MapReduce Design Patterns

Barry Brumitt

barryb@google.com
Software Engineer

S

— N - \ - >
\ - \)/ - ’ y = \\ y

~ About your speaker...

N |
X ‘

I Ph.D. Robotics, Carnegie Mellon, ‘91 -’97
E Path Planning for Multiple Mobile Robots

Researcher, Microsoft Research, ‘98 -’02

Ubiquitous Computing
]

ety e

Software Eng., Microsoft Games, ‘03 -’05
Al for Forza Motorsport

Software Engineer, Google, ‘05 - now
Maps: Pathfinder
Systems: Infrastructure

University of
Washington
01 Union Bay, Ya
e = e
[T G g, Pg
Lak N P,
Urion Vashington °""anaa,,° o
\: 18 Park 0 Point
5 “oor | Madison
5 W) Broadmoor || Ma g I5
z | Ove
% A C +
Capitol nd Countn
z il Lake
.@ ‘ \Washington
{ =
s Medina
% / Ll
Kc 2 ydenf
N A 8]
I? Ferry.-
ey Seattle Vesler
Terrace
| o 2
\30 e\ malll =
N S 90
1}

b}

MY ROAD TRIP WITH MY BROTHER RAN INTO TROUBLE
AROUND PAGE THREE OF THE GOCGLE MAPS PRINTOUT:

[~ w70, SUGHT LEFT AT RI=ZZ- 60 6.3 tu
=p 71, TURN RIGHT TO STAYON RT-22. Go 2.6 M
<= 72. TURN LEFT AT LAKE SHORE RD. 6o 312 FT
==p 73. TURN RIGHT" AT DOCK ST. e U27¢r
~an74. TAKE THE FERRY ACROSS THE LAKE. Go 2.8 m

WERE SUPPOSE]) TO TAKE A
FERRY? IT'S PAST MIDNIGHT,
AND THESE WOODS ARE. CREEPY,

GOOGLE MAPS WOULDNT
STEER US WRONG.

LET ME SEE
DIRECTIONS,

74, TAKE THE FERRY ACROSS THE LAKE. o 28 m

75 CLIMB THE HILL TOWARD HANGMANS RIDGE, w L1728
AVOIDING ANY MOUNTAIN LIONS.

6 7. \JHEN YOU REACH AN OLD BARN GO AROUND 5 br
BACK, KNOCK ON THE SECOND DOOR, AND o
ASK FOR CHARLIE.

M 77. TELL CHARLIE THE DANCING STONES ARE ..
RESTLESS. HE WILL GIVE YOU HIS VAN.-

F 78 TAKE CHARUESVAN DOWN OLDMINE ROAD. ...
DO NOT WAKE THE STRAW MAN.

<= 79. TURN LEFT ON COMSTOCK. WHEN YOU FEEL
THE BLOOD CHILL |N YOUR VEINS STOP THE Go 3.2 m
VAN AND GET OUT.

& 80. STAND VERY SNLL. EXITS ARE NORTH, SOUTH AND 0 o
ERST, BUT ARE BLOCKED BY A SPECTRAL WOLF

%2 8. THE SPECTRAL WOLF FEARS ONLY FIRE. THE

GOOGLE MAPS TEAM CAN NO LONGER HELP ©?? m
YOU, BUT IF YOU MASTER THE WOLF HE B
WILL GUIDE You. GODSPEED,

Indexing Large Datasets

VN E N e W T Y

All web page Index Files Data C

enter

Indexing Large Datasets

Geographic Data Index Files Data Center

...not so useful for user-facing applications...

