3 Introduction to Digital Sound Synthesis

with John Strawn

Background: History of Digital Sound Synthesis

Music I and Music 11
The Unit Generator Concept

Fixed-waveform Table-lookup Synthesis

Changing the Frequency
Algorithm for a Digital Oscillator

Table-lookup Noise and Interpolating Oscillators

Time-varying Waveform Synthesis
Envelopes, Unit Generators, and Patches
Graphic Notation for Synthesis Instruments
Using Envelopes in Patches

Software Synthesis
Instrument Editors and Synthesis Languages
Computational Demands of Synthesis
Non-real-time Synthesis
Sound Files

Real-time Digital Synthesis

86

Part 2 Sound Synthesis

Comparing Non-real-time Synthesis with Real-time Synthesis

Specifying Musical Sounds

Sound Objects

Example of the Specification Problem for Additive Synthesis
The Musician’s Interface

Musical Input Devices

Performance Software

Editors

Languages

Algorithmic Composition Programs

-Conclusion

87

Introduction to Digital Sound Synthesis

This chapter outlines the fundamental methods of digital sound production.
Following a brief historical overview, we present the theory of table-lookup
synthesis—the core of most synthesis algorithms. We next present strategies
for synthesizing sounds that vary over time. This is followed by a practical
comparison between “software synthesis” and “hardware synthesis,” that
1s, between computer programs and dedicated synthesizers. Finally, we
survey the various means of specifying musical sounds to a computer or
synthesizer. The only prerequisite to this chapter is a knowledge of basic
concepts of digital audio as explained in chapter 1.

Background: History of Digital Sound Synthesis

The first experiments in synthesis of sound by computer began in 1957 by
researchers at Bell Telephone Laboratories in Murray Hill, New Jersey
(David, Mathews, and McDonald 1958; Roads 1980; Wood 1991). In the
earliest experiments, Max V. Mathews (figure 3.1) and his colleagues proved
that a computer could synthesize sounds according to any pitch scale or
wavefoim, including time-varying frequency and amplitude envelopes.

Their first programs were written directly in terms of machine instruc-
tions for a giant IBM 704 computer fabricated with vacuum tube circuits
(figure 3.2). The 704 was a powerful machine for its day, with a 36-bit
wordlength and a built-in floating-point unit for fast numerical operations.
It could be loaded with up to 32 Kwords of magnetic core memory. Com-
puters were so rare at that time that the synthesis calculations had to be
carried out at IBM World Headquarters in New York City, because Bell
Telephone Laboratories did not have a suitable machine. After traveling to
Manhattan to compute a sound, Mathews and his associates would return
to Bell Telephone Laboratories with a digital magnetic tape. There, a less
powerful computer with an attached 12-bit vacuum tube “digital-to-sound
converter” transformed the samples on the tape into audible form. This
converter, designed by Bernard Gordon, was at that time the only one in the
world capable of sound production (Roads 1980).

Music I and Music 11

The Music I program developed by Mathews generated a single waveform:
an equilateral triangle. A patient user could specify notes only in terms of
pitch, waveform, and duration (Roads 1980). The psychologist Newman
Guttman made one composition with Music I, a monophonic etude called

88

Part 2 Sound Synthesis

Figure 3.1 Max V. Mathews, 1981. (Photograph courtesy of AT&T Bell
Laboratories.)

Figure 3.2 1BM 704 computer, 1957. (Photograph courtesy International Business
Machines.)

gs

89

Introduction 1o Digital Sound Synthesis

In a Silver Scale written on 17 May 1957 (Guttman 1980). This was the first
composition synthesized by the process of digital-to-analog conversion.
Even in this first piece, the potential of the computer to generate any fre-
quency precisely was recognized. Guttman was interested in psychoacous-
tics and used the piece as a test of the contrast between an “equal-beating
chromatic scale™ described by Silver (1957) and just intonation.

Max Mathews completed Music II in 1958; it was written in assembly
language for the IBM 7094 computer, a transistorized and improved com-
puter along the lines of the IBM 704. The 7094 ran several times faster than
the older vacuum tube machines. It was thus possible to implement more
ambitious synthesis algorithms. Four independent voices of sound were
available, with a choice of sixteen waveforms stored in memory. Music II
was used by several researchers at Bell Telephone Laboratories, including
Max Mathews, John Pierce, and Newman Guttman.

A concert of the new “computer music”” was organized in 1958 in New
York City, followed by a discussion panel moderated by John Cage. Later
that year Guttman played his computer-synthesized composition Pirch
Variations at Hermann Scherchen’s villa in Gravesano, Switzerland, where
Iannis Xenakis was in the audience (Guttman 1980).

The Unit Generator Concept

One of the most significant developments in the design of digital sound
synthesis languages was the concept of unit generators (UGs). UGs are
signal processing modules like oscillators, filters, and amplifiers, which can
be interconnected to form synthesis instruments or patches that generate
sound signals. (Later in this chapter we discuss UGs in more detail) The
first synthesis language to make use of the unit generator concept was
Music I11, programmed by Mathews and his colleague Joan Miller in 1960.
Music III let users design their own synthesis networks out of UGs. By
passing the sound signal through a series of such unit generators, a large
variety of synthesis algorithms could be implemented relatively easily.

Music N Languages

Since the time of Music III, a family of software synthesis systems—all
based on the unit generator concept-—have been developed by various re-
searchers. Music IV was a recoding of Music III in a new macro assembly
language developed at Bell Laboratories called BEFAP (Tenney 1963,
1969). Music V, developed in 1968, was the culmination of Max Mathews’s
efforts in software synthesis (Mathews 1969). Written almost exclusively in

90 Part 2 Sound Synthesis

Fortran IV—a standard computer language—Music V was exported to
several dozen universities and laboratories around the world in the early
1970s. For many musicians, including the author of this book, it served as
an introduction to the art of digital sound synthesis.

