Pointer and Alias Analysis

Aliases:
two expressