Aborted, the coordinator decides Abort, sends 
ABORT messages to all participants, and stops. 

‘We capitalize the first fetter of these four process states in the rest of the chapter. 
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Aborted Uncertain Committable Committed 

Aborted Y Y N N 

Uncertain Y Y Y N 

Committable N Y Y Y 

Committed hJ N Y Y 

FIGURE 7-9 
Coexistence of States 

TR2: If some process is Committed, the coordinator decides Commit, 
sends COMMIT messages to all participants, and stops. 

TRJ: If all processes that reported their state are Uncertain, the coor- 
dinator decides Abort, sends ABORT messages to all participants, and 
stops. 

TR4: If some process is Committable but none is Committed, the 
coordinator first sends PRE-COMMIT messages to all processes that 
reported Uncertain, and waits for acknowledgments from these 
processes. After having received these acknowledgments the coordinator 
decides Commit, sends COMMIT messages to all processes, and stops. 

A participant that receives a COMMIT (or ABORT) message, decides Commit 
(or Abort), and stops. 

Of course, processes can fail during the termination protocol. Thus we 
must supply timeout actions for all places in which a process is waiting in this 
protocol! It seems as though we are chasing our tail, but that’s not so. Once 
elected, the coordinator will ignore any participants that fail before reporting 
their state. It will base its decision on the states of the participants that do 
report their state, in accordance with the termination rule. So, participant fail- 
ures during the termination protocol are easily handled. 

If the coodinator fails during the termination protocol, one of the partici- 
pants waiting for the decision will time out. That participant will initiate a new 
election protocol, resulting in the election of a new coordinator. The termina- 
tion protocol will then be started all over again. All processes will report their 
states to the new coordinator, which will proceed according to TRl-TR4. 
Before all operational processes reach a decision, several invocations of the 
termination protocol may be required, one for each coordinator failure. Even- 
tually either some coordinator will finish the protocol or all processes will fail, 
resulting in total failure. We’ll discuss total failures shortly, 
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It should be emphasized that processes that fail and then recover while the 
termination protocol is in progress are not allowed to participate in that proto- 
col. Such processes will reach a decision using the recovery procedure thar will 
be presented soon. 

Correctness of 3PC and Its Termination Protocol 

We now show that in the presence of only site failures, 3PC (with its termina- 
tion protocol) is non-blocking and correct. Correctness amounts to proving 
that the five conditions of ACPs are satisfied. The only one that’s non-trivial to 
show is ACl, i.e., that all processes that reach a decision reach the same one. 
AC2, AC3, and AC4 can be easily verified and we won’t discuss them. To show 
that AC5 is satisfied we must consider failure recovery, which is the topic of the 
next subsection. Here we’ll concentrate on proving the consistency of the deci- 
sion reached by the processes. Although the argument is lengthy, it’s worth 
studying carefully, because it elucidates how 3PC works in the case of failures. 

Lemma 7.3: For any set of states received by the coordinator in the termi- 
nation protocol, exactly one of the four cases of the termination rule 
(TRl-TR4) applies. 

Proof: The reported states must coexist. Using Fig. 7-9 it is easy to 
verify that for any set of states that pairwise coexist, one and only one of 
TRl-TR4 must apply. cl 

Theorem 7.4: In the absence of total failures, 3PC and its termination 
protocol never cause processes to block. 

Proof: If the coordinator does not fail then all operational processes will 
reach a decision, so in this case they do not block. If the coordinator fails, 
any processes that have not reached a decision will initiate the termination 
protocol and elect a new coordinator. By Lemma 7.3 at least one of the 
termination rule cases will apply Moreover, in each case of the termina- 
tion rule a decision is reached. Thus if the coordinator of the termination 
protocol does not fail, all remaining processes will reach a decision; again 
there is no blocking. If the coordinator fails, a new invocation of the termi- 
nation protocol will be initiated. This will be repeated until either all 
remaining processes reach a decision or all processes fail (a total failure). 
Therefore, in the absence of total failures, all operational processes will 
reach a decision without blocking. q 

Lemma 7.5: All processes that reach a decision on the same invocation of 
the termination protocol reach the same one. 
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Proof: By Lemma 7.3, at most one case of the termination rule applies 
and therefore the rule is unambiguous. This means that the coordina- 
tor sends the same decision to all processes (to which it sends anything 
at all). q 

Lemma 7.6: If NB holds before the termination protocol starts, it will 
hold after even a partial execution of that protocol. 

Proof: A (possibly partial) execution of the termination protocol can 
violate NB only if some process decides Commit while an operational 
process is Uncertain. A Commit decision is reached only in cases TR2 or 
TR4. By Fig. 7-9, in case TR2 all operational processes are Committable 
or Committed and thus are not Uncertain. In case TR4 all processes that 
are Uncertain and do not, in the meanwhile, fail are explicitly moved out 
of their uncertainty periods by receiving PRE-COMMITS and acknowledging 
them. Thus in all cases NB is preserved. 0 

Lemma 7.7: Consider the i-th invocation of the termination protocol, 
that is, the invocation after i coordinators have failed. If a process p that is 
operational during at least part of this invocation is Committable, then 
some process q that was operational in (at least part of) the (i - 1)st invo- 
cation was Committable then.* 

Proof: If p itself was Committable in the (i - l)st invocation we are done. 
If p became Committable on the i-th invocation (see case TR4 of the termi- 
nation rule), some process q must have reported its state as being Commit- 
table. But q must have been Committable in the previous invocation, 
because no process changes its state in an invocation until after the coordi- 
nator has received all the state reports. 0 

Theorem 7.8: Under 3PC and its termination protocol, all operational 
processes reach the same decision. 