Taking Music IV or Music V as a model, others have developed synthesis
programs such as Music 4BF, Music 360, Music 7, Music 11, Csound,
MUSI10, Cmusic, Common Lisp Music, and so on. As a general category
these programs are often referred to under the rubric of “Music N” lan-
guages (see chapter 17).

Fixed-Waveform Table-lookup Synthesis

As chapter 1 explains, digital synthesis generates a stream of numbers repre-
senting the samples of an audio waveform. We can hear these synthetic
sounds only by sending the samples through a digital-to-analog converter
(DAC), which converts the numbers to a continuously varying voltage that
can be amplified and sent to a loudspeaker.

One way of viewing this process is to imagine a computer program that
calculates the sample values of a waveform according to a mathematical
formula, and sends those samples, one after the other, to the DAC. This
process works fine, but it is ot the most efficient basis for digital synthesis.

In general, musical sound waves are extremely repetitive, a fact that is
reflected in the notions of frequency and pitch. Hence a more efficient tech-
nique is to have the hardware calculate the numbers for just one cycle of the
waveform and store these numbers in a list stored in memory, as shown in
figure 3.3. Such a list is called a wavetable. To generate a periodic sound, the
computer simply reads through the wavetable again and again, sending the
samples it reads to the DAC for conversion (o sound.

This process of repeatedly scanning a wavetable in memory is called
table-lookup synthesis. Since it typically takes only a few nanoseconds for a
computer to read a value from memory, table-lookup synthesis is much
quicker than calculating the value for each sample from scratch. Table-
lookup synthesis is the core operation of a digital oscillator—a fundamental
sound generator in synthesizers.

Let us now walk through the valley of table lookup. Suppose that the
value of the first sample is given by the first number in the wavetable (loca-
tion 1 in figure 3.3). For each new sample to be produced by this simple
synthesizer, take the next sample from the wavetable. At the end of the
wavetable, simply go back to the beginning and start reading out the sam-

Introduction to Digital Sound Synthesis

9i

“Appannadai siqel a3 y8aoag Suidoo] ‘v e
0} WY} SPUSS PUB SUONEIO] XIPUL JAISEIIONS UL P210)s sanfea sdures o) dn syoof 121nduiod ay) sAvm JUIS 3] 2ZISAIUAS
ol ‘1 = [9]a1qereae s pue ‘0 = [p}e[qmearp ‘spdwmexs 10,4 ‘uonsod doy oy ur saem suwis € Suuino seqFuelssl ay) se
paioidap are sapdures oy 1, '1utod xapul Yoea 1oj AIOWSW U1 pa1ois st angea S[diles OIpNe Uy ,'SanfeA xspul 3[qe),, 10 suon
-BOO| pardquinu aye uciiod Jamo[91 ur $g--0 157 941, ‘sisaqiuds dnjoo[-2[qeieaesm jo uonaidep [eoydeiry ¢¢ sy

B

ve |e2|22|1e |02 |61 BL|LLi9L|SH|¥L|EL{ZL[LL|OL]|B |8 1L |9jS|¥E]|elL{o

S8N|eA XBpU] D|qRISABAN .
T b~ 0'i-

“chuy

_Uu¢|u<ol _ I

San|eA ajdWEs HYRIBAEM

oL

92

Part 2 Sound Synihesis

ples again. The process is also called fixed-waveform synthesis because the
waveform does not change over the course of a sound event.

For example, let us assume the table contains 1000 entries, each of which
is a 16-bit number. The entries are indexed from 0 to 999. We call the
current location in the table the phase_index value, with reference to the
phase of the waveform. To read through the table the oscillator starts at
the first entry in the table (phase_index = 0) and moves by an increment
to the end of the table (phase_index = 999). At this point the phase index
“wraps around” the ending point to the beginning of the wavetable and
starts again.

Changing the Frequency

What is the frequency of the sound produced by table-lookup synthesis? It
depends on the length of the wavetable and the sampling frequency. If the
sampling frequency is 1000 samples per second, and there are 1000 numbers
in the table, the result is 1000/1600: 1 Hz. If the sampling frequency is
100,000 Hz, and the table contains 1000 entries, then the output frequency
is 100 Hz, since 100,000/1000 = 100,

How is it possible to change the frequency of the output signal? As we
have just seen, one simple way is to change the sampling frequency. But this
strategy is limited, particularly when one wants to process or mix signals
with different sampling rates. A better solution is to scan the wavetable at
different rates, skipping some of the samples in it. This, in effect, shrinks the
size of the wavetable in order to generate different frequencies.

For example, if we take only the even-numbered samples, then we go
through the table twice as fast. This raises the pitch of the output signal by
an octave. If we skip two samples, then the pitch is raised further (by an
octave and a fifth, to be exact). In the table-lookup algorithm, the increment
determines the number of samples to be skipped. The increment is added to
the current phase location in order to find the next location for reading the
value of the sample. In the simplest example, where we read every sam-
ple from the table, the increment is 1. If we read only the odd- or even-
numbered samples in the table, then the increment is 2.

Algorithm for a Digital Oscillator

We could say that the oscillator resamples the wavetable in order to gener-
ate different frequencies. That is, it skips values in the table by an increment
added to the current phase location in the wavetable, Thus the most basic
oscillator algorithm can be explained as a two-step program:

93 Introduction to Digital Sound Synthesis

1. phase_index = mod, (previous_phase + incremens)’

2. output = amplitude x wavetable| phase_index]

Step (1) of the algorithm contains an add and a modulo operation (denoted
mod,). The modulo operation divides the sum by the table length L and
keeps only the remainder, which is always less than or equal to L. Step (2)
contains a table iookup and a multiply, This is relatively little computation,
but it assumes that the wavetables are already filled with waveform values.

If the table length and the sampling frequency are fixed—as is usually the
case—then the frequency of the sound emitted by the oscillator depends on
the value of the increment. The relationship between a given frequency and
an increment is given by the following equation, which is the most impor-
tant equation in table-lookup synthesis:

L x frequency
sampling Frequency’

(D

increment =

For example, if tablelength L is 1000 and sampling frequency is 40,000,
_while the specified frequency of the oscillator is 2000 Hz, then the increment
is 50.