Pointer Following (or) Joining

Input Output

Feature List Intersection List

1l: <type=Road>, <intersections=(3)>, <geom>, .. 3: <type=Intersection>, stop_type, <roads=(
2: <type=Road>, <intersections=(3)>, <geom>, .. l: <type=Road>, <geom>, <name>,

3: <type=Intersection>, stop type, POI? .. 2: <type=Road>, <geom>, <name>,

4: <type=Road>, <intersections=(6)>, <geom>, 5: <type=Road>, <geom>, <name>, ..)>,
5: <type=Road>, <intersections=(3,6)>, <geom>, .. 6: <type=Intersection>, stop_type, <roads=(
6: <type=Intersection>, stop type, POI?, .. 4: <type=Road>, <geom>, <name>, .. ,

7: <type=Road>, <intersections=(6)>, <geom>, .. 5: <type=Road>, <geom>, <name>, .. ,

8: <type=Town>, <name>, <geom>, .. 7: <type=Road>, <geom>, <name>, ..)>,

Inner Join Pattern

Input

Map

Shuffle

Reduce

Output

Feature list

Apply map() to each;
Key = intersection id

Sort by key

Apply reduce() to list
of pairs with same key,

Feature list,

Value = feature gather into a feature aggregated
1: Road (3, 1: Road) > 3 (3, 1: Road) 3: Intersection
2: Road (3, 2: Road) > (3, 2: Road) ;‘ anj'
: Road,
3: Intersection (3, 3: Intxn) > (3, 3: Intxn.) 5: Road
4: Road (6I 4: Road) X (3] 5: Road)
28 Rome (87 29 WoEE) 6 (6, 4: Road) 6: Intersection
6: Intersection (6, 5: Road) G, By Romd) 4: Road,
, 5
5: Road,
7: Road (6, 6: Intxn) (6, 6: Intxn.) 7. Road
(6, 7: Road) (6, 7: Road)

Inner Join Pattern in SQL

FROM roads INNER JOIN ints

SELECT roads.R, roads.D, ints.D
ON roads.l = ints.|

In{s

roads

r.D |iD

r.R

“Cross Join”

i.D

rD |r.l

r.R

D

Inner Join Pattern in SQL

o|la|lo|o|o|O

QO || W|WwWw|—

SELECT roads.R, roads.D, ints.D
FROM roads INNER JOIN ints
ON roads.l = ints.|

SELECT roads.R, roads.D, ints.D
FROM roads, ints
WHERE roads.| = ints.|

(aka “an Equi Join”)

N~N|oa|[~IDN|[=~|T

O 1|0 |T|L |

X I I [X | X |

Tables vs. Flat File?

Tables Flat File

Roads Features
Road Intersection Town
Road Intersection Town

Intersections

Road Intersection Town

Message GeoFeature {

enum Type {

Towns ROAD = 1:
INTERSECTION = 2; “ Protocol Buffer”
TOWN = 3;

}
required Type type 0;
optional Road road 1;

optional Intersection intersection = 2;
optional Town town = 3 ;

References vs. Duplication”?

References Duplication
1l: <type=Road>, <intersections=(3)>, <geom>, .. 3: <type=Intersection>, <roads=(
2: <type=Road>, <intersections=(3)>, <geom>, .. 1l: <type=Road>, <geom>, <name>, ..
3: <type=Intersection>, <roads=(1,2,5)>, .. 2: <type=Road>, <geom>, <name>, ..
4: <type=Road>, <intersections=(6)>, <geom>, 5: <type=Road>, <geom>, <name>, ..)>, ..
5: <type=Road>, <intersections=(3,6)>, <geom>, .. 6: <type=Intersection>, <roads=(
6: <type=Intersection>, <roads=(5,6,7)>, .. 4: <type=Road>, <geom>, <name>, .. >
7: <type=Road>, <intersections=(6)>, <geom>, .. 5: <type=Road>, <geom>, <name>, .. >
8: <type=Town>, <name>, <geom>, | 7 7: <type=Road>, <geom>, <name>, ..)>, ..
1
3 6
5
4

