
Craig Chambers 89 CSE 501

Loop-invariant code motion

Two steps: analysis & transformation

Step 1: find invariant computations in loop

• invariant: computes same result each time evaluated

Step 2: move them outside loop

• to top: code hoisting
• if used within loop

• to bottom: code sinking
• if only used after loop

Craig Chambers 90 CSE 501

Example

p := w + y

x := x + 1

q := q + 1

w := w + 5

z := x * y

q := y * y

w := y + 2

y := 4

x := 3

y := 5

Craig Chambers 91 CSE 501

Detecting loop-invariant expressions

An expression is invariant w.r.t. a loop L iff:

base cases:

• it’s a constant

• it’s a variable use, all of whose defs are outside L

inductive cases:

• it’s an idempotent computation
all of whose args are loop-invariant

• it’s a variable use with only one reaching def ,
and the rhs of that def is loop-invariant

Craig Chambers 92 CSE 501

Computing loop-invariant expressions

Option 1:

• repeat iterative dfa
until no more invariant expressions found

• to start, optimistically assume all expressions loop-invariant

Option 2:

• build def/use chains,
follow chains to identify & propagate
invariant expressions

Option 3:

• convert to SSA form,
then similar to def/use form

Craig Chambers 93 CSE 501

Example using def/use chains

p := w + y

x := x + 1

q := q + 1

w := w + 5

z := x * y

q := y * y

w := y + 2

y := 4

x := 3

y := 5

Craig Chambers 94 CSE 501

Loop-invariant expression detection for SSA form

SSA form simplifies detection of loop invariants,
since each use has only one reaching definition

An expression is invariant w.r.t. a loop L iff:

base cases:

• it’s a constant

• it’s a variable use whose single def is outside L

inductive cases:

• it’s an idempotent computation
all of whose args are loop-invariant

• it’s a variable use
whose single def’s rhs is loop-invariant

φ functions are not idempotent

Craig Chambers 95 CSE 501

Example using SSA form

w3 = φ(w 1, w 2)

p1 := w 3 + y 3

x3 := x 2 + 1

q2 := q 1 + 1

w2 := w 1 + 5

x2 = φ(x 1, x 3)

y3 = φ(y 1, y 2, y 3)

z1 := x 2 * y 3

q1 := y 3 * y 3

w1 := y 3 + 2

y1 := 4

x1 := 3

y2 := 5

Craig Chambers 96 CSE 501

Example using SSA form & preheader

w3 = φ(w 1, w 2)

p1 := w 3 + y 3

x3 := x 2 + 1

q2 := q 1 + 1

w2 := w 1 + 5

x2 = φ(x 1, x 3)

z1 := x 2 * y 3

q1 := y 3 * y 3

w1 := y 3 + 2

y1 := 4

x1 := 3

y2 := 5

y3 = φ(y 1, y 2)

Craig Chambers 97 CSE 501

Code motion

When find invariant computation S: z := x op y ,
want to move it out of loop (to loop preheader)

When is this legal?

Sufficient conditions:

• S dominates all loop exits
[A dominates B when

all paths to B must first pass through A]

• otherwise may execute S when never executed otherwise

• can relax this condition, if S has no side-effects or traps,
at cost of possibly slowing down program

• S is only assignment to z in loop, &
no use of z in loop is reached by any def other than S

• otherwise may reorder defs/uses and change outcome

• unnecessary in SSA form!

If met, then can move S to loop preheader

• but preserve relative order of invariant computations,
to preserve data flow among moved statements

Craig Chambers 98 CSE 501

Example of need for domination requirement

x := a * b

y := x / z

q := x + y

x := 0

y := 1

z != 0?

Craig Chambers 99 CSE 501

Avoiding domination restriction

Requirement that invariant computation dominates exit is strict

• nothing in conditional branch can be moved

• nothing after loop exit test can be moved

Can be circumvented through other transformations
such as loop normalization

• move loop exit test to bottom of loop
(while-do ⇒ do-while)

x := a / b

i := i + 1

i := 0

i < N?

Before

x := a / b

i := i + 1

i := 0

i < N?

After

i < N?

Craig Chambers 100 CSE 501

Example of data dependence restrictions

“S is only assignment to z in loop, &
no use of z in loop is reached by any def other than S”

z := z + 1

z := 0

... z ...

z := 5

S:

Craig Chambers 101 CSE 501

Example in SSA form

Restrictions unnecessary if in SSA form

• if reorder defs/uses, generate code along merging arcs
to implement φ functions

z2 := φ(z 1,z 4)

z3 := z 2 + 1

z4 := 0

... z 4 ...

z1 := 5

S:

Craig Chambers 102 CSE 501

Loop-invariant code copying

Alternative to code motion:
copy instruction to loop header, assigning to new temp,
then do CSE & copy propagation to simplify in-loop version

• more modular design, leverage off of existing optimizations

Can always copy, unless instruction has side-effects

CSE & copy propagation will eliminate in-loop instruction
exactly when (non-SSA) loop-invariant code motion would
have, PLUS can replace invariant but unmovable
instructions with copies

SSA-based code motion gets same effect

• copies correspond to reified φ functions

Craig Chambers 103 CSE 501

Example

x := a * b

y := q * x

q := z * w

q := 0

y := 1

... y ...

... q ...