This implies the following equation for frequency:

increment x samplingFrequency

. @

Sfrequency =

So much for the mathematical theory of digital oscillators. Now we con-
front the computational realities.

Table-lookup Noise and Interpolating Oscillators

- All the variables in the previous example were multiples of 1000, which led
to a neat integer result for the value of the phase index increment. However,
for most values of the table length, frequency, and sampling frequency in
equation 1, the resulting increment is not an integer, but rather a real num-
ber with a fractional part after the decimal point. However, the way we look
up a value in the wavetable is to locate it by its index, which is an integer.
Thus we need to somehow derive an integer value from the real-valued
increment.

The real value can be fruncated to yield an integer value for the table
index. This means to delete the part of the number to the right of the
decimal point, so a number like 6.99 becomes 6 when it is truncated.

o4

Part 2 Sound Synthesis

Table 3.1 Phase index values in an oscillator wavetable, calculated and truncated

Phase index

Calculated Truncated
1.000 1
2.125 2
3.250 k)
4.375 4
5.500 b
6.625 6
7.750 7
8.875 8

10.000 10

11.125 11

12.250 12

13.375 13

14.500 14

15.625 15

16.750 : 16

17.875) 17

19.000 19

Suppose that we use an increment of 1.125. Table 3.1 compares the calcu-
lated versus the truncated increments. The imprecision caused by the trun-
cation means that we obtain a waveform value near to, but not precisely the
same as, the one we actually need. As a result, small amounts of waveform
distortion are introduced, called table-lookup noise (Moore 1977; Snell
1977b). Various remedies can reduce this noise. A larger wavetable is one
prescription, since a fine-grain table reduces lookup error. Another way is
to round the value of increment up or down to the nearest integer instead of
simply truncating it, in this case, an increment of 6.99 becomes 7, which is
more accurate than 6. But the best performance is achieved by an inter-
polating oscillator. This is more costly from a computational standpoint,
but it generates very clean signals.

An interpolating oscillator calculates what the value of the wavetable
would have been, if it were possible to reference the wavetable at the exact
phase specified by the increment. In other words, it interpolates between the
entries in the wavetable to find the one that exactly corresponds to the
specified phase index increment (figure 3.4).

With interpolating oscillators, smaller wavetables can yield the same au-
dio quality as a larger noninterpolating oscillator. Consider that for a 1024-
entry wavetable used by an interpolating oscillator, the signal-to-noise ratio
for a sine wave is an excellent 109 dB (worst-case), as compared with the

05 Introduction to Digital Sound Synthesis

.75
{-5)
1 : 25
Amp. i [
27 (27.5) 28
Index -~

Figure 3.4 Action of an interpolating oscillator. The graph shows two x-points in
a wavetable, at positions 27 and 28. The oscillator phase increment indicates that
the value should be read from location 27.5, for which there is no entry, so the .
interpolating oscillator calculates a y-value in between the values for 27 and 28.

abysmal 48 dB for a noninterpolating oscillator using the same size wave-
table (Moore 1977). These figures pertain to the case of linear interpolation;
even better results are possible with more elaborate interpolation schemes
{Chamberlin 1985; Crochiere and Rabiner 1983; Moore 1977; Snell 1977b).
This concludes our introduction to fixed-waveform table-lookup synthe-
sis. The next section shows how aspects of synthesis can be varied over time.

Time-varying Waveform Synthesis

So far we have seen how to produce a sine wave at a fixed frequency: well
and good. Since the maximum value of the sine wave does not change in
time, the signal has a constant loudness. This is not terribly useful for
musical purposes, since one can only control pitch and duration, leaving no
control over other sound parameters. Even if the oscillator reads from other
wavetables, they repeat ad infinitum. The key to more interesting sounds
18 time-varying waveforms, achieved by changing one or more synthesis
parameters over the duration of a sound event.

Envelopes, Unit Generators, and Patches

To create a time-varying waveform, we need a synthesis instrument that can
be controlled by envelopes—functions of time. For example, if the ampli-
tude of the sound changes over its duration, the curve that the amplitude
follows is called the amplitude envelope. A general way of designing a syn-
thesis instrument is to imagine it as a modular system, containing a number
of specialized signal-processing units that together create a time-varying
sound.

STl

96

Fart 2 Sound Synthesis

The unit generator is a fundamental concept in digital synthesis. A UG is
either a signal generator or a signal modifier. A signal generator (such as an
oscillator) synthesizes signals such as musical waveforms and envelopes. A
signal modifier, such as a filter, takes a signal as its input, and it transforms
that input signal in some way.

To construct an instrument for sound synthesis, the composer connects
together UGs into a patch. The term “patch” derives from the old modular
analog synthesizers in which sound modules were connected via paich cords.
Of course, when a program is making music, the connections are all done
by the software; no physical wires or cables are connected. But if auG
produces a number at its output, that pumber can become the input to
another UG,

Graphic Notation for Synthesis Instruments

Now we introduce the graphic notation that is often used in publications on
digital sound synthesis to illustrate patches. This notation was invented to
explain the operation of the first modular languages for digital sound syn-
thesis, such as Music 4BF (Howe 1975) and Music V (Mathews 1969), and
is stil! useful today.

The symbol for each unit generator has a unique shape. Figure 3.5 shows
the graphic notation for a table-lookup oscillator called osc, a basic signal
generator. It accepts three inputs (amplitude, frequency, waveform) and
produces one output (a signal). The oscillator reads from a single wavetable
that remains unchanged as long as the oscillator plays. (More complicated
oscillators can read through several wavetables over the course of an event;
see chapter 5 on multiple wavetable synthesis.)