Proof: We’ll prove that all processes that have reached a decision by the 
i-th invocation of the termination protocol have reached consistent deci- 
sions. The proof is by induction on i. 

BASIS: i = 0. Consider the “0-th invocation” of the termination protocol, 
i.e., the execution of the basic 3PC protocol. In this case a process decides 
according to the COMMIT or ABORT it receives from the coordinator. Since 
the coordinator sends the same message to ail processes (to which it sends 
anything at all), all processes that reach a decision during this invocation 
reach a consistent one. 

*The “0-th invocation” of the termination protocol is taken to be the execution of the basic 3PC 
protocol (as described at the beginning of this section). 
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INDUCTION STEP: Suppose all processes that have reached a decision 
through the (i- 1)st invocation of the termination protocol (i>O) have 
reached a consistent one. Consider now the processes that reach a decis- 
ion during the i-th invocation of the termination protocol. By Lemma 7.5 
all these processes must reach the same decision (among themselves). Thus 
it remains to show that this decision is consistent with earlier ones. We 
do this by considering each case of the termination rule, according to 
which the decision was reached in the i-th invocation of the termination 
protocol. 

TRl: If this case applies, all processes that decide in this invocation will 
decide Abort. So we must show rhat no processes that had reached a 
decision earlier could have decided Commit. For TRl to apply, some 
operational process p must have been Aborted, meaning that (1) p has 
not voted; or (2) p has voted No; or (3) p had received an ABORT before 
this invocation of the termination protocol. In cases (1) or (2) no process 
could have decided Commit in a previous invocation. In case (3), e had 
already decided Abort in an earlier invocation and, by induction hypoth- 
esis, all processes that had decided in earlier invocations must have 
decided Abort. 

TR2: In this case there must be an operational process p in the Commit- 
ted state. Thus, p had received a COMMIT and had therefore decided 
Commit in some previous invocation. By induction hypothesis, all 
processes that had decided in previous invocations must have decided 
Commit, which is the decision reached by processes when TR2 applies. 

TR3: In this case all processes that decide in the i-th invocation will 
decide Abort. So we must show that no process could have previously 
decided Commit. For TR3 to apply, a11 operational processes must be 
Uncertain. By Lemma 7.6 (and induction) NB is satisfied through all invo- 
cations of the termination protocol. Since some operational process is 
Uncertain (indeed all of them are!), NB implies that no process could have 
previously decided Commit. 

TR4: In this case, all processes that reach a decision in this invocation 
decide Commit. Suppose, by way of contradiction, that some process q 
had decided Abort in the j-th invocation of the termination protocol, for 
somej < i. At that time q was in the Aborted state. By Fig. 7-9, no opera- 
tional process could have been Committable in the j-th invocation. By 
Lemma 7.7 (and induction) then, no process that’s operational during the 
i-th invocation can be Committable, contradicting the fact that for TR4 to 
apply some operational process must be Committable. 

This completes our proof that under 3PC and its termination protocol 
all processes reach a consistent decision. 0 
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Recovering from Failures 

We now explore how processes that recover from failures can reach a decision 
consistent with that reached by the operational sites. Let us assume that when 
a process recovers, it knows its state at the time it failed. A process extracts this 
knowledge from information it has kept in the DT log. We’ll discuss the partic- 
ipants’ recovery actions. Those for the coordinator are similar. 

If a recovering participant had failed before having sent a YES to the coor- 
dinator, it can unilaterally decide Abort. Also, if I, failed after having received 
a COMMIT or ABORT from the coordinator, then it has already decided. As in 
2PC, these are the two cases in which a process can independently recover. 

The remaining case is that p had failed after voting Yes but before receiving 
a COMMIT or ABORT. Thus, e needs help from other processes. It sends 
messages asking them what the decision was. Under our failure assumptions 
3PC is non-blocking, so a decision either has already been made or is in the 
process of being made by the operational sites .9 So e will eventually receive a 
message with the decision and adopt it. 

Note that p must ask other processes about the decision even if, before 
failing, it had received a DRE-COMMIT and thereby left its uncertainty period. In 
this case, p cannot unilaterally decide Commit, because process failures could 
have occurred so that the termination protocol caused the operational 
processes to decide Abort (see Exercise 7.17). 

To make recovery possible, each process must record in the DT log its 
progress towards commitment. By analyzing the DT log, the recovery proce- 
dure can determine how the recovering process can reach its decision. As in 
2PC, each process writes records in the DT log that mark the sending or 
receipt of various messages. In fact, exactly the same messages are logged in 
3PC as in 2PC. As we have seen, knowing that a participant has received a 
PRE-COMMIT doesn’t help recovery, so such messages need not be logged. The 
same is true for ACKS. Since there is nothing new about logging in 3PC we 
won’t discuss the issue any further. (The fine points of which messages are 
logged, and when, are described in Fig. 7-10.) 

