
Craig Chambers 161 CSE 501

Interprocedural Analysis with Data-Dependent Calls

In languages with function pointers, first-class functions, or
dynamically dispatched messages, callee(s) at call site
depend on data flow

Could make worst-case assumptions:
call all possible functions/methods...

• ... with matching name (if name is given at call site)

• ... with matching type (if type is given & trustable)

• ... that have had their address taken, & escape (if known)

Could do analysis to compute possible callees/receiver classes

• intraprocedural analysis OK

• interprocedural analysis better

• context-sensitive interprocedural analysis even better

Craig Chambers 162 CSE 501

Circularity dilemma

Problem:

1. to compute possible callees,
decide to do interprocedural analysis

2. to do interprocedural analysis,
need a call graph

3. to construct a call graph,
need to compute possible callee functions

1. to compute possible callees, ...

How to break vicious cycle?

call graph

interprocedural analysis

possible callees

Craig Chambers 163 CSE 501

A solution: optimistic iterative analysis

Set up a standard optimistic interprocedural analysis,
use iteration to relax initial optimistic solution into
a sound fixed-point solution [e.g., for function ptrs/values]

A simple flow-insensitive, context-insensitive analysis:

• for each (formal, local, result, global, instance) variable,
maintain set of possible functions that could be there

• initially: empty set for all variables

• for each call site, set of callees derived from set associated
with applied function expression

• initially: no callees

worklist := {main }

while worklist not empty
remove p from worklist
process p:

perform intra analysis propagating fn sets from formals
foreach call site s in p:

add call edges for any new reachable callees
add fns of actuals to callees’ formals
if new callee(s) reached or callee(s)’ formals changed,

put callee(s) back on worklist
if result changed, put caller(s) back on worklist

Craig Chambers 164 CSE 501

Example

proc main() {
proc p(pa) { return pa(d); }
return b(p);

}

proc b(ba) {
proc q(qa) { return d(d); }
c(q);
return ba(d);

}

proc c(ca) {
return ca(ca);

}

proc d(da) {
proc r(ra) { return da; }
return c(r);

}

Craig Chambers 165 CSE 501

Context-sensitive analyses

Can get more precision through
context-sensitive interprocedural analysis

k-CFA (control flow analysis) [Shivers 88 etc.]

• analyze Scheme programs

• context key: sequence of k enclosing call sites

• k=0 ⇒ context-insensitive

• k=1 ⇒ reanalyze for each call site (but not transitively)

− loses precision beyond k recursive calls

− cost is exponential in k, even if no gain in precision

An alternative:

• context key: set of possible functions for arguments

+ avoid weaknesses of k-CFA:

• only expend effort if possibly beneficial

• never hits an arbitrary cut-off

• worst-case cost proportional to |Functions|MaxNumberOfArgs

• how big can this get?

Craig Chambers 166 CSE 501

Static analysis of OO programs

Problem: dynamically dispatched message sends

• direct cost: extra run-time checking to select target method

• indirect cost: hard to inline, construct call graph, do
interprocedural analysis

Smaller problem: run-time class/subclass tests
(e.g. instanceof, checked casts)

• direct cost: extra tests

Solution: static class analysis

• compute set of possible classes of expressions

Knowing set of possible classes of message receivers enables
message lookup at compile-time (static binding)

Benefits of knowing set of possible target methods:

• can construct call graph & do interprocedural analysis

• if single callee, then can inline, if profitable

• if small number of callees, then can insert type-case

Knowing classes of arguments to run-time class/subclass tests
enables constant-folding of tests, plus cast checking tools

Craig Chambers 167 CSE 501

Intraprocedural class analysis

Propagate sets of bindings of
variables to sets of classes through CFG

e.g. {x → {Int}, y → {Vector,String}}

Flow functions:

• x := new C:
Succ = Pred − {x→∗} ∪ {x→{C}}

• x := y :
Succ = Pred − {x→∗} ∪ {x→Pred(y)}

• x := ... :
Succ = Pred − {x→∗} ∪ {x→⊥}

• if x instanceof C goto L1 else L2 :
SuccL1 = Pred − {x→∗} ∪

{x → {D∈Pred(x) | D∈Subclasses(C)}}
SuccL2 = Pred − {x→∗} ∪

{x → {D∈Pred(x) | D∉Subclasses(C)}}

Use info at sends, type tests

• x := y.foo(z)

• if x instanceof class goto L1 else L2

Compose inlining of statically bound sends with class analysis

Craig Chambers 168 CSE 501

Limitations of intraprocedural analysis

Don’t know classes of

• formals

• results of non-inlined messages

• contents of instance variables

Don’t know complete set of classes in program
⇒ can’t learn much from static type declarations

Improve information by:

• looking at dynamic profiles

• specializing methods for particular receiver/argument
classes

• performing interprocedural class analysis

• flow-sensitive & -insensitive methods

• context-sensitive & -insensitive methods

Craig Chambers 169 CSE 501

Profile-guided class prediction

Can exploit dynamic profile information if static info lacking

Monitor receiver class distributions for each send

Recompile program, inserting run-time class tests for common
receiver classes

• on-line (e.g. in Self [Hölzle & Ungar 96])
or off-line (e.g. in Vortex)

Before:

i := s.area();

After:

i := (if s.class == R
then s.Rect::area()
else s.area());

Circle Triangle Ellipse

frequency

100%

50%

0%

25%

75%

receiver classes for “area ”

Rectangle

Craig Chambers 170 CSE 501

Specialization

To get better static info,
specialize source method w.r.t. inheriting receiver class

+ compiler knows statically the class of the receiver formal

class Rectangle {
...
int area() { return length() * width(); }

int length() { ... }
int width() { ... }

};

class Square extends Rectangle {
int size;

int length() { return size; }
int width() { return size; }

};

If specialize Rectangle::area as Square::area ,
can inline-expand length() & width() sends

Craig Chambers 171 CSE 501

What to specialize?

In Sather, Trellis: specialize for all inheriting receiver classes

• in Trellis, reuse superclass’s code if no change

In Self: same, but specialize at run-time

• Self compiles everything at run-time,
incrementally as needed

• will only specialize for (classes × messages)
actually used at run-time

In Vortex: use profile-derived weighted call graph to guide
specialization

• only specialize if high frequency & provides benefit

• can specialize on args, too

• can specialize for sets of classes w/ same behavior

Craig Chambers 172 CSE 501

Flow-insensitive interprocedural static class analysis

Simple idea: examine complete class hierarchy,
put upper limit of possible callees of all messages

• can now benefit from type declarations, instanceof’s

Example:

class Shape {
abstract int area();

};

class Rectangle extends Shape {
...
int area() { return length() * width(); }

int length() { ... }
int width() { ... }

};

class Square extends Rectangle {
int size;

int length() { return size; }
int width() { return size; }

};

Rectangle r = ...;
... r.area() ...

Craig Chambers 173 CSE 501

Improvements

Add optimistic pruning of unreachable classes

• optimistically track which classes are instantiated during
analysis

• don’t make call arc to any method whose class isn’t
reachable

• fill in skipped arcs as classes become reachable

• O(N)

[Bacon & Sweeney 96]: in C++

Add intraprocedural analysis

[Diwan et al. 96]: in Modula-3, w/o optimistic pruning,
w/ flow-sensitive interprocedural analysis
after flow-insensitive call graph construction

Type-inference-style analysis à la Steensgaard

• compute set of classes for each “type variable”

• use unification to merge type variables

• can blend with propagation, too

[DeFouw et al. 98, Grove & Chambers 01]: in Vortex

Craig Chambers 174 CSE 501

Flow-sensitive interprocedural static class analysis

Extend static class analysis to examine entire program

• infer argument & result class sets for all methods

• infer contents of instance variables and arrays

The standard problem:
constructing the interprocedural call graph

call graph

interprocedural analysis

receiver classes

Craig Chambers 175 CSE 501

And the standard solution: optimistic iteration

Compute call graph and class sets simultaneously,
through optimistic iterative refinement