In figure 3.5 the top right input to the oscillator is frequency. The top left
input determines the peak amplitude of the signal generated by the oscilla-
tor. The box to the left is the wavetable f7 containing a sine wave. (Note: In

Amplitude

Frequency
f1

°\

Output signal

Figure 3.5 Graphical notation for an oscillator. See the text for explanation.

97

Introduction 1o Digital Sound Synthesis

some implementations, instead of frequency, the value fed directly to the
oscillator is a raw phase increment. Since phase increment is not a musically
intuitive parameter, we assume here that the system automatically takes
care of conversions from frequency to phase increment according to equa-
tion 1.)

Using Envelopes in Patches

If we supply a constant number (say, 1.0) to the amplitude input of an
oscillator, then the overall amplitude of the output waveform is constant
over the duration of each event. By contrast, most interesting sounds have
an amplitude envelope that varies as a function of time. Typically, a note
starts with an amplitude of 0, works its way up to some maximum value
(usually normalized to be no greater than 1.0), and dies down again more or
less slowly to 0. (A normalized wave is one that has been scaled to fall
within standard boundaries such as 0 to 1 for amplitude envelopes, or — 1
to +1 for other waves.) The beginning part of the envelope is called the
attack portion, while the end of the envelope is called the release.

Commercial analog synthesizers used to define amplitude envelopes in
four stages: artack, (initial) decay, sustain (a period that depends, for exam-
ple, on how long a key on a keyboard is depressed), and release. The usual
acronym for such a four-stage envelope is ADSR (figure 3.6). The ADSR
concept is useful for describing verbally the overall shape of an envelope,
for example, “Make the attack sharper.” But for specifying a musical enve-
lope, a four-stage limit is anachronistic. Amplitude shaping is a delicate
operation, so more flexible envelope editors allow musicians to trace arbi-
trary curves (see chapter 16).

Attack
Decay . Release
Sustain {or final
W)
Amp.
' Time —»
F———— Duration of event ———]

Figure 3.6 Graph of a simple ADSR amplitude envelope, showing the way the
amplitude of a note changes over its duration.

! 98 Part 2 Sound Synthesis

The instrument of figure 3.5 can be easily adapted to generate a time-
varying amplitude by hooking up an envelope to the amplitude input of the
oscillator. We are now closer to controlling the oscillator in musical terms.
If we set the duration and the curve of the envelope, then the envelope
controls the amplitude of each note.

To design manually an envelope for each and every event in a compost-
tion is 100 tedious. What we seek is a simple procedure for generating an
envelope that can scale itself to the duration of diverse events. One solution
is to take another table-lookup oscillator (labeled env_osc in figure 3.7, but
this time fill its wavetable f7 with values of the amp]itude envelope between
0 and 1 instead of a sine wave. Rather than finding the increment from the
frequency, the envelope oscillator derives the increment from the duration of
the note. If the duration of the note is 2 seconds, for example, the “fre-
quency” of envelope oscillator is 1 cycle per 2 seconds, or 0.5 Hz. Thus, the
env_osc reads through the amplitude table just once over this period. For
each sample, env_osc produces at its output a value derived from the stored
! ' envelope f1. This value becomes the left-hand (amptlitude) input for the sine
wave oscillator, osc. After osc has looked up a sample in its wavetable f2,
the value of the sample is scaled inside osc by whatever appears at its ampli-
tude input, which in this case comes from env_osc.

Figure 3.7a is a typical instrument as defined in a synthesis language of
the type described in chapter 17. Figure 3.7b shows another way to charac-
terize the same structure, which is perhaps more common in synthesizers.
i This figure replaces the envelope oscillator with the simple envelope genera-
! _ tor env..gen. The env_gen takes in a duration, peak amplitude, and a wave-
table; it reads through the wavetable over the specifed duration, scaling it by
the specified peak amplitude.)

As the reader might guess, we could also attach an envelope generator to
the frequency input of osc to obtain a pitch change such as vibrato or
glissando. Indeed, we can interconnect oscillators and other unit generators
in a wide variety of ways in order to make different sounds. Interconnected
oscillators are the basis of many of the synthesis techniques described in
8 chapters 4 through 8.

Software Synthesis

| So far we have discussed digital synthesis in abstract terms. The next sec-
tions describe synthesis systems in more practical terms. The most precise
C and flexible approach to digital sound generation is a software synthesis

99

Introduction to Digital Sound Synthesis

(@) Peak amplitude
Duration
f1
1
0
amp_envelope
P- P Frequency
2
T
output_signal
(b)
Peak
1 amplitude

1
0 I Duration
env_gen

amp_envelope
Frequency

2
y
0 \—ﬂosc]

output_signaf

Figare 3.7 Time-varying amplitude control of oscillator. (a) Oscillator as envelope
generator. The upper oscillator env_esc is employed as an envelope generator to
control the amplitude of the sine wave generated by the lower oscillator ose. env_
osc assumes that it will complete one cycle. This structure is found in synthesis
languages. (b} An equivalent structure to (a) using a simple envelope generator unit
env_gen. This unit takes in duration, peak amplitude, and waveform. This structure

is more typical of synthesizers.

100

Part 2 Sound Synthesis

program running on a general-purpose computer. Software synthesis means
that all of the calculations involved in computing a stream of samples are
carried out by a program that can be changed in arbitrary ways by the
user. A canonical example of software synthesis is the Music V language
(Mathews 1969) or its many Music N variants.

Software synthesis stands in contrast to hardware synthesis, which carries
out synthesis calculations using special circuitry. Hardware synthesis has
the advantage of high-speed real-time operation, but the flexibility and size
of the synthesis algorithm are limited by the fixed design of the hardware. A
typical example is a fixed-function commercial keyboard synthesizer. Its
internal circuits cannot necessarily be reconfigured to perform a technique
developed by a rival manufacturer, for example.

The distinction between software and hardware synthesis blurs in some
cases. Consider the case of a system built around a programmable digital
signal processor (DSP) with a large memory. It may be possible for such a
system to run the same type of synthesis software as a general-purpose
computer. {See chapter 20 for more on the architecture of DSPs.)

