Data Flow Analysis

Want to compute some info about program
+ at program points, i.e. edges in CFG/DFG/...
* to identify opportunities for improving transformations

Can model data flow analysis as solving system of constraints

» each node in graph imposes constraints relating info at
predecessor and successor points

+ solution to constraints is result of analysis

Solution must be safe a.k.a. sound
Solution can be conservative

Key issues:
+ how to represent info efficiently?
» how to represent & solve constraints efficiently?
» how long does constraint solving take? does it terminate?
« what if multiple solutions are possible?
» how do transformations interact with analyses?

» how to reason about whether analyses & transformations
are sound, i.e., semantics-preserving?

Craig Chambers 32 CSE 501

Example: reaching definitions

For each program point in CFG,
want to compute set of definitions (statements) that
may reach that point

» reach: are the last definition of some variable

Info = set of var—stmt bindings
E.g.:
{x—s4, y—s5, y—sg}

Can use reaching definition info to:
+ build def-use chains
+ do constant & copy propagation
« detect references to undefined variables
+ present use/def info to programmer

Safety rule (for these intended uses of this info):
can have more bindings than the “true” answer,
but can’t miss any

Craig Chambers 33 CSE 501

Constraints for reaching definitions

Main constraints:

A simple assignment removes any old reaching defs for the lhs
and replaces them with this stmt:

« strong update

SIX = ...
infogyee = iNfopreq — {X—s’| Vs} L {x—s}

A pointer assignment may modify anything, but doesn’t definitely
replace anything

- weak update
SI*P = ...:
infogyee = infopreq L {X—s| VX € may-point-to(P)}

Other statements: do nothing
infogycc = iNfopreg

Craig Chambers 34 CSE 501

Constraints for reaching definitions, continued

Branches pass through reaching defs to both successors
infogycepq = infopred, Vi

Merges take the union of all incoming reaching defs

» we don’t know which path is being taken at run-time
= be conservative

iﬂfOSUCC = U,‘ infopred[,]

Conditions at entry to CFG: “definitions” of formals
infognyy = {x—entry | VX e formals}

Craig Chambers 35 CSE 501




Solving constraints

A given program yields a system of constraints
Need to solve constraints

For reaching definitions,
can traverse instructions in forward topological order,
computing successor info from predecessor info

» because of how the constraints are defined

Craig Chambers 36 CSE 501

Example

1 x :=
2y :=
3y :=
4 p = ...
.X X
5x 1= . 6 x :=
Y 7 *p =
X
Y
8y = ...
Craig Chambers 37 CSE 501

Another example

1 x := ...
2y :
3y :
4p:

Topological order not defined!

Craig Chambers 38 CSE 501

Loop terminology

loop: strongly-connected component in CFG with single entry
loop entry edge: source not in loop, target in loop

loop exit edge: the reverse

back edge: target is loop head node

loop head node: target of loop entry edge

loop tail node: source of back edge

loop preheader node:
single node that’s source of loop entry edge

nested loop: loop whose head is inside another loop

reducible flow graph: all SCC’s have single entry

X[

Craig Chambers 39 CSE 501




Example

preheader

entry edge

loop

back(edge

Craig Chambers 40 CSE 501

Analysis of loops

If CFG has a loop, data flow constraints are recursively defined:
infoIoop-head = infoIoop-entry v ir]foback-edge
infOpack-edge = -+ INfOloop-head -

Substituting definition of infop,ck-edge:
infojoop-head = INfOIogp-entry U (-+- INfOlo0p-nead )

Summarizing r.h.s. as F:
infojoop-head = F(iNfOlo0p-head)

A legal solution to constraints is a fixed-point of F

Recursive constraints can have many solutions

» want least or greatest fixed-point,
whichever corresponds to the most precise answer

How to find least/greatest fixed-point of F?
« for restricted CFGs can use specialized methods
+ e.g. interval analysis for reducible CFGs
« for arbitrary CFGs, can use iterative approximation

Craig Chambers 41 CSE 501

Solving constraints by iterative approximation

1. Start with initial guess of info at loop head:
infojoop-head = gUESS

2. Solve equations for loop body:
infopack-edge = Fbody (INfOloop-head)

infojg0p-head = INfOlgop-entry Y INfOback-edge

3. Test if found fixed-point:
infoloop-head’ = infoIoop-head ?

A. if same, then done
B. if not, then adopt result as (better) guess and repeat:
infopack-edge’ = Fhody (iNfO100p-head’)

infojgop-head” = iNfOlgop-entry Y INfOpack-edge’

infojgop-head” = iNfOlo0p-head’ ?