Total Failures 

Suppose that a total failure has taken place and consider the first process p to 
recover. If e had failed after voting Yes but before having decided Commit or 
Abort, it cannot make a decision autonomously. Unless e was the last process 
to have failed it cannot proceed to terminate the transaction on its own. This is 
because the processes that failed after p could have decided either Commit or 
Abort, and p doesn’t know the decision that was reached (see Exercise 7.18). 
Thus, after a total failure, the recovering processes must remain blocked until 

‘Unless, of course, p is recovering from a total failure, a situation we’ll address momentarily. 
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a process q recovers such that either q can recover independently (i.e., can 
reach a decision without communicating with other processes) or q was the 
last process to have failed. In the former case, q simply communicates its deci- 
sion to the other processes. In the latter case, q invokes the termination proto- 
col.” All processes that have recovered will therefore reach a decision 
according to that protocol. We emphasize that processes recovering from a 
total site failure cannot use the termination protocol to reach a decision unless 
they include the last process to have failed. Otherwise, inconsistent decisions 
may be reached by these processes and the last process to have failed. 

Coordinator’s algorithm 

send VOTE-REQ to all participants; 
write start-3PC record in DT log; 
wait for Vote messages (YES or NO) from aI1 participants 

on timeout begin 
let 8’~. be the processes from which YES was received; 
write abort record in DT log; 
send ABORT to all processes in Py; 
return 

end; 
if all messages were YES and coordinator voted Yes then begin 

send PRE-COMMIT to all participants; 
wait for ACK from all participants 

on timeout skip; / * ignore participant failures “/ 
write commit record in DT log; 
send COMMIT to all participants 

end 
else / ’ some process voted No * / begin 

let Py be the processes from which YES was received; 
write abort record in DT log; 
send ABORT to all processes in Py; 

end; 
return 

FIGURE 7-10 
The Three Phase Commit Protocol 

“In our discussion of the termination protocol ive said that processes that have failed do not 
participate in thar protocol when they recover. This is only true if there has not been a total 
failure. 
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FIGURE 7-10 
The Three Phase Commit Protocol (continued) 

Participant’s algorithm 

wait for VOTE-REQ from coordinator 
on timeout begin 

write abort record in DT log; 
return 

end; 
if participant’s own vote is Yes then begin 

write yes record in DT log; 
send YES to coordinator; 
wait for message (PRE-COMMIT or ABORT) from coordinator 

on timeout begin 
initiate election protocol; / * See next subsection. ’ / 
if elected then invoke coordinator’s algorithm of 

termination protocol / * See Fig. 7-11. “/ 
else invoke participant’s algorithm of termination protocol; 
return 

end; 
if message received is PRE-COMMIT then begin 

send ACK to coordinator; 
wait for COMMIT from coordinator 

on timeout begin 
initiate election protocol; 
if elected 
then invoke coordinator’s algorithm of termination protocol 
else invoke participant’s algorithm of termination protocol; 
return 

end; 
write commit record in DT log 

end 
else / ' ABORT was received from coordinator ’ / write abort record in DT log; 

end 
else / * participant’s vote is No ’ / begin 

send NO to coordinator; 
write abort record in DT log 

end; 
return 
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Apparently, correctly recovering from a total site failure requires that a set 
of processes be able to determine whether it includes the last process to have 
failed. They could wait until nil processes have recovered. Certainly this set 
includes the last process to have failed! In the next subsection we’ll describe a 
method in which processes don’t wait that long. 

The 3PC protocol and its termination protocol are shown in Figs. 7-10 
and 7-l 1. In the pseudo-code, it is the writing of a commit (or abort) record in 
the DT log that corresponds to a process’ deciding to Commit (or Abort). 

(New) Coordinator’s algorithm 

send STATE-REQ to all participants (of the eIection protocol); 
wait for state report messages from all participants 

on timeout skip; / * ignore participant failures ’ / 
if any state report message was Aborted or 

the coordinator is in the Aborted state then begin ! ’ case TRI ” / 
if the coordinator’s DT log does not contain an abort record then 

write abort record in DT log; 
send ABORT to all participants 

end 
else if any state report message was Committed or 

the coordinator is in the Committed state then begin / ’ case TR2 “1 
if the coordinator’s DT log does not contain a commit record then 

write commit record in DT log; 
send COMMIT to all participants 

end 
else if all state report messages were Uncertain and 

the coordinator is also Uncertain then begin / * case TR3 “/ 
write abort record in DT log; 
send ABORT to all participants 

end 
else /” some processes are Committable - Case TR4 “l begin 

send DRE-COMMIT to all participants that reported Uncertain state; 
wait for ACK from all processes that reported Uncertain state 

on timeout skip; /” ignore participant failures “/ 
write commit record in DT log; 
send COMMIT to all participants 

end; 
return 

FIGURE 7-l 1 
The 3PC Termination Protocol 
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FIGURE 7-l 1 
The 3PC Termination Protocol (continued) 

