Advanced program representations

Goal:
« more effective analysis
« faster analysis
« easier transformations

Approach:

more directly capture important program properties
« e.g. data flow, independence
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Examples

CFG:
+ simple to build
+ complete
+ no derived info to keep up to date during transformations

— computing info is slow and/or ineffective
« lots of propagation of big sets/maps
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Def/use chains

Defluse chains directly linking defs to uses & vice versa
+ directly captures data flow for analysis

* e.g. constant propagation, live variables easy

- ignores control flow

e misses some optimization opportunities,
since it assumes all paths taken

* not executable by itself,
since it doesn't include control dependence links

« not appropriate for some optimizations,
such as CSE and code motion

- must update after transformations
* not too hard (just remove edges)

- space-consuming, in worst case: O(E2V)

- can have multiple defs of same variable in program,
multiple defs can reach a use

« complicates analysis
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Example

X

X =X+y =
y=y+1

X X

R ST
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Static Single Assignment (SSA) form

[Alpern, Rosen, Wegman, & Zadeck, two POPL 88 papers]
Invariant: at most one definition reaches each use
Constructing equivalent SSA form of program:

1. Create new target names for all definitions
2. Insert pseudo-assignments at merge points

reached by multiple definitions of same source variable:

Xp' = @ Xgew  Xp)
3. Adjust uses to refer to appropriate new names
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Example
X
X =X+ty X=..
y=y+1
X .. X
LY.
o1 ]
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Comparison

+ lower worst-case space cost than def/use chains: O(EV)

+

algorithms simplified by exploiting

single assignment property:
« variable has a unique meaning independent of program point
« can treat variable & its contents synonymously

» can have single global table mapping var to info,
not one per program pt.

+

transformations not limited by reuse of variable names

« can reorder assignments to same source variable, without
affecting dependences of SSA version

still not executable by itself

still must update/reconstruct after transformations

inverse property (static single use) not provided

« dependence flow graphs [Pingali et al.] and
value dependence graphs [Weise et al] fix this,
with single-entry, single-exit (SESE) region analysis

Very popular in research compilers, analysis descriptions
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Common subexpression elimination

At each program point, compute set of available expressions
map from expression to variable holding that expression

cegfath -x,¢c -y -1z

(More generally, can have map from
expensive expression to equivalent but cheaper expression
» subsumes CSE, constant prop, copy prop.)

CSE transformation using AE analysis results:
if a+b - x available before y := a+b , transformtoy := x
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Specification

All possible available expressions:
AvailableExprs = {expr- var | Oexpr O Exprs, Ovar O Vars}
= Exprs x Vars

« Exprs = set of all right-hand-side expressions in procedure
« Vars = set of all variables in procedure
[is this a function from Exprs to Vars, or just a relation?]
Domain AV = < Pow(AvailableExprs), <ay >
aeq SAV ae, =
* top:

¢ bottom:

* meet:

« lattice height:

Craig Chambers 83 CSE 501

Constraints
AEx=y opz:
AEy -y

Initial conditions at program points?

What direction to do analysis?

Can use bit vectors?
Can summarize sequences of flow functions?
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Example

l

ii=a+b
X:=i*4

ji=i y:=i*4

i=c =i+l

z:=j*4
m:=b+a
w:i=4*m
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Exploiting SSA form

Problem: previous available expressions overly sensitive to
name choices, operand orderings, renamings, assignments,

A solution:

Step 1: convert to SSA form

« distinct values have distinct names
O can simplify flow functions to ignore assignments

SSA .
AE X=y opz-

Step 2: do copy propagation

» same values (usually) have same names
O avoid missed opportunities

Step 3: adopt canonical ordering for commutative operators
0 avoid missed opportunities
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Example
i=a+b
X:=i*4
j=i
ii=c y:=i*4
z:=j*4 =i+l
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m:=b+a

w:=4*m
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After SSA conversion, copy propagation, &
operand order canonicalization:

'

i1:=a1+b1

Xl ::i1*4
ji=ig ig = @i 1 3)
ioi=Cc y1:=i 4*4
Zl:: i1*4 i3::i 4+1

m = al+bl

W= m*4
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