Use worklist-based algorithm, with procedures on the worklist

Initialize call graph & class sets to empty

Initialize worklist to main

To process procedure off worklist:

• analyze, given class sets for formals:

• perform method lookup at call sites

• add call graph edges based on lookup

• update callee(s) formals’ sets based on actuals’ class sets

• if a callee method’s argument set changes, add it to worklist

• if result set changes, add caller methods to worklist

• if contents of an instance variable or array changes,
add all accessing methods to worklist

Craig Chambers 176 CSE 501

Example

main() {
3.foo().print();
"hi".foo().print();

}

self.foo() {
return self.p();

}

self.p() {

return self;
}

main

foo

p

self:
result:

self:
result:

Craig Chambers 177 CSE 501

A problem

Simple context-insensitive approach smears together effects of
polymorphic methods

E.g. foo in example

E.g. min function:

Similar smearing for polymorphic data structures

• readers of some array see all classes stored in any array

Smearing makes analysis slow for big programs

Solution: context-sensitive interprocedural analysis

a := min(3,4) s := min(“apple”,“abacus”)

min(x, y) {
if x <= y then return x
else return y }

x ∈ {int ,string }
y ∈ {int ,string }

result ∈
{int ,string }

Craig Chambers 178 CSE 501

k-CFA-style analyses

Idea: reanalyze method for each distinct stack of k callers

+ avoids smearing across some callers

− fails for polymorphic libraries of depth > k

− doesn’t address polymorphic data structures

− requires time exponential in k

[Oxhøj et al. 92]: k = 1, for toy language

More sophisticated idea: iteratively reanalyze program,
expanding k in parts of program that matters

• start with k = 0

• analyze program, building data flow graph

• identify merges in graph that caused smearing, split apart

• repeat, following splitting directives,
till no more improvements possible

+ expend effort exactly where useful

+ works for polymorphic data structures, too

− complicated, particularly in recording confluences

− initial k=0 analysis can be expensive,
iteration can be expensive

[Plevyak & Chien 94]

Craig Chambers 179 CSE 501

Partial transfer function-style analyses

Cartesian Product Algorithm [Agesen 95]

Idea: analyze methods for each tuple of singleton classes of
arguments

• cache results and reuse at other call sites

+ precise analysis of methods

+ fairly simple

− combinatorial blow-up (but polymorphic, not exponential)

− doesn’t address polymorphic data structures

Craig Chambers 180 CSE 501

Example of CPA

min({int,float},{int}) min({string},{string})

min(x, y) {
if x <= y then return x
else return y }

Analyze & cache:

min({int},{int}) ⇒ {int}
min({float},{int}) ⇒ {int,float}
min({string},{string}) ⇒ {string}

Craig Chambers 181 CSE 501

Open questions

How do algorithms scale to large, heavily-OO programs?

How much practical benefit is interprocedural analysis?

How appropriate are algorithms for different kinds of languages?

[Grove et al. 97]:
looked at first three questions for propagation-based
analyses, with mostly negative results
(couldn’t get both scalability and usefulness)

[Defouw et al. 98]:
looked at blend of unification & propagation, with
encouraging results

[Grove & Chambers 01]:
journal summary of previous two papers

How does interprocedural analysis interact with
separate compilation? rapid program development?

Craig Chambers 182 CSE 501

Vortex interprocedural analysis framework

Vortex allows construction of interprocedural analyses from
intraprocedural ones

• assumes call graph already built

• doesn’t support transformations w/ interprocedural analysis

User invokes ip_traverse to perform analysis,
compute table mapping procedures to summary functions:

call_graph.ip_traverse(
initial_input_analysis_info,
initial_output_analysis_info, (T, for recursion)
λ(proc, info, callback){

let intra_info := ...(info, callback)...;
proc.cfg.traverse(...) },

context_sensitivity_strategy_fn)
→ (proc →(input →output))

Interprocedural framework & user’s intraprocedural analysis
call each other to traverse call graph (callback)

User’s context sensitivity strategy specified by function:
λ(prevs:set[input_info],new:input_info)
→(dropped:set[input_info],added:new_info)