* References: Common primary key; easy restructuring

« Duplication: Avoids additional MR passes;
denormalizes data

 ...an engineering space / time / complexity tradeoff

Code Example

class IntersectionAssemblerMapper : public
Mapper {

virtual void Map (MapInput* input) {
GeoFeature feature;
feature.FromMapInput (input) ;

if (feature.type ()==INTERSECTION) {
Emit (feature.id (), input):;
} else if (feature.type () == ROAD) {

Emit (feature.intersection id(0), input);
Emit (feature.intersection id(1l), input);

class IntersectionAssemblerReducer : public

} Reducer {
b virtual void Reduce (ReducelInput* input) {
REGISTER MAPPER (IntersectionAssemblerMapper) ; GeoFeature feature;

GraphIntersection intersection;
(3, 1: Road) (3, 1: Road)

intersection.id = input->key();

(3, 2: Road) (3, 2: Road) while (!input->done()) {
feature.FromMapInput (input->value()) ;

(3, 3: Intxn) (3, 3: Intxn.) if (feature.type ()==INTERSECTION)

(6, 4: Road) (3, 5: Road) intersection.SetIntersection (feature);
else

(3, 5: Road) (6, 4: Road) intersection.AddRoadFeature (feature) ;

(6, 5: Road) input->next () ;

(6, 5: Road)

}

(6, 6: Intxn.) Emit (intersection);

(6, 6: Intxn)

(6, 7: Road) }

(6, 7: Road)

}s
REGISTER REDUCER (IntersectionAssemblerReducer) ;

Join, but no pointers or keys?

Input Map Shuffle Reduce Output

Apply reduce() to list
of pairs with same key

Apply map() to each;

. . New list of items
emit (key,val) pairs

List of items Sort by key

1: Road

3: 1,2,5
2: Road

6: 4,5,7
3: Town ?
4: Road

[

5: Road
6: Town

7: Road

Bucketing (or) Grace Hash Join

Input

Map

Shuffle

Reduce

Output

Feature List

Emit (key, item) pair
Key = geometric hash
Secondary key = Type

Sort by keys

Intersect all towns
with all roads; emit
intersecting pairs

(town, road) pair

1: Road (A-Road, 1)
2: Road (C-Road, 1)
3: Town (C-Road, 2)
4: Road (A-Town, 3)
5: Road (B-Town, 3)
6: Town (C-Town, 3)
7: Road (D-Road, 4)
(C-Road, 5)
(D-Road, 5)
(B-Town, 6)
(D-Town, 6)
(B-Road, 7)
(D-Road, 7)

Reduce on Key A

Input

Map

Shuffle

Reduce

Output

Feature List

Emit (key, item) pair
Key = geometric hash
Secondary key = Type

Sort by keys

Intersect all towns
with all roads; emit
intersecting pairs

(town, road) pair

1: Road (A-Road, 1)
2: Road (C-Road, 1)
3: Town (C-Road, 2)
4: Road (A-Town, 3)
5: Road (B-Town, 3)
6: Town (C-Town, 3)
7: Road (D-Road, 4)
(C-Road, 5)
(D-Road, 5)
(B-Town, 6)
(D-Town, 6)
(B-Road, 7)
(D-Road, 7)

w—)

(A-Town, 3)

(A-Road, 1)

(3, 1)

Reduce on Key B

Input

Map

Shuffle

Reduce

Output

Feature List

Emit (key, item) pair
Key = geometric hash
Secondary key = Type

Sort by keys

Intersect all towns
with all roads; emit
intersecting pairs

(town, road) pair

1: Road (A-Road, 1)
2: Road (C-Road, 1)
3: Town (C-Road, 2)
4: Road (A-Town, 3)
5: Road (B-Town, 3)
6: Town (C-Town, 3)
7: Road (D-Road, 4)
(C-Road, 5)
(D-Road, 5)
(B-Town, 6)
(D-Town, 6)
(B-Road, 7)
(D-Road, 7)

w—)

(B-Town, 3)