In any case, all of the pioneering work in computer music was carried out
via software synthesis. Today a variety of synthesis programs run on in-
expensive personal computers. Good-quality ADCs and DACs are either

built in or readily available as accessories. A great advantage of software

synthesis is that a small computer can realize any synthesis method—even
the most computationally intensive-—provided that the musician has the
patience to wait for results. Thus, with little else needed but musical will,
computers are primed and ready for high-quality music synthesis.

Instrument Editors and Synthesis Languages

Contemporary software synthesis programs can be divided into two catego-
ries: (1) graphical instrument editors and (2) synthesis languages. With a
graphical instrument editor, the musician interconnects icons on the display
screen of a computer, making patches. Each icon stands for a UG. (Chapter
16 presents this subject and gives examples.)

With a language, the musician specifies sounds by writing a text that is
interpreted by a synthesis program. Figure 3.8a shows a textual representa-
tion of the same instrument shown in figure 3.7a. The example uses a simple
hypothetical synthesis language that we call Music 0. The symbol « means
“is assigned to the value of.” For example, the output of env_ose is assigned
(routed) to the signal variable amp_envelope. Then the value of amp_
envelope, at each sample period, is fed into the amplitude input of the osc
module.

101

Introduction to Digital Sound Synthesis

{a)

Instrument 1
/* env_gsc arguments are wavetable, duration, amplitude */
amp_envelope & env_osc f1 p3 1.0;
/* osq arguments are wavetable, frequency, amplitude */
output_signal « osc £2 p4 amp_envelope;
out ocutput_signal;

EndInstrument 1;

{b)

/* Score line for Instrument 1 */f
/* pl p2 D3 p4d */
il 4] 1.0 440

Figure 3.8 Textual representation of the instrument and score. {a) Instrument
corresponding to figure 3,7, The remarks between the characters “/** and “*" are
comments. The parameter fields (beginning with “p™) indicate values that will be
derived from an alphanumeric score, as in (b). p3 specifies duration, and p4 is
frequency. Notice that the third argument to the second oscillator {the amplitude)
is supplied by the amp_envelope signal generated by the first oscillator. (b) Scare for
instrument in (). The first field is the instrument number. The second parameter
field indicates the start time, the third duration, and the fourth frequency.

102

Part 2 Sound Synthesis

Figure 3.8b presents a simple score that supplies parameters to this in-
strument. (Chapter 17 explains the basic syntax and features of synthesis

languages.)
Computational Demands of Synthesis

Every step in a synthesis algorithm takes a certain amount of time to exe-
cute. For a complicated synthesis algorithm, a computer cannot always
complete the calculations necessary for a sample in the interval of a sample

period.
To make this point more concrete, see the steps below that are necessary
for calculating one sample of sound by the table-lookup method.

1. Add increment to current wavetable lookup location to obtain new

location.

2. If the new location is past the end of the wavetable, subtract the wave-
table length. (In other words, perform a modulo operation.)

Store the new location for use in calculating the next sample. (See step 1.)
Look up the value in the wavetable at the new location.

Multiply that value by the amplitude input.

A S

Send the product to the output.

The important point here is that each step takes some amount of time to
perform. For example, it might take a computer one microsecond to per-
form the calculations above. But if we are using a sampling rate of 50,000

_ samples per second, the time available per sample is only 1/50,000th of a

second, or 20 microseconds (20,000 nanoseconds). This means that it is
difficult for the computer to complete the calculations necessary for more
than a few simple oscillators in real time. If the process is made more com-
plicated, by adding filters, delays, more table lookups, random functions,
or the time needed to interact with a musician, even one instrument may
become impossible to realize in real time. What do we mean by real time? In
this context, real time means that we can complete the calculations for a
sample within the duration of one sample period.

Non-Real-time Synthesis

Certain synthesis and signal-processing techniques are costly from a compu-
tational standpoint and are therefore inherently difficult to realize in real

103

Introduction to Digital Sound Synthesis

time. This means there is a delay of at least a few seconds between the time
we start computing a sound and the time that we can listen to it. A system
with such a delay is called a non-real-time system.

Non-real-time synthesis was the only option in the early days of com-
puter music. For example, a two-minute portion of J. K. Randall’s Lyric
Variations for Violin and Computer, realized between 1965 and 1968 at
Princeton University (Cardinal Records VCS 10057), took nine hours to
compute. Of course, if a small mistake was made, the entire process would
have to be repeated. Even though this was a laborious process, a handful of
dedicated composers with access to the proper facilities were able to create
lengthy computer-synthesized works of music (see also Tenney 1969; Von
Foerster and Beauchamp 1969; Dodge 1985; Risset 1985a).

Sound Files

Because it may longer than one sample period to compute each sample,
software synthesis programs generate a sound file as their output. A sound
file is simply a data file stored on a disk or tape. After all the samples for a
composition are calculated, then the sound file can be played through the
DAC to be heard.

A sound file contains a header text and numbers representing sound sam-
ples. The header contains the name of the file and relevant information
about the samples in the file (sampling rate, number of bits per sample,
number of channels, etc.). The samples are usually organized in data struc-
tures called frames, if there are N channels, each frame contains N samples.
Thus, the sampling rate really indicates the number of frames per second.

As in other computer applications, different file formats coexist. The need
to convert between formats is a practical fact of life in computer music
studios.

Real-time Digital Synthesis

Just as computers have become faster, smaller, and cheaper, digital synthe-
sis technology has also become more efficient. As early as the mid-1970s it
was practical to build digital synthesizers (albeit bulky ones) that were fast
enough to do all of the calculations necessary for a sample within the dura-
tion of one sample period. With advances in circuit technology, the bulky
synthesizers of the past have been replaced by tiny integrated circuits (ICs or
chips) that can realize multivoice synthesis algorithms in real time.

104

Part 2 Sound Synthesis

Keyboard or other
input device

!