Craig Chambers 42 CSE 501

When does iterating work?

Sufficient conditions:
1. need to be able to make an initial guess

2. info™" must be closer to the fixed-point than info”
(true if Fpyqy is monotonic)

3. must eventually reach the fixed-point
in a finite number of iterations
(true if info drawn from a finite-height domain)

To reach best fixed-point, initial guess for loop head
should be optimistic

* easy choice: info|sop-head = iNfOloap-entry

(Even if guess is overly optimistic, iteration will ensure we won’t
stop analysis until the answer is safe.)

Craig Chambers 43 CSE 501




The example, again

{

1 x := ...
2y :=
3y :=
4 p :=
X
5x :=
- Y
X
Yy
8y = ...
Craig Chambers 44 CSE 501

Direction of dataflow analysis

In what order are constraints solved, in general?

Constraints are declarative, not directional/procedural, so may
require mixing forward & backward solving, or other more
global solution methods

But often constraints can be solved by (directional) propagation
& iteration

* may be forward or backward propagation of info

Directional constraints often called flow functions
« often written as functions on input info to compute output
RDg. 5 .- .. .(in)=in—{x—>s’| Vs} U {x—>s}
RDg: +p .= .. .(in) =in U {x—s| VX € may-point-to(P)}

For greatest solving efficiency:
» analyze acyclic subgraphs in topological order

+ analyze loops till convergence before
analyzing downstream of loops

Craig Chambers 45 CSE 501

GEN and KILL sets

Can often think of flow functions in terms of each’s
GEN set and KILL set

* GEN = new information added
* KILL = old information removed

Then
Finstdin) = in - KILLjpggr U GEN gty

E.g., for reaching defs:

RDg: x .- ... (in)=in—{x—s’| Vs} U {x—s}
RDg:+p .~ .. (in)=in U {x—s| VX e mpt(P)}

Craig Chambers 46 CSE 501

Bit vectors

For efficiency,
can sometimes represent info/KILL/GEN sets as bit vectors

« if can express abstractly as set of things
(e.g. statements, vars),
drawn from a statically known set of things,
each thing getting a statically determined bit position

« bitvector encodes characteristic function of set

E.g., for reaching defs:

info = bitvector over statements,
each stmt getting a distinct bit position

+ statement implies which variable is defined

Bit vectors compactly represent sets
Bit-vector operations efficiently perform set difference, union, ...

Flow function may be able to be represented simply by a pair of
bit vectors, if they don’t depend on input bit vector
» can merge the KILL and GEN bit vectors of a whole basic
block of instructions into a single overall KILL and GEN
set, for faster iterating

Craig Chambers 47 CSE 501




Another example: constant propagation

What info computed for each program point?

Iis a conservative approximation to “true” info /i iff:
Direction of analysis?

Initial info?

CPy . yfin) =

CPy . v+ 4in)=

CPup o v+ wx(in) =

Merge function?

Can use bit vectors?

Craig Chambers 48

CSE 501

Example

x + 1 w o= 3
v o+ 1 y 1= x * 2
=y + 5

Craig Chambers 49 CSE 501

May vs. must info

Some kinds of info imply guarantees: must info
Some kinds of info imply possibilities: may info
+ the complement of may info is must not info

May Must

desired info | small set big set

safe overly big set overly small set

GEN an everything that add only if guaranteed
might be true true

KILL remove only if remove everything
guaranteed wrong possibly wrong

MERGE U N

Craig Chambers 50 CSE 501

Another example: live variables

Want the set of variables that are live at each pt. in program
* live: might be used /ater in the program

Supports dead assignment elimination, register allocation

What info computed for each program point?

May or must info?

/is a conservative approximation to /y, iff:

Direction of analysis?

Initial info, at what program point(s)?

LVy . v+ z(in) =

LVip o o 4 s&(iN) =

Merge function?

Can use bit vectors?

Craig Chambers 51 CSE 501




Example

Craig Chambers

52

CSE 501




