Advanced program representations

Goal:
« more effective analysis
« faster analysis
« easier transformations

Approach:

more directly capture important program properties
« e.g. data flow, independence

Craig Chambers 75

CSE 501

Examples

CFG:
+ simple to build
+ complete
+ no derived info to keep up to date during transformations

— computing info is slow and/or ineffective
« lots of propagation of big sets/maps

Craig Chambers 76 CSE 501

Def/use chains

Defluse chains directly linking defs to uses & vice versa
+ directly captures data flow for analysis

* e.g. constant propagation, live variables easy

- ignores control flow

e misses some optimization opportunities,
since it assumes all paths taken

* not executable by itself,
since it doesn't include control dependence links

« not appropriate for some optimizations,
such as CSE and code motion

- must update after transformations
* not too hard (just remove edges)

- space-consuming, in worst case: O(E2V)

- can have multiple defs of same variable in program,
multiple defs can reach a use

« complicates analysis

Craig Chambers 7

CSE 501

Example

X

X =X+y =
y=y+1

X X

R ST

Craig Chambers 78 CSE 501

Static Single Assignment (SSA) form

[Alpern, Rosen, Wegman, & Zadeck, two POPL 88 papers]
Invariant: at most one definition reaches each use
Constructing equivalent SSA form of program:

1. Create new target names for all definitions
2. Insert pseudo-assignments at merge points

reached by multiple definitions of same source variable:

Xp' = @ Xgew Xp)
3. Adjust uses to refer to appropriate new names

Craig Chambers 79 CSE 501

Example
X
X =X+ty X=..
y=y+1
X .. X
LY.
o1]
Craig Chambers 80 CSE 501

Comparison

+ lower worst-case space cost than def/use chains: O(EV)

+

algorithms simplified by exploiting

single assignment property:
« variable has a unique meaning independent of program point
« can treat variable & its contents synonymously

» can have single global table mapping var to info,
not one per program pt.

+

transformations not limited by reuse of variable names

« can reorder assignments to same source variable, without
affecting dependences of SSA version

still not executable by itself

still must update/reconstruct after transformations

inverse property (static single use) not provided

« dependence flow graphs [Pingali et al.] and
value dependence graphs [Weise et al] fix this,
with single-entry, single-exit (SESE) region analysis

Very popular in research compilers, analysis descriptions

Craig Chambers 81 CSE 501

Common subexpression elimination

At each program point, compute set of available expressions
map from expression to variable holding that expression

cegfath -x,¢c -y -1z

(More generally, can have map from
expensive expression to equivalent but cheaper expression
» subsumes CSE, constant prop, copy prop.)

CSE transformation using AE analysis results:
if a+b - x available before y := a+b , transformtoy := x

Craig Chambers 82 CSE 501

Specification

All possible available expressions:
AvailableExprs = {expr- var | Oexpr O Exprs, Ovar O Vars}
= Exprs x Vars

« Exprs = set of all right-hand-side expressions in procedure
« Vars = set of all variables in procedure
[is this a function from Exprs to Vars, or just a relation?]
Domain AV = < Pow(AvailableExprs), <ay >
aeq SAV ae, =
* top:

¢ bottom:

* meet:

« lattice height:

Craig Chambers 83 CSE 501

Constraints
AEx=y opz:
AEy -y

Initial conditions at program points?

What direction to do analysis?

Can use bit vectors?
Can summarize sequences of flow functions?

Craig Chambers 84 CSE 501

Example

l

ii=a+b
X:=i*4

ji=i y:=i*4

i=c =i+l

z:=j*4
m:=b+a
w:i=4*m

Craig Chambers 85 CSE 501

Exploiting SSA form

Problem: previous available expressions overly sensitive to
name choices, operand orderings, renamings, assignments,

A solution:

Step 1: convert to SSA form

« distinct values have distinct names
O can simplify flow functions to ignore assignments

SSA .
AE X=y opz-

Step 2: do copy propagation

» same values (usually) have same names
O avoid missed opportunities

Step 3: adopt canonical ordering for commutative operators
0 avoid missed opportunities

Craig Chambers 86 CSE 501

Example
i=a+b
X:=i*4
j=i
ii=c y:=i*4
z:=j*4 =i+l

Craig Chambers

NS

m:=b+a

w:=4*m

87

CSE 501

After SSA conversion, copy propagation, &
operand order canonicalization:

'

i1:=a1+b1

Xl ::i1*4
ji=ig ig = @i 1 3)
ioi=Cc y1:=i 4*4
Zl:: i1*4 i3::i 4+1

m = al+bl

W= m*4

Craig Chambers

'

88

CSE 501