Microphone
MIDI
sl MBI 1 synthesizers
interface and samplers
computer

r

L
_ —"“ Amplifier

Digital
1o
Digital Disk for sound file Loudspealk
audio and program ocudspeaker
recorder storage

Figure 3.9 Simplified overview of a typical digital recording and synthesis facility.
Musicians communicate with the synthesizers using keyboards or other input de-
vices, or through programs running on the host computers. Sound can be recorded
via the ADC and stored on disk for iater playback through the DACs. In a com-
puter equipped for multimedia production, all of the components except the MIDI
keyboard may be built into the computer.

Figure 3.9 shows an overview of a real-time computer music synthesis
system. This system actually has three ways of generating digital sound: (1)
non-real-time software synthesis calculated on the computer, with sound
from the DAC, (2) real-time synthesis calculated on the digital signal pro-
cessing (DSP) board, with sound from the DAC, and (3) real-time synthesis
using a synthesizer controlled via the Musical Instrument Digital Interface
{MIDI; see chapter 21).

An obvious advantage of a real-time synthesizer is that musical input
devices (also called performance controllers) such as musical keyboards,
footpedals, joysticks, buttons, and knobs can be attached to it, so that the
sound can be modified by the musician as it is being produced. Sequencers
and score editors make it possible to record and edit these performances,
and patch editors running on the computer can change the synthesis and
signal-processing patches at any time.

Real-time systems are discussed in more detail throughout this book. In
particular, part V discusses the internals of digital synthesizers and the
MIDI protocol, and chapters 14 and 15 deal with performance controllers

105 Introduction to Digital Sound Synthesis

and performance software (see also Alles 1977a; Buxton et al. 1978; Strawn
1985¢; Roads and Strawn 1985; Roads 1989).

Comparing Non-real-time Synthesis with Real-time Synthesis

Non-real-time software synthesis was the original method of digital sound
generation, and it still has a place in the studio. As we have stressed before,
the advantage of software synthesis using a patchable music language is
programmability and therefore musical flexibility. Whereas commercial
real-time synthesizers often set factory-supplied limits, software synthesis is
open-ended, letting users: create personalized instruments or arbitrarily
complex synthesis algorithms. Many new and experimental synthesis and
signal-processing methods are available only in the form of non-real-time
software.

Another strong advantage of software synthesis is the flexibility of a
programmed score. Even with a simple synthesis instrument, control via a
score language (discussed later) can be extremely detailed or complicated,
exceeding the range of human performers or the transmission rates of MIDI
equipment.

Nonetheless, the disadvantages of non-real-time software synthesis are
obvicus. Time is wasted waiting for samples to be computed. Sound is
disconnected from real-time human gestures—we cannot shape sound as
we hear it being generated. The stilted quality of some computer music
derives from this predicament. The advantage of programmability becomes
a disadvantage when we have to encode simple musical phrases with the
same overhead as more complicated ones. Even a trivial envelope may re-
quire us to precalculate and type in dozens of numbers. Non-real-time
software synthesis is “the hard way” to make music.

Fortunately, dramatic speedups in hardware are pushing more and
more synthesis methods into the arena of real-time operation. Commercial
synthesizers based on DSP microprocessors circuits allow flexibility in
programming synthesis algorithms. Only the most esoteric and complex
methods, like some forms of pararmeter estimation and analysis-resynthesis
(chapters 7 and 13), remain outside the limits of low-cost real-time hard-
ware. So today we can choose between real-time and non-real-time syn-
thesis, depending on the musical application. Besides the time savings,
real-time synthesizers have the great advantage that they can be played-—
animated by a musician’s gestures as sound is heard.

106

Part 2 Sound Synthesis

Specifying Musical Sounds

Now we turn to the different ways to specify a piece of music to a synthesis
system. The traditional way of making a piece of music is to select various
instruments and write a paper score that directs the performers to play
specified musical events, allowing room for interpretation depending on the
performers and the instruments they happen to play. But the possibilities of'
digital synthesis extend far beyond the ink of traditional scores.

Sound Objects

In traditional music theory, the note is a static, homogenous, unitary event.
Modern synthesis techniques suggest a generalization of the concept of mu-
sical event called a sound object (Schaeffer 1977; Chion and Reibel 1976;
Roads 1985f). The notion of sound object is often useful, since it can en-
compass sounds that are longer than one ordinarily considers a note to be,
or more complicated. A sound object may contain hundreds of short sub-
events (as in vector and granular synthesis). Or it may be controlled by a
dozen or more time-varying parameters, causing it to undergo mutations of
identity from one pitch/timbre to another.

The burden of controlling the complicated parameter evolutions for
sound object synthesis falls to the composer. This begs the question: how
can we specify all these time-varying quantities? In the next section we show
how much data a common synthesis technique may require. Then the sec-

- tion on the musician’s interface presents five strategies for supplying it.

Example of the Specification Problem for Additive Synthesis

Additive synthesis is a venerable method of sound synthesis. Faithful to its
name, it sums the output of several sine wave oscillators to form a com-
posite sound waveform.

Figure 3.10 presents a digital synthesis instrument for additive synthesis.
The instrument includes a frequency envelope as well as an amplitude enve-
lope for each oscillator. The frequency envelope is a time-varying function
with a range {—1.0, 4 1.0]. This envelope scales the peak deviation value
specified as one input to env_osc. If the peak deviation is 100, for example,
and the frequency envelope at its lowest point is —0.1, the value coming out
of the frequency envelope at that point is — 10. The adder (+) sums this
with the center frequency of the lower oscillator, causing the frequency
to droop from its nominal center point. If the center frequency had been

P4

107

Introduction to Digital Sound Synthesis

Peak deviation Peak deviation
Frequency Duration Frequency Duration
envelope + envelope *
0 *Q—“c 0p—~ *Q_Oj
) 10 1.0
Amplitude Duration Amplituds BDuration
envelope envelope
1 1
0 Center 0 Center
frequency frequency
Sine wave Sine wave

NN e o o\

N N

Additive output signal

Figore 3.10 The patch shown in figure 3.7 expanded to form a simplified instru-
ment for additive synthesis. Each sine oscillator is modified by an amplitude and
frequency envelope. The outputs of many sine oscillators are added together to
make one sample. More three-oscillator units might be added to this patch to make
more complicated sounds.

