
Craig Chambers 104 CSE 501

Control dependence

Must ensure side-effects occur in proper order

Must ensure side-effects occur only under right conditions

CFG represents control dependence explicitly

− but overspecifies control dependence requirements

Craig Chambers 105 CSE 501

Control dependence graph

Program dependence graph (PDG):
data dependence graph + control dependence graph (CDG)
[Ferrante, Ottenstein, & Warren, TOPLAS 87]

Idea: represent controlling conditions directly

• complements data dependence representation

A node (basic block) Y is control-dependent on another X iff
X determines whether Y executes, i.e.

• there exists a path from X to Y s.t. every node in the path
other than X & Y is post-dominated by Y

• X is not post-dominated by Y

Control dependence graph:
Y proper descendant of X iff Y control-dependent on X

• label each child edge with required branch condition

• group all children with same condition under region node

Two sibling nodes execute under same control conditions ⇒
can be reordered or parallelized, as data dependences allow

Challenging to “sequentialize” back into CFG form

Craig Chambers 106 CSE 501

Example

① y := p + q
➁ x > 0?

➂ a := x * y ➃ a := y - 2

➄ w := y / q
➅ x > 0?

➆ b := 1 << w

➇ r := a % b

Craig Chambers 107 CSE 501

An example with a loop

B1

B2 B3

B4

B5 B6

B7

T F

T F

Craig Chambers 108 CSE 501

Value dependence graphs

[Weise, Crew, Ernst, & Steensgaard, POPL 94]

Idea: represent all dependences,
including control dependences, as data dependences

+ simple, direct dataflow-based representation
of all “interesting” relationships

• analyses become easier to describe & reason about

− harder to sequentialize into CFG

Control dependences as data dependences:

• control dependence on order of side-effects
⇒ data dependence on reading & writing to global Store

• optimizations to break up accesses to single Store into separate
independent chunks
(e.g. a single variable, a single data structure)

• control dependence on outcome of branch
⇒ a select node, taking test, then, and else inputs
⇒ demand-driven evaluation model

Loops implemented as tail-recursive calls to local procedures

Apply CSE, folding, etc. as nodes are built/updated

Craig Chambers 109 CSE 501

VDG for example, after store splitting

y := p + q
if x > 0 then a := x * y else a := y - 2
w := y / q
if x > 0 then b := 1 << w
r := a % b

x p q b

+

* - /

γ> <<

γ

%

r

1

2

0

y

a1 a2

a

b

w