(B-Town, 6)

(6, 7)

(B-Road, 7)

Reduce on Key C

Input

Map

Shuffle

Reduce

Output

Feature List

Emit (key, item) pair
Key = geometric hash
Secondary key = Type

Sort by keys

Intersect all towns
with all roads; emit
intersecting pairs

(town, road) pair

1: Road (A-Road, 1)
2: Road (C-Road, 1)
3: Town (C-Road, 2)
4: Road (A-Town, 3)
5: Road (B-Town, 3)
6: Town (C-Town, 3)
7: Road (D-Road, 4)
(C-Road, 5)
(D-Road, 5)
(B-Town, 6)
(D-Town, 6)
(B-Road, 7)
(D-Road, 7)

w—)

(C-Town, 3)

(C-Road, 1)

(C-Road, 5)

(C-Road, 2)

(3, 1)

(3, 2)

(3, 3)

Reduce on Key D

Input

Map

Shuffle

Reduce

Output

Feature List

Emit (key, item) pair
Key = geometric hash
Secondary key = Type

Sort by keys

Intersect all towns
with all roads; emit
intersecting pairs

(town, road) pair

1: Road (A-Road, 1)
2: Road (C-Road, 1)
3: Town (C-Road, 2)
4: Road (A-Town, 3)
5: Road (B-Town, 3)
6: Town (C-Town, 3)
7: Road (D-Road, 4)
(C-Road, 5)
(D-Road, 5)
(B-Town, 6)
(D-Town, 6)
(B-Road, 7)
(D-Road, 7)

w—)

(D-Town, 6)

(D-Road, 4)

(D-Road, 5)

(D-Road, 7)

(6, 4)

(6, 35)

(6, 7)

Output... not quite...

Input

Map

Shuffle

Reduce

Output

Feature List

Apply map() to each;
emit (key,val) pairs

Sort by key

Apply reduce() to list
of pairs with same key

List of items

1l: Road
2: Road
3: Town
4: Road
5: Road
6: Town
7: Road

(3, 1)

(6, 7)

(3, 1)

(3, 2)

(3, 3)

(6, 7)

(6, 4)

(6, 35)

...recall earlierdoin Pattern

Input

Map

Shuffle

Reduce

Output

List of items

Apply map() to each;
emit (key,val) pairs

Sort by key

Apply reduce() to list
of pairs with same key

New list of items

1: Road (3, 1: Road)

2: Road (3, 2: Road)

3: Intersection (3, 3: Intxn)
4: Road (6, 4: Road)

5: Road (3, 5: Road)

6: Intersection (6, 5: Road)
7: Road (6, 6: Intxn)

(6, 7: Road)

XVVV

(3, 1: Road) 3: Intersection
(3, 2: Road) Lo kead,
2: Road,
(3, 3: Intxn. 5: Road
(3, 5: Road)
(6, 4: Road) 6: Intersection
(6, 5: Road) B9 Head,
5: Road,
(6, 6: Intxn. 7: Road
(6, 7: Road)

Recursive Key Join Pattern

Input

Map

Shuffle

Reduce

Output

Output from
previous phase

Identity Mapper,
key = town

Sort by key

Reducer sorts,

gathers,
remove duplicates;

similar to join

Index of roads

in each town

(3, 1) (3, 1)
(6, 7) (6, 7)
(3, 1) (3, 1)
(3, 2) (3, 2)
(3, 5) (3, 5)
(6, 7) (6, 7)
(6, 4) (6, 4)
(6, 5) (6, 5)

3 (3] 1) (3:
1
3, 5 !
() 2,
(3, 2) 5)
(3, 1)
6 (6] 7) (6:
4
6, 5 !
() 5,
(6, 7) 7)
(6, 4)

eg:

Could use 2ndry keys
to avoid reduce sort(),

(6_71

7)

Chained MapReduce’s Pattern

Input

Map

Shuffle

Reduce

Output

Feature List

Emit (key, item) pair
Key = geometric hash
Secondary key = Type

Sort by keys

Intersect all towns
with all roads; emit
intersecting pairs

(town, road) pair

(town, road)
pair

Identity Mapper,
key = town

Sort by key

Reducer sorts, gathers,
remove duplicates;
similar to join

Index of roads
in each town

Distributing Costly Computation:
e.d. Rendering Map Tiles

Input

Map

Shuffle

Reduce

Output

Emit each to all

Render tile using

hi . . t by k .
Geograp }c overlapping latitude- Sor y xey data for all enclosed Rendered tiles
feature list . (key= Rect. Id)
longitude rectangles features
I-5 (N, I-5) (N, I-5)
Lake Washington (S, I-5) (N, Lake Wash.))
WA-520 (N, Lake Wash.) (N, WA-520)
1 Yi
I-90 S, Lake Wash. f
(S,) —y
(N, WA-520) cl
(S, I-90) Y7 Washingion'. wedi
E; (S, I-5) 2\ Seattle

(Bucket pattern)

(S, Lake Wash.)

(S, I-90)

(Parallel rendering)

%
£
s
B
-
&
2

Finding Nearest Points Of Interest (pois)

Feature List Nearest POI within

1, Type, Road, Intersection, .. 5mi of Intersection

2, Type, Road, Intersection, .. (1, 1)
14

3, Type, Road, Intersection, .. (2, 1)
14
o —} (3, 1)

(4, 1)
(5, 7)
(6, 7)
(7, 7)
(8, 7)
(9, 7)

Input Output

Finding Nearest POl on a Graph

Input Map Shuffle Reduce Output
Perform Dijkstra from

G h each POI node. For each node, emit Nodes with

rap Emit POI & dist. At closest POI || neares t POI

each node in search.

Finding Nearest POl on a Graph

Input Map Shuffle Reduce Output
Perform Dijkstra from

G h each POI node. For each node, emit Nodes with

rap Emit POI & dist. At closest POI || neares t POI

each node in search.

Finding Nearest POl on a Graph

Input Map Shuffle Reduce Output
Perform Dijkstra from

G h each POI node. For each node, emit Nodes with

rap Emit POI & dist. At closest POI || neares t POI

each node in search.

Finding Nearest POl on a Graph

Input Map Shuffle Reduce Output
Perform Dijkstra from

G h each POI node. For each node, emit Nodes with

rap Emit POI & dist. At closest POI || neares t POI

each node in search.

Putting it all together: Nearest POI

Input

Map

Shuffle

Reduce

Output

Feature List

Nodes with edges

Use bucketing pattern to create

Nodes with edges " . ” Subgraphs
a p p rOp nate (overlapping, large-enough) Su bg ra p h S
Perform Dijkstra from . Nodes with
Subaraphs each POI node. For each node, emit nearest POTI
grap Emit POI & dist. At closest POI .
. & dist
each node in search.
Nodes with Sorted nodes
nearest POI with
& dist nearest POI

Hard Problems for MapReduce

Following multiple pointer hops

Iterative algorithms

Algorithms with global state

Operations on graphs without good embeddings

[insert your favorite challenge here]

Summary

MapReduce eases: MapReduce patterns:

* Machine coordination e “Flat” data structures

* Network communication | |« Foreign / Recursive Key Joins

» Fault tolerance (aka pointer following)

* Scaling * Hash Joins (aka bucketing)

» Productivity Distribute $$ computation
 Chain MapReduce phases

* Simplify Reduce() by using
secondary keys

* [insert your pattern here]

Questions?.

MapReduce: Simplified Data Processing on'Large Clusters, “*

codeffrey Dean and Sanjay Ghemawat

OSDI'04:Sixth Symposium on Operatmg System Design and
Implementation;, Point

:Contact: barryb@google.com