Participant’s algorithm 

start: wait for STATE-REQ from coordinator 
on timeout begin 

initiate election protocol; 
if elected then begin execute coordinator’s algorithm (above); return end 
else got0 start 

end; 
if this process had not voted in 3PC protocol or had voted No or 

has received an ABORT then state : = Aborted 
else if this process has received a COMMIT then state : = Committed 
else if this process has received a PRE-COMMIT then state : = Committable 
else state : = Uncertain; 
send state to coordinator; 
wait forresponse from coordinator 

on timeout begin 
initiate election protocol; 
if elected then begin execute coordinator’s algorithm (above); return end 
else got0 start 

end; 
if response was ABORT then begin 

if DT log does not contain an abort record for this process then 
write abort record in DT log 

end 
else if response was COMMIT then begin 

if’ DT log does not contain a commit record for this process then 
write commit record in DT log 

end 
else I ’ response was PRE-COMMIT “I begin 

send ACK to coordinator; 
wait for COMMIT from coordinator 

on timeout begin 
initiate election protocol; 
if elected then begin execute coordinator’s algorithm (above); return end 
else got0 start 

end; 
write commit record in DT log 

end; 
return 
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Election Protocol and Detecting the Last Process to Fail 

For the purposes of the election protocol, the processes agree on a linear order- 
ing among themselves using, for example, their unique identifiers. If e 
precedes (or follows) (I in this ordering, we write p < q (or p > q). The elec- 
tion rule is that if the present coordinator fails, the smallest of the operational 
processes will become the new coordinator. 

Under our assumption that only site failures happen, this idea can be 
implemented simply and efficiently. Each process p maintains a set, UP,, of all 
the processes it believes are operational. Initially, UP, contains all processes.” 
Suppose a participant e detects the failure of the present coordinator c (by 
timing out while waiting for a message from c). Then it removes c from UP,, 
and selects the smallest process q in UP,. If q = e, then e considers itself 
elected and becomes the coordinator of the termination protocol; otherwise it 
sends a UR-ELECTED (you-are-elected) message to q and becomes a participant 
of the termination protocol. When q receives UR-ELECTED, it considers itself 
elected and becomes the termination protocol coordinator. 

When the new coordinator q has been elected, some process p’ may not yet 
have discovered the failure of c. When p' receives a STATE-REQ from q, it 
deduces that c has failed. p’ will therefore remove c (and any other processes 
q’ < q) from UP,’ and will become a termination protocol participant with 
q as its coordinator. 

Message delays can cause a process to receive a STATE-REQ from an old 
coordinator that failed before a new coordinator was elected, Thus, a termina- 
tion protocol participant p that considers q to be the coordinator ignores 
STATE-REQ messages from any q’ < q. On the other hand, if p receives a STATE- 

REQ from q’ > q, then it deduces that q has failed and q’ has been elected as 
the new coordinator. As before, p removes from UP, all processes preceding q’ 
and becomes a participant in a new invocation of the termination protocol, 
taking q’ as its coordinator. 

Maintaining the UP, sets is also useful in recovering from total failures. It 

helps a set of processes R determine whether they contain, among them, the 
last process that failed. 

Suppose that, when a process p recovers, it can retrieve the value of UP, at 
the time it had failed. Thus, p knows that the last process to have failed must 
be in UP,. Suppose a set of processes R have recovered from a total failure. 
The last process to have failed must be a process that each process in R 
believed to have been operational when it failed, that is, a process in the 
set Cl pE~UPp. Thus, the processes in R know that the last process to have 

“The coordinator, which by assumption knows all the processes, can send the set of all 
processes to each participant alongwith the VOTE-REQ messages,‘so that participant p can prop- 
erly initialize UPP. The fact ihat UP, is not initialized until after the receipt of the VOTE-REQ is 
not a problem, since the election protocol is relevant only to a process after it has voted. 
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failed is in R if and only if they contain all potential candidates; that is, if 
R z n PERUPp (+). 

Therefore, when enough processes R recover after a total failure so that 
property (“) is satisfied, the processes in R can initiate the termination proto- 
col to reach a decision as we discussed in the previous subsection. 

For p to retrieve the value of UP, when it recovers, it must have saved UP, 
in stable storage - for example, in the DT log. Note that it is not necessary for 
p to save UP, in stable storage every time UP,‘s value changes. If p only period- 
ically changes UP, in stable storage, the value retrieved for UP, when p 
recovers will be a superset of the actual value of UP, at the time p failed. This is 
safe in that a set R satisfying (“) still contains the last process to have failed. 
However, a larger set R of processes may have to recover from a total failure 
before (“) is satisfied. 

Evaluation of 3PC 

Let’s summarize the properties of 3PC with respect to resiliency, blocking, and 
time and message complexity. 

Resiliency and Blocking: 3PC is resilient to site failures only. It is non- 
blocking except for a total site failure. By Propositions 7.1 and 7.2 this is the 
maximal level of fault tolerance a non-blocking ACP can attain. 

Time Complexity: In the absence of failures, 3PC uses at most five rounds of 
messages: (1) to distribute VOTE-REQS; (2) to deliver votes; (3) to distribute 
PRE-COMMITS; (4) to acknowledge the PRE-COMMITS; and (5) to distribute 
COMMITS. (If the decision is Abort, only three rounds are needed.) Each invo- 
cation of the termination protocol contributes at most five more rounds, plus 
the election protocol, which requires only one round to send UR-ELECTEDS. 

Thus if f processes fail, at most 6f + 5 rounds are needed. This may appear 
deceptively worse than the five rounds required, in the worst case, for 2PC 
(independent of the number of failures!). But recall that 2PC may cause block- 
ing and the five round bound concerned only non-blocked processes. 

