
MapReduce Design Patterns

Barry Brumitt
barryb@google.com
Software Engineer

About your speaker…
Ph.D. Robotics, Carnegie Mellon, ‘91 - ’97
Path Planning for Multiple Mobile Robots

Researcher, Microsoft Research, ‘98 - ’02
Ubiquitous Computing

Software Eng., Microsoft Games, ‘03 - ’05
AI for Forza Motorsport

Software Engineer, Google, ‘05 - now
Maps: Pathfinder

Systems: Infrastructure

Indexing Large Datasets

All web pages Data CenterIndex Files

Indexing Large Datasets

Geographic Data Data CenterIndex Files

...not so useful for user-facing applications…

Pointer Following (or) Joining

Feature List
1: <type=Road>, <intersections=(3)>, <geom>, …

2: <type=Road>, <intersections=(3)>, <geom>, …

3: <type=Intersection>, stop_type, POI? …

4: <type=Road>, <intersections=(6)>, <geom>,

5: <type=Road>, <intersections=(3,6)>, <geom>, …

6: <type=Intersection>, stop_type, POI?, …

7: <type=Road>, <intersections=(6)>, <geom>, …

8: <type=Town>, <name>, <geom>, …

.

.

.

Intersection List
3: <type=Intersection>, stop_type, <roads=(

1: <type=Road>, <geom>, <name>, …

2: <type=Road>, <geom>, <name>, …

5: <type=Road>, <geom>, <name>, …)>, …

6: <type=Intersection>, stop_type, <roads=(

4: <type=Road>, <geom>, <name>, … ,

5: <type=Road>, <geom>, <name>, … ,

7: <type=Road>, <geom>, <name>, …)>, …

.

.

.

Input Output

1

2

7

5

4

63

Inner Join Pattern
Input Map Shuffle Reduce Output

Apply map() to each;
Key = intersection id

Value = feature
Sort by key

Apply reduce() to list
of pairs with same key,
gather into a feature

Feature list,
aggregated

Feature list

1: Road

2: Road

3: Intersection

4: Road

5: Road

6: Intersection

7: Road

(3, 1: Road)

(3, 2: Road)

(3, 3: Intxn)

(6, 4: Road)

(3, 5: Road)

(6, 5: Road)

(6, 6: Intxn)

(6, 7: Road)

(3, 1: Road)

(3, 2: Road)

(3, 3: Intxn.)

(6, 4: Road)

(3, 5: Road)

(6, 5: Road)

(6, 6: Intxn.)

(6, 7: Road)

3

6

3: Intersection
1: Road,
2: Road,
5: Road

6: Intersection
4: Road,
5: Road,
7: Road

1

2

7

5

4

63

Inner Join Pattern in SQL

e

d

c

b

a

D

67

65

64

32

31

IR

y6

x3

DI

e

d

c

b

a

r.D

x7

y5

y4

x2

x1

i.Dr.R

roads ints
SELECT roads.R, roads.D, ints.D
FROM roads INNER JOIN ints
ON roads.I = ints.I

x36e7

y63a1

y63b2

y66c4

y66d5

y66e7

6

6

3

3

r.I

3

3

3

3

i.I

d

c

b

a

r.D

x5

x4

x2

x1

i.Dr.R

1

2

7

5

4

63

“Cross Join”

Inner Join Pattern in SQL

e

d

c

b

a

D

57

65

64

32

31

IR

y6

x3

DI

SELECT roads.R, roads.D, ints.D
FROM roads, ints
WHERE roads.I = ints.I

(aka “an Equi Join”)

e

d

c

b

a

r.D

x7

y5

y4

x2

x1

i.Dr.R

roads ints
SELECT roads.R, roads.D, ints.D
FROM roads INNER JOIN ints
ON roads.I = ints.I

1

2

7

5

4

63

Tables vs. Flat File?

Roads Features

Intersections

Towns

Tables Flat File

Road Intersection Town

Road Intersection Town

Road Intersection Town

Message GeoFeature {
 enum Type {
 ROAD = 1;
 INTERSECTION = 2;
 TOWN = 3;
 }
 required Type type = 0;
 optional Road road = 1;
 optional Intersection intersection = 2;
 optional Town town = 3 ;
}

“ Protocol Buffer ”

References vs. Duplication?

• References: Common primary key; easy restructuring
• Duplication: Avoids additional MR passes;
 denormalizes data
• …an engineering space / time / complexity tradeoff

References
1: <type=Road>, <intersections=(3)>, <geom>, …

2: <type=Road>, <intersections=(3)>, <geom>, …

3: <type=Intersection>, <roads=(1,2,5)>, …

4: <type=Road>, <intersections=(6)>, <geom>,

5: <type=Road>, <intersections=(3,6)>, <geom>, …

6: <type=Intersection>, <roads=(5,6,7)>, …

7: <type=Road>, <intersections=(6)>, <geom>, …

8: <type=Town>, <name>, <geom>, …

.

.

.

Duplication
3: <type=Intersection>, <roads=(

1: <type=Road>, <geom>, <name>, …

2: <type=Road>, <geom>, <name>, …

5: <type=Road>, <geom>, <name>, …)>, …

6: <type=Intersection>, <roads=(

4: <type=Road>, <geom>, <name>, … >

5: <type=Road>, <geom>, <name>, … >

7: <type=Road>, <geom>, <name>, …)>, …

.

.

.

1

2

7

5

4

63

Code Example
class IntersectionAssemblerMapper : public

Mapper {
 virtual void Map(MapInput* input) {
 GeoFeature feature;
 feature.FromMapInput(input);
 if (feature.type()==INTERSECTION) {
 Emit(feature.id(), input);
 } else if (feature.type() == ROAD) {
 Emit(feature.intersection_id(0), input);
 Emit(feature.intersection_id(1), input);
 }
 }
};
REGISTER_MAPPER(IntersectionAssemblerMapper);

class IntersectionAssemblerReducer : public
Reducer {

 virtual void Reduce(ReduceInput* input) {
 GeoFeature feature;
 GraphIntersection intersection;
 intersection.id = input->key();
 while(!input->done()) {
 feature.FromMapInput(input->value());
 if (feature.type()==INTERSECTION)
 intersection.SetIntersection(feature);
 else
 intersection.AddRoadFeature(feature);
 input->next();
 }
 Emit(intersection);
 }
};
REGISTER_REDUCER(IntersectionAssemblerReducer);

(3, 1: Road)

(3, 2: Road)

(3, 3: Intxn)

(6, 4: Road)

(3, 5: Road)

(6, 5: Road)

(6, 6: Intxn)

(6, 7: Road)

(3, 1: Road)

(3, 2: Road)

(3, 3: Intxn.)

(6, 4: Road)

(3, 5: Road)

(6, 5: Road)

(6, 6: Intxn.)

(6, 7: Road)

3

6

Join, but no pointers or keys?

1: Road

2: Road

3: Town

4: Road

5: Road

6: Town

7: Road

1

2

7

5

4

63

Input Map Shuffle Reduce Output
Apply map() to each;
emit (key,val) pairs

Sort by key
Apply reduce() to list
of pairs with same key

New list of itemsList of items

3: 1,2,5

6: 4,5,7

?

Bucketing (or) Grace Hash Join

1: Road

2: Road

3: Town

4: Road

5: Road

6: Town

7: Road
A B

C D

Input Map Shuffle Reduce Output

1

2

7

5

4

63

(A-Road, 1)

(C-Road, 2)

(A-Town, 3)

(D-Road, 4)

(C-Road, 5)

(B-Town, 6)

(B-Road, 7)

(C-Road, 1)

(B-Town, 3)

(C-Town, 3)

(D-Road, 5)

(D-Town, 6)

(D-Road, 7)

Emit (key, item) pair
Key = geometric hash
Secondary key = Type

Sort by keys
Intersect all towns
with all roads; emit
intersecting pairs

(town, road) pairFeature List

Reduce on Key A

1: Road

2: Road

3: Town

4: Road

5: Road

6: Town

7: Road
A B

C D

Input Map Shuffle Reduce Output
Emit (key, item) pair
Key = geometric hash
Secondary key = Type

Sort by keys
Intersect all towns
with all roads; emit
intersecting pairs

(town, road) pairFeature List

1

2

7

5

4

63

(A-Road, 1)

(C-Road, 2)

(A-Town, 3)

(D-Road, 4)

(C-Road, 5)

(B-Town, 6)

(B-Road, 7)

(C-Road, 1)

(B-Town, 3)

(C-Town, 3)

(D-Road, 5)

(D-Town, 6)

(D-Road, 7)

(A-Road, 1)

(A-Town, 3) (3, 1)