108

Part 2 Sound Synthesis

specified as 440 Hz, the frequency envelope would cause it to go down to

430 Hz at some point.
Notice how each vertical slice of this instrument includes two envelope

generators and an audio oscillator. We will call this unit a voice. Only two
voices are shown, but the ellipses indicate that other voices are hidden. Such
an instrument can generate an extremely wide range of sounds—provided
that we can specify the data.

Now we turn to the problem of specifying the parameters for the instru-
ment in figure 3.10. For each voice and each event, the instrument requires
the following parameters:

Center frequency of audio osciilator esc
Peak amplitude (set as 1.0 in the figure)
Amplitude envelope

Begin time of amplitude envelope

. Duration of amplitude envelope

. Frequency envelope

Begin time of frequency envelope

O

Duration of frequency envelope

If the instrument has fifteen voices, and each voice requires these eight data
values, that means 120 data values must be specified for just one event!

Thus no matter how powerful synthesis hardware becomes, the problem
of specifying the contro! data remains. In chapter 4 we look in more detail
at the data requirements of additive synthesis. The next section presents six
general strategies that apply to all synthesis techniques.

The Musician’s Interface

 The different ways of supplying synthesis data to a computer and synthe-

sizer fall into six categories:

Musical input devices
Performance software
Editors

Score languages

Algorithmic composition programs

AN O S o A e

Sound analysis programs

109

Introduction to Digital Sound Synthesis

Figure 3.11 schematizes these categories. The first five categories corre-
spond to the musician’s interfaces explored in part V of this book. The last
category is covered in part IV. The next six sections explain briefly each

category.
Musical Input Devices

Musical input devices are the physical instruments manipulated by musi-
cians (see chapter 14). The instrument directly links the musician’s gestures
to the production of sound. Electronic input devices decouple the mani-
pulation of sound from the need to power it physically. Hence they are
potentially more flexible than traditional instruments. For example, with
electronic instruments, a single wind controller can create low bass sounds

. as easily as high soprano sounds. Indeed, electronic input devices are so

easy that one research direction seeks to reinfuse the physical difficulty, to
recreate the sense of effort that leads to expressive performances.

The benefits of real-time musical input devices are clear, although the
technical problems associated with connecting them to a computer can be
formidable. Traditional acoustical instruments developed over hundreds of
years, whereas their digital counterparts have just begun their evolution.
Musical input devices are best suited for fine control of a few musical pa-
rameters. For example, the keys on a keyboard can indicate pitch, while the
velocity of key depression determines the amplitude of the higher-frequency
oscillators. Most MIDI keyboards have one or more continuous controllers
(such as footpedals, modulation wheels, or joysticks). These controllers can
be assigned to any manipulable parameter, so we might sct the foot pedal to
control overall amplitude, and a modulation wheel to bend the shape of the
fundamental pitch.

Performance Software

The use of real-time performance software is expanding due to the prolifera-
tion of MIDI-based systems (see chapter 15). Performance software
includes such utilities as sequencers that can remember and play back key-
board performances. Sequencers record pure control data (such as the onset
time of key depressions on a keyboard, signaling the beginnings of notes)
rather than samples of audio waveforms. Computer music also provides the
opportunity to go beyond traditional solo performance, for example, to
provide control at the level of a conductor of an ensemble.

Fitted with eyes {(a camera or another type of sensor) and ears (micro-
phones and sound analysis software), computer-based instruments can

110 Part 2 Sound Synthesis

{a) MIDI
devices - sampiler,
affects, etc.
{b) Input device
Performance Synthesizer,
software ete.
Microphone
R Performance
software
© Menus, icons,
. and graphical
Editors repragentations i
of music Synthesizer,
- — ete.
{d)
Language
Languages compiler Synthesizer,
etc. -
(e Algorithmic
Algorithmic composition
composition program
programs Synthesizer,
elc.
®
Sound
analysis
Synthesizer,
etc.

Figure 3.11 The musician’s interface: six different ways of specifying synthesis
data to a computer or synthesizer. (a) An input device can transmit the necessary
data directly to a synthesizer, with or without a computer in between. (b) Perfor-
mance software interprets the performer’s gestures and may even be able to impro-
vise. {¢) Editors let the user build up a specification through interactive graphics
techniques. {d) Languages encode the specification as a precise text. (¢) Algorithmic
composition programs typically require a small amount of initial parameter data
from the composer before they generate music. (/) Sound analysis automatically
derives data for modification and resynthesis from sounds fed into it.

111

Introduction to Digital Sound Synthesis

respond to a human gesture in arbitrarily complex ways, through the use
of procedures embedded in the performance software. It is increasingly
common to see concerts in which a synthesizer controlled by a computer
improvises with a human performer. Another application of such a system
is a more flexible rendition of a prepared score, replacing the fixed tape re-
corder mode of performance.

As a simple example of performance software, one might set up a situa-
tion whereby a certain passage played on a keyboard triggers the start of a
prerecorded score section, while a single high C key stops the sequence. A
modulation wheel might determine the tempo of the prerecorded sequence.

Editors

An editor program lets a musician create and change a text, sound, or image
(see chapter 16). Many interactive editors employ graphics techniques to
provide an efficient environment for the musician. The material being edited
can be quickly cut, pasted, or changed with simple gestures.

Graphical editors facilitate rapid prototyping of ideas, and hence they are
most often found in the individual studio, where there is time for research.
Musical ideas can be built up incrementally in an editor, and often the
musician can hear the result as the change is being made.

Since music exists on many different levels and perspectives, it makes
sense that there should be many types of editors for music. To set up a
performance for an additive synthesizer, one uses score, instrument, and
function editors. We enter the parameters for each sound object into a text
editor, or manipulate a graphic image (such as common music notation or
piano-roll notation). The instrument editor editor configures the additive
synthesizer from unit generators such as oscillators and envelope genera-
tors. At the end of an editing session we tell the program to write the patch
to the synthesizer. A function editor provides several ways of defining func-
tions of time (waveforms and envelopes), including graphical methods and
mathematical formulas. We apply the function editor to the task of creating
the amplitude and frequency envelopes for the various oscillators.

Languages

Perhaps the most precise method of specifying music involves preparing
note lists or play lists that are part of a score language (see chapter 17). The
score language defines a syntax for the parameters of the instrument, listed
in individual parameter fields (abbreviated pfields).

112

Part 2 Sound Synthesis

iopl p2 p3 pd p5 <4

; Ins Start Dur, Freq. (Hz) Amp. (dB} Waveform
i1 [+] 1.0 440 70 3
i2 1.0 .5 660 80 4

Figure 3,12 Numerical score example. Three lines of comments followed by a
two-line score. The first line specifies a note for synthesis instrument 1 (i1), while the
second specifies a note for i2.

Our first example of a score language was the simple score line in figure
3.8b. Traditionally the first parameter after the name of the instrument
gives the start time, and the second parameter gives the duration for the
event. Subsequent parameters have different meanings, depending on the
nature of the instrument. For example, the first line of the score file shown
in figure 3.12 says that the event uses instrument 1, starts at 0, plays for
1.0 seconds, has a frequency of 440 Hz, an amplitude of 70 dB, and uses
waveform number 3. (The two bottom lines in bold are the score; the other
lines are comments.)

Score languages also contain function table definitions—the envelope and
waveform definitions used by the instruments (see chapter 17).

Traditional score langnages arc basically numeric: instruments, pitches,
and amplitudes are expressed as numbers. Alternative score languages sup-
port more “natural” specifications of music, allowing equal-tempered pitch
names, for example. (For a discussion of score languages, see Smith 1973;
Schottstacdt 1983, 1989a; Jaffe 1989; also Loy 1989a and chapter 17.)

The principal advantage of score languages is also their disadvantage:
precision and detail. With a language, musicians are required to enter the
score as an alphanumeric text. Not all composers care to specify their music
in such minute detail at all times. In the additive synthesis example given
above, the musician would be required to type 120 values for each sound
object. On the other hand, a score language lets the musician precisely
specify a score that is so detailed that it could never be played accurately by
a human performer.

Algorithmic Composition Programs
Some of the earliest work in computer music involved algorithmic composi-

tion: the creation of a music score according to a procedure specified by the
composer/programmer (Hiller and Isaacson 195%; Xenakis 1971; Barbaud

113

Introduction to Digital Sound Synthesis

1966; Zaripov 1969). For example, the computer can calculate the parame-
ters of sound according to a probability distribution or another type of
procedure (see chapters 18 and 19).

For example, suppose that we feed a set of initial data to an algorithmic
composition program, and then let it generate a complete score including all
parameters needed for additive synthesis. Chapter 19 shows that there are
many possible strategies that an algorithmic composition program might
take. Hence it is understandable that the nature of the initial data varies
from program to program. For a program that computes a score on the
basis of probabilities, the composer might specify these general attributes of
the score:

. Number of sections
. Average duration of sections

. Minimum and maximum density of notes in a section

1
2
3
4. Grouping of frequency and amplitude envelopes into timbre classes
5. Probability for each instrument in a timbre class to play

6

. Longest and shortest duration playable by each instrument

In this case, the control is global and statistical in nature. The composer
can determine the overall attributes of the score, but all the details are
caiculated by the program. In other programs, the data might be more
detailed and the stylistic constraints more specific.

Sound Analysis

Like music, sound can be dissected in innumerable ways. The established
categories of sound analysis target three aspects: pitch, rhythm, and spec-
trum. We can use the ouiput of these analyzers to drive synthesis, as in a
convolver that maps the rhythm of one sound onto the timbre of another
(Roads 1993a; chapter 10), a pitch detector tracking a human voice that
drives the accompaniment pitch of a digital oscillator (chapter 12), or a
spectrum analyzer that extracts the time-varying frequency and amplitude
curves for additive resynthesis (chapter 13).

Conclusion

Developments in physical and electronic acoustics have opened the way for numerous
experiments in musical tone production. Creations in this category represent the most

114

Pari 2 Sound Synthesis

avant-garde developments in music today. The new sounds, added to new rhythmic,
harmonic, and tonal concepts, make the music extremely difficult to evaluate in terms
of normal musico-aesthetic standards.

—H. Miller (1960)

The musical potential of digital sound synthesis has begun to be explored,
but much remains poorly understood. For now, digital technology allows
precise and repeatable sound generation. With the proper hardware, soft-
ware, and audio playback system, we can generate musical signals of very
high audio quality. Perhaps even more important than precision is pro-
grammability, which translates into musical flexibility. Given enough mem-
ory and computation time, a computer can realize any synthesis algorithm,
no matter how complicated.

While hardware continues to increase in speed, there is a continuing
problem of finding the proper control data to drive the synthesis engine,
One of the challenges of synthesis is how to imagine and convey to the
machine the parameters of the sounds we want to produce. The point of
specification is the musician’s interface, discussed in the six chapters com-
prising part V, and sound analysis, presented in part IV.

Music theory lags a half century behind the actual practice of computer
music. Synthesis techniques of leading composers are exploring the space of
possibilities, leaving behind charts of musical sound geography for future
generations to scan. The history of music in times of experimentation like
these indicates that the current period is leading to an era of consolida-
tion—when much of the experimentation of today will seem mundane,
when the resources that at present seem radical will appear commonplace,
Music composition will then enter a new era of refinement, and questions of
orchestration can again be addressed within a systemic framework, as they
were in the age of the symphony orchestra.