Message Complexity: In each round of 3PC at most n messages are sent, 
where II is the number of participants. Thus, in the absence of failures, 3PC 
requires up to 5n messages. In each round of an invocation of the termination 
protocol the number of messages is the number of remaining participants. In 
the i-th invocation, there are at most (n -i) operational participants left, so the 
number of messages is at most 6(n - i). Therefore, if there are f process fail- 
ures, the number of messages is at most 5n + C{=rG(n-i) = 3(f+ 1) 
(2n-1)--n. 
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3PC and Communication Failures 

Up to this point in this section we have assumed that no communication fail- 
ures occur. Let us now remove this assumption. Unfortunately, the termination 
protocol for 3PC we’ve presented may result in processes reaching inconsistent 
decisions. To see this, suppose that the processes are partitioned into two 
components A and B. It is possible that, at the time the partition occurred, 
all processes in A are Uncertain while all those in B are Committable (see Fig. 
7-9). According to the termination protocol, the processes in rl will decide 
Abort (case TR3), while those in B will decide Commit (case TR4). 

In this subsection we’ll describe a new termination protocol that avoids 
such inconsistencies and guarantees correctness even in the presence of 
communication failures. The new termination protocol may introduce block- 
ing, but this is unavoidable in view of Proposition 7.1. 

For now it is best to think of process failures as permanent. That is, a 
process that fails never recovers. Later we’ll show how recoveries can be 
handled in a very simple manner. 

The overall structure of the termination protocol is as before. That is, a 
coordinator is elected that collects the states of participants and decides how to 
proceed on the basis of the states it has received. The problem, illustrated in 
the example outlined previously, is that communication failures may result in 
the election of multiple coordinators (unable to communicate among them- 
selves), each deciding on how to terminate the protocol on the basis of the 
states of disjoint sets of participants. 

Seen in this light, the following remedy suggests itself. We will allow a 
coordinator to reach a decision only if it can communicate with a majority of 
processes. This ensures that decisions reached by two different coordinators 
will be based on the state of at least one process in common. The termination 
protocol will be designed in such a manner that the common process will 
prevent inconsistent decisions. 

Here is how this is achieved. When a coordinator receives the states of (a 
majority of) processes, it determines its intention. The intention is (to decide) 
Commit, if at least one process has reported a Committable state; it is Abort, if 
all states the coordinator received were Uncertain.lZ Intention to decide 
Commit (or Abort), however, is not the same as deciding Commit (or Abort). 
In particular, before converting its intention to an actual decision, the coordi- 
nator must make sure that a majority of processes know its intention. This will 
prevent inconsistent decisions because a process that knows that some coordi- 
nator ever intended Commit (or Abort) wil1 not allow another coordinator to 
decide Abort (or Commit). 

“We are ignoring the situations where a Committed or Abortedstate is received, since these can be 
handled in a straightforward manner; that is, the coordinator adopts the corresponding decision 
and relays it to every process whose state indicates it has not reached a decislon. 
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To inform others of its intention to decide Commit, a coordinator sends 
PRE-COMMIT messages to all processes. A process that receives a PRE-COMMIT 

from its coordinator responds with a PRE-COMMIT-ACK. The coordinator can 
convert its intention to decide Commit to a Commit decision only when it has 
received PRE-COMMIT-ACKS from at least a majority of processes. After deciding 
Commit in this manner, the coordinator sends COMMIT messages to all 
processes. On receipt of such a message a process simply adopts the Commit 
decision. 

The procedure for informing other processes of the intention to decide 
Abort is analogous. The coordinator sends DRE-ABORT messages and waits for 
PRE-ABORT-ACKS. It converts its intention to decide Abort to a decision upon 
receipt of such messages from at least a majority of processes. At that time it 
also sends ABORT messages to all processes. 

Note that the PRE-ABORT message type is new; no such messages were used 
in the 3PC termination protocol we saw previously. By analogy to the Commit- 
table state, we’ll say that a process that has received a PRE-ABORT, but not an 
ABORT, message is in the Abortable state (or simply is Abortable). Thus when a 
coordinator receives the states of other processes, it may receive Committable, 
Uncertain, or Abortable states. 

If a coordinator receives an Abortable state it must not decide Commit. 
This is because an Abortable state is a signal that a coordinator had the inten- 
tion to decide Abort. For all we know, it may have succeeded. Similarly, if a 
coordinator receives a Committable state it must not decide Abort. 

Unfortunately, it is possible for one process to be Abortable and another to 
be Committable (see Exercise 7.24). Thus, unless there is a safe rule for 
convincing one to “convert” to the other state (at least when all failures are 
repaired), we risk perpetual indecision, which is a violation of the require- 
ments for ACPs. 

Fortunately, such a safe rule exists. If a coordinator has received a majority 
of non-Abortable states, including at least one Committable, then it can 
convince any Abortable processes to become Committable. The fact that there 
exists a majority of non-Abortable processes means that the coordinator that 
sent the PRE-ABORT messages to the Abortable ones did not, after all, succeed 
in forming a majority of Abortable processes. Consequently, it couldn’t have 
decided to Abort. And the fact that there is a Committable state means that 
it is legitimate to decide Commit (i.e., all processes had originally voted Yes). 
By the same argument, it is easy to see that if there is a majority of 
non-Committable processes, any Committable ones can be “converted” to 
Abortable. 