Reduce on Key B

1: Road

2: Road

3: Town

4: Road

5: Road

6: Town

7: Road
A B

C D

Input Map Shuffle Reduce Output

1

2

7

5

4

63

(A-Road, 1)

(C-Road, 2)

(A-Town, 3)

(D-Road, 4)

(C-Road, 5)

(B-Town, 6)

(B-Road, 7)

(C-Road, 1)

(B-Town, 3)

(C-Town, 3)

(D-Road, 5)

(D-Town, 6)

(D-Road, 7)

(B-Town, 6)

(B-Road, 7)

(B-Town, 3) (6, 7)

Emit (key, item) pair
Key = geometric hash
Secondary key = Type

Sort by keys
Intersect all towns
with all roads; emit
intersecting pairs

(town, road) pairFeature List

Reduce on Key C

1: Road

2: Road

3: Town

4: Road

5: Road

6: Town

7: Road
A B

C D

Input Map Shuffle Reduce Output

1

2

7

5

4

63

(A-Road, 1)

(C-Road, 2)

(A-Town, 3)

(D-Road, 4)

(C-Road, 5)

(B-Town, 6)

(B-Road, 7)

(C-Road, 1)

(B-Town, 3)

(C-Town, 3)

(D-Road, 5)

(D-Town, 6)

(D-Road, 7)

(C-Road, 2)

(C-Road, 5)

(C-Road, 1)

(C-Town, 3)

(3, 2)

(3, 5)

Emit (key, item) pair
Key = geometric hash
Secondary key = Type

Sort by keys
Intersect all towns
with all roads; emit
intersecting pairs

(town, road) pairFeature List

(3, 1)

Reduce on Key D

1: Road

2: Road

3: Town

4: Road

5: Road

6: Town

7: Road
A B

C D

Input Map Shuffle Reduce Output

1

2

7

5

4

63

(A-Road, 1)

(C-Road, 2)

(A-Town, 3)

(D-Road, 4)

(C-Road, 5)

(B-Town, 6)

(B-Road, 7)

(C-Road, 1)

(B-Town, 3)

(C-Town, 3)

(D-Road, 5)

(D-Town, 6)

(D-Road, 7)

(D-Road, 4)

(D-Road, 5)

(D-Town, 6)

(D-Road, 7)

(6, 4)

(6, 5)

Emit (key, item) pair
Key = geometric hash
Secondary key = Type

Sort by keys
Intersect all towns
with all roads; emit
intersecting pairs

(town, road) pairFeature List

(6, 7)

Output… not quite...

1: Road

2: Road

3: Town

4: Road

5: Road

6: Town

7: Road
A B

C D

Input Map Shuffle Reduce Output
Apply map() to each;
emit (key,val) pairs

Sort by key
Apply reduce() to list
of pairs with same key

List of itemsFeature List

1

2

7

5

4

63

(6, 7)

(3, 1)

(3, 2)

(3, 5)

(6, 4)

(6, 5)

(3, 1)

(6, 7)

…recall earlierJoin Pattern
Input Map Shuffle Reduce Output

Apply map() to each;
emit (key,val) pairs

Sort by key
Apply reduce() to list
of pairs with same key

New list of itemsList of items

1: Road

2: Road

3: Intersection

4: Road

5: Road

6: Intersection

7: Road

(3, 1: Road)

(3, 2: Road)

(3, 3: Intxn)

(6, 4: Road)

(3, 5: Road)

(6, 5: Road)

(6, 6: Intxn)

(6, 7: Road)

(3, 1: Road)

(3, 2: Road)

(3, 3: Intxn.)

(6, 4: Road)

(3, 5: Road)

(6, 5: Road)

(6, 6: Intxn.)

(6, 7: Road)

3

6

3: Intersection
1: Road,
2: Road,
5: Road

6: Intersection
4: Road,
5: Road,
7: Road

1

2

7

5

4

63

(6, 5)

Recursive Key Join Pattern
Input Map Shuffle Reduce Output

Identity Mapper,
key = town

Sort by key
Reducer sorts, gathers,

remove duplicates;
similar to join

Index of roads
in each town

Output from
previous phase

3

6

(3:
1,
2,
5)

(6:
4,
5,
7)

(3, 1)

(3, 2)

(3, 1)

(6, 7)

(6, 7)

(6, 5)

1

2

7

5

4

63

(6, 7)

(3, 1)

(3, 2)

(3, 5)

(6, 4)

(6, 5)

(3, 1)

(6, 7)

(3, 5)

(6, 4)

(6-7, 7)

Could use 2ndry keys
to avoid reduce sort(),
eg:

(6, 7)

(3, 1)

(3, 2)

(3, 5)

(6, 4)

(3, 1)

(6, 7)

Chained MapReduce’s Pattern

Input Map Shuffle Reduce Output

Identity Mapper,
key = town

Sort by key
Reducer sorts, gathers,

remove duplicates;
similar to join

Index of roads
in each town

(town, road)
pair

Emit (key, item) pair
Key = geometric hash
Secondary key = Type

Sort by keys
Intersect all towns
with all roads; emit
intersecting pairs

(town, road) pairFeature List

Distributing Costly Computation:
e.g. Rendering Map Tiles

Input Map Shuffle Reduce Output
Emit each to all

overlapping latitude-
longitude rectangles

Sort by key
(key= Rect. Id)

Render tile using
data for all enclosed

features
Rendered tiles

Geographic
feature list

I-5

Lake Washington

WA-520

I-90

(N, I-5)

(N, Lake Wash.)

(N, WA-520)

(S, I-90)

(S, I-5)

(S, Lake Wash.)

(N, I-5)

(N, Lake Wash.)

(N, WA-520)

(S, I-90)

N

S (S, I-5)

(S, Lake Wash.)

…

…

…

…

(Bucket pattern) (Parallel rendering)

Finding Nearest Points Of Interest (POIs)
Feature List
1, Type, Road, Intersection, …
2, Type, Road, Intersection, …
3, Type, Road, Intersection, …

 . . .

Nearest POI within
5mi of Intersection

(1, 1)
(2, 1)
(3, 1)
(4, 1)
(5, 7)
(6, 7)
(7, 7)
(8, 7)
(9, 7)

Input Output
1

2

3

4

5

6
7

8

9

1
2

3

4

5

6
7

8

9

Finding Nearest POI on a Graph

Input Map Shuffle Reduce Output

Nodes with
nearest POIs

Graph

Perform Dijkstra from
 each POI node.

Emit POI & dist. At
each node in search.

For each node, emit
closest POI

Finding Nearest POI on a Graph

Input Map Shuffle Reduce Output

Nodes with
nearest POIs

Graph

Perform Dijkstra from
 each POI node.

Emit POI & dist. At
each node in search.

For each node, emit
closest POI

Finding Nearest POI on a Graph

Input Map Shuffle Reduce Output

Nodes with
nearest POIs

Graph

Perform Dijkstra from
 each POI node.

Emit POI & dist. At
each node in search.

For each node, emit
closest POI

Finding Nearest POI on a Graph

Input Map Shuffle Reduce Output

Nodes with
nearest POIs

Graph

Perform Dijkstra from
 each POI node.

Emit POI & dist. At
each node in search.

For each node, emit
closest POI

Putting it all together: Nearest POI

Input Map Shuffle Reduce Output

Nodes with edges Feature List

Subgraphs Nodes with edges

Nodes with
nearest POI
 & dist

Subgraphs

Perform Dijkstra from
 each POI node.

Emit POI & dist. At
each node in search.

For each node, emit
closest POI

Sorted nodes
with

nearest POI

Nodes with
nearest POI

& dist

Use key-join pattern to create
nodes,edges out of intersections,roads

Use bucketing pattern to create
“appropriate”(overlapping, large-enough) subgraphs

Use identity mapper & gather pattern
to sort and clean-up node, POI pairs

 Hard Problems for MapReduce

• Following multiple pointer hops

• Iterative algorithms
• Algorithms with global state
• Operations on graphs without good embeddings

• [insert your favorite challenge here]

Summary
MapReduce eases:
• Machine coordination
• Network communication
• Fault tolerance
• Scaling
• Productivity

MapReduce patterns:
• “Flat” data structures

• Foreign / Recursive Key Joins
(aka pointer following)

• Hash Joins (aka bucketing)
• Distribute $$ computation
• Chain MapReduce phases
• Simplify Reduce() by using

secondary keys
• [insert your pattern here]

Questions?
• MapReduce: Simplified Data Processing on Large Clusters,

Jeffrey Dean and Sanjay Ghemawat
OSDI'04: Sixth Symposium on Operating System Design and
Implementation

• Contact: barryb@google.com