In summary, then, the termination protocol is this: After being elected (by 
a protocol to be described shortly), a coordinator sends STATE-REQ messages to 
all processes. A process that receives this message from its coordinator 
responds by sending its present state. The coordinator waits for a period of 
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time, collecting responses. It then proceeds by using the following Majority 
Termination Rule: 

MTR 1: If a Committed state is received, then the coordinator decides 
Commit, sends COMMIT messages to all processes, and stops. 

MTR2: If an Aborted state is received, then the coordinator decides 
Abort, sends ABORT messages to all processes, and stops. 

MTR3: If at least one Committable and a majority of non-Abortable 
(but no Committed) states are received, then the coordinator sends PRE- 

COMMIT messages to all processes that did not report a Committable 
state. A process that receives a PRE-COMMIT changes its state to Commit- 
table and responds with a PRE-COMMIT-ACK. The coordinator waits for 
PRE-COMMIT-ACKS until the set of processes that had reported Committa- 
ble and of processes that have sent a DRE-COMMIT-ACK constitutes a 
majority (i.e., until the coordinator knows that a majority of processes 
are Committable). It then decides Commit, sends COMMIT messages to 
all processes, and stops. If the required number of PRE-COMMIT-ACKS is 
not received, the coordinator and all processes that elected it become 
blocked. 

MTR4: If a majority of non-Committable (but no Aborted) states are 
received, the coordinator sends PRE-ABORT messages to all processes that 
did not report an Abortable state. A process that receives a PRE-ABORT 

message changes its state to Abortable and responds with a PRE-ABORT- 

ACK. The coordinator waits until the set of processes that had reported 
Abortable or have sent a PRE-ABORT-ACK constitutes a majority. It then 
decides Abort, sends ABORT messages to all processes, and stops. As in 
MTR3, if the majority for which the coordinator is waiting does not 
materialize, it and all the processes that elected it become blocked. 

MTRS: In all other cases, the coordinator and all processes thar 
elected it become blocked. 

A process that receives a COMMIT (or ABORT) message decides to Commit (or 
Abort) and stops. 

We can state the critical property of the communication-failure-tolerant 
version of 3PC and its termination protocol as follows: Before a process can 
decide Commit, a majority of processes must be Committable or Committed; 
and before a process can decide Abort, either no process is Committable or 
Committed, or a majority must be Abortable or Aborted. A precise proof of 
correctness for this protocol can be developed on the basis of this property (see 
Exercise 7.25). 

To complete our discussion of this protocol we must address the issue of 
elections and what to do with blocked processes. 
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The election protocol works as follows. Each process p maintains a set 
UP, consisting of all the processes p currently believes it can communicate 
with. Initially, UP, is the set of all processes. I3 The rule of the election algo- 
rithm is that a process will become coordinator only if it cannot communicate 
with a smaller process (“smaller” in some predetermined linear ordering 
known to all processes). Thus, the coordinator of p at any time is the smallest 
process in UP,. To avoid making a special case for the original coordinator, we 
assume that it is the smallest process. 

Suppose now that p loses the ability to communicate with its present coor- 
dinator. It removes that coordinator from UP, and selects the smallest process 
left in UP,, say q. If p = q (i.e., p can’t communicate with any other smaller 
process), p elects itself coordinator. Otherwise p sends a UR-ELECTED message 
to q. When q receives such a message, it checks if it can communicate with any 
smaller process. If it cannot, q removes any smaller processes from UP, and 
elects itself coordinator. If, however, q can communicate with some q’<q, it 
ignores p’s uR-ELECTED message. 

In the meanwhile, p has sent the UR-ELECTED message to q and is waiting 
for a STATE-REQ from it. If this message does not arrive (in the timeout period 
set by p), p concludes that communication between it and q is impossible. This 
could be either for physical reasons (failure of q or a communication failure) or 
for logical ones (q ignored the UR-ELECTED message from p because it can still 
communicate with some q’ < q while p, presumably, cannot communicate with 
4’). Whatever the reason, p will remove q from UP, and will repeat the same 
protocol with the smallest process now left in UP,. 

It is possible that, during the termination protocol, a process receives 
STATE-REQ, PRE-COMMIT, or PRE-ABORT messages from a process other than its 
own coordinator. Such messages are ignored (see Exercise 7.26). 

A blocked process p periodically runs the election protocol. If all failures 
are repaired, all processes will elect the smallest process as their coordinator. 
The elected coordinator can communicate with all processes (and, a fortiori, 
with a majority). Therefore, the majority termination rule guarantees that a 
decision will be reached. Note that it is not necessary for all failures to be 
repaired. In general, if there is a set of processes A that forms a majority and 
such that every process in A can communicate with the smallest process in A, 
then all processes in A will reach a decision (i.e., will become unblocked). 

When a process that has failed recovers, it can act as if it had been discon- 
nected from the others during the period of its failure. That is, it runs the elec- 
tion protocol and proceeds accordingly 

As we have seen, certain actions can be taken by the coordinator only if it 
can communicate with a majority of processes. The crucial property of majori- 

l3 We are assuming that the original coordinator attaches the set of all participants to the VOTE- 
REQ messages, so that participant p can properly initialize UPP upon receipt of that message. 
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ties that is needed here is that any two sets of processes that are majorities must 
intersect. 

A quorum is a generalization of the concept of majority that also satis- 
fies this intersection property. Suppose that each process p is assigned a 
non-negative weight w(p). A set of processes A constitutes a quorum 
if the processes in A have a majority of the weight, that is, if CpEA w(e) > 
(C,,p w(,0))/2, where P is the set of all processes. A majority is a special case of 
a quorum where all processes have equal weight. Since quorums have the inter- 
section property (i.e., if A and B are quorums then A f~ B + {}), we can 
replace “majority” by “quorum” in the Majority Termination Rule. 

It is sometimes useful to use this more general concept, because it allows us 
to assign weights to processes in a way that reflects their “importance.” For 
instance, we may wish to assign more weight to the original coordinator than 
to other processes, to increase the chances that the group of processes that 
maintains communication with that coordinator will form a quorum. Or, we 
may assign greater weight to processes that run in sites that fail very infre- 
quently, thereby maximizing the chance that a quorum will be formed and 
minimizing the chance that all processes will become blocked. 

SIBLIOGRAPHIC NOTES 

The two phase commit protocol is due to [Gray 781 and [Lampson, Sturgis 761. Linear 
2PC was devised independently by [Gray 781 and [Rosenkrantz, Stearns, Lewis 781. 
Decentralized 2PC is from [Skeen 82a]. Variants of 2PC optimized to reduce the 
number of records written in the DT log for various types of transactions are described 
in [Mohan, Lindsay 831. The cooperative 2PC termination protocol has been used in 
the Sirius-Delta system [LeLann 811, and in Prime’s distributed database system 
[ Dubourdieu 821. 

The 3PC protocol was devised and analyzed by Skeen [Skeen 82a], [Skeen 82b], and 
[Skeen 82~1. The performance of several commitment protocols with respect to block- 
ing is studied in [Cooper 821. [Dwork, Skeen 831 and [Ramarao 8.51 derive upper 
and lower bounds for the complexity of non-blocking commitment protocols. 
Communication-failure-tolerant termination protocols for 3PC are proposed in 
[Cheung, Kameda 851, [Chin, Ramarao 831, and [Skeen 82~1. 

Election protocols are discussed in [Garcia-Molina 821. [Skeen 8.51 addresses the issue 
of determining the last process to fail. 

Answers to Exercises 7.15 and 7.16 can be found in [Skeen 82a]. An atomic commit- 
ment protocol that satisfies the properties stated in Exercise 7.13 is described in 
[Hammer, Shipman 801. 

EXERCISES 

7.1 Design protocols for implementing persistent messages, that is, proto- 
cols that ensure that any message sent by a process e to process 4 will 
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eventually be received by 4, even if failures make the delivery of the 
message to q impossible at the time it is sent. Your protocol should guaran- 
tee that messages are received by q in the order they were sent by e. It 
should also guarantee eventual delivery of all “pending” messages if all 
failures are repaired and no new failures take place for sufficiently long. 
Under your protocol a recovering process may have to wait for some fail- 
ures to be repaired before it can be assured that it has received all the 
messages sent to it while it was down. This is a form of blocking. Investi- 
gate ways of reducing the chance that such blocking may occur and 
explore the trade-off between the probability of blocking and the overhead 
of the protocol. 

7.2 Give an ACP that also satisfies the converse of condition AC3. That is, 
if all processes vote Yes, then the decision must be Commit. Why is it not a 
good idea to enforce this condition? 

7.3 Consider 2PC with the cooperative termination protocol. Describe a 
scenario (a particular execution) involving site failures only, which causes 
operational sites to become blocked. 

7.4 For each of the DM implementations described in Chapter 6, describe, 
in some detail, how the actions of the 2PC protocol relate to the actions of 
the DM in processing distributed transactions. 

7.5 Explore and compare various techniques whereby sites can garbage 
collect DTrecords that will never be needed. 

7.6 Write down the decentralized 2PC protocol in detail. For each step in 
which a process is waiting to receive a message, specify suitable timeout 
actions. 

7.7 Write down the linear 2PC protocol in detail. For each step in which a 
process is waiting to receive a message, specify suitable timeout actions. 

7.8 Consider linear 2PC. Assuming that the maximum delay for a message 
to go from a process to its left (or right) neighbor is the same for all 
processes, indicate the timeout period that each process should set when 
waiting for a message (as a function of the maximum delay, the position of 
the process in the linear chain and the type of message expected). 

7.9 In the description of the linear 2PC protocol given in Section 7.4, we 
have a chain of left-to-right traveling messages (votes) and then a chain of 
right-to-left traveling messages (the decision). It is possible to speed the 
protocol up in the event a process’ vote is No - namely, the process passes 
a NO message to the right and, at the same time, passes an ABORT message 
to the left. Develop this variation of the linear 2PC protocol. 

7.10 Is there any process in linear 2PC which is never in an uncertainty 
period? If so, which one(s)? If not, describe the uncertainty period of each 
process. 
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7.11 In the 2PC protocol the coordinatorfirst decides Commit (by writing a 
commit record to its site’s DT log) and then sends COMMIT messages to the 
participants. Suppose the order of these two steps is reversed. Show that 
this variation of 2PC is non-blocking if 

a. there are no communication failures and at most one process can fail, 
or 

b. there are no communication failures and processes have the ability to 
broadcast messages atomically (i.e., so that either all recipients get it 
or no recipient does). 

How does this variation of 2PC affect the recovery procedures? Give 
recovery procedures that work for the modified 2PC protocol. 

7.12 In the 2PC termination protocol each process independently sends a 
DECISION-REQ message, and each process that knows the decision responds 
to all the DECISION-REQS it receives, An alternative approach would be to 
elect a new coordinator that will send the decision to all (if a decision can 
be reached, i.e., if not all operational processes are uncertain). Develop a 
termination protocol that uses this approach. The protocol should handle 
both site and communication failures. Analyze the worst case round and 
message complexity of the resulting protocol. How do these compare to 
the round and message complexity of the protocol given in Section 7.4? 
(Be sure to include the rounds and messages needed for election in your 
analysis.) 

7.13 Design an ACP that guarantees that no process gets blocked if there 
are no communication failures and only up to k processes fail (for some 
specified number k). Describe the protocol in some detail, giving suitable 
timeout actions for each step in which a process is waiting for a message. 
First design the protocol that guarantees consistency only under site fail- 
ures. Then modify the protocol (using ideas in the last subsection of the 
chapter) to obtain a protocol that works even in the event of communica- 
tion failures (but is still non-blocking if there are no communication fail- 
ures and no more than k processes fail). 

7.14 Prove that the “co-existence table” for 3PC (Fig. 7-9) is correct. That 
is, two operational sites can occupy two states s and S’ at the same time if 
and only if the entry whose row corresponds to s and whose column corre- 
sponds to s’ contains a “Y.” 

7.15 In the 3PC termination protocol of Section 7.5 that guarantees consis- 
tency if only site failures happen, the elected coordinator first collects the 
votes of the remaining participants and on the basis of these it decides how 
to proceed (using termination rules TRl-TR4). It is actually possible to 
have the new coordinator proceed to terminate the transaction on the basis 
of its own state, without polling the participants. Develop such a termina- 
tion protocol and prove that it ensures consistency. What are the advan- 
tages and disadvantages of your protocol relative to the one discussed in 
the text? 
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7.16 It is possible to do away with the need for elections in 3PC, by using a 
decentralized termination protocol. The basic idea is this: Participants, 
when they discover that the original coordinator has failed, send to each 
other their present state. Each participant collects the others’ states and on 
that basis decides how to proceed. Design such a protocol and prove that it 
ensures that consistent decisions are reached. (Note that a participant may 
fail after having sent its state to one process but before sending it to 
another. It is this type of behavior that makes this protocol non-trivial.) 
First develop a non-blocking decentralized termination protocol that guar- 
antees consistency under the assumption that only process failures happen. 
Then modify this (using ideas in the last subsection of the chapter) to 
obtain a decentralized termination protocol that may cause blocking, but 
that guarantees consistency under both process and communication fail- 
ures. 

7.17 Consider the 3PC version that guarantees consistent decisions when 
only site failures take place. Describe a scenario (involving site failures 
only) in which a process that failed was Committable at the time it failed, 
yet the other processes wound up deciding Abort. 

7.18 Consider the 3PC version that guarantees consistent decisions when 
only site failures take place. Give two scenarios involving total site failures 
in both of which p fails (and therefore recovers) in the same state s but 
such that in one some process has decided Commit and in the other some 
process has decided Abort. (This implies that if p, on recovery, finds itself 
in state s, it cannot reach a decision on its own for, no matter what it 
decides, some other process may have decided the opposite!) For which 
state(s) s are such scenarios possible? Is it possible that p is the last process 
to have failed? 

7.19 Complete Figures 7-10 and 7-11, by giving the pseudo-code for the 
election protocol. 

7.20 Suppose we are using the 3PC protocol in conjunction with (distrib- 
uted) strict two phase locking (i.e., locks are supposed to the held until the 
“end of transaction”). Can the locks held by a transaction be released at a 
site when the 3PC process supervising the termination of the transaction at 
that site receives the PRE-COMMIT message, or should locks be held until 
the COMMIT is actually received? 

7.21 Investigate the possibility of alternative communication topologies for 
3PC. In particular, develop a decentralized and a linear commitment 
protocol based on 3PC. Analyze the complexity of these protocols and 
compare them to the complexity of the 3PC protocol given in Section 7.5. 

7.22 In 3PC, does the relative order of sending COMMIT messages and writ- 
ing a commit record in the DT log matter? What about the relative order 
of sending ABORT messages and writing an abort record? 
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7.23 Write a pseudo-code specification for the 3PC version described in the 
last subsection of the chapter. 

7.24 Consider the 3PC protocol described in the last subsection of this 
chapter. Describe a scenario in which some process is in the Committable 
and another in the Abortable state. 

7.25 Give a careful proof of the fact that the 3PC version described in the 
last subsection of the chapter guarantees the consistency of the decisions 
reached, even in the presence of communication failures. (Hint: Your 
proof could be based on the following property of the protocol: If Commit 
is decided, then a majority of processes are either Committable or 
Committed; if Abort is decided, then either no process is Committable or 
Committed, or a majority of processes are Abortable or Aborted.) 

7.26 In the 3PC version given in the last subsection of the chapter, it is 
possible (due to communication failures) for a process p to receive a STATE- 

REQ, PRE-COMMIT or PRE-ABORT message from a process that is not p’s 
present coordinator. It is said in the text that p must ignore such messages. 
Give three scenarios (one for each message type) that illustrate what could 
go wrong if p did not ignore these messages. Also show that if p receives a 
STATE-REQ and p has decided, it is safe for it to respond as if the STATE-REQ 

had been received from its coordinator. 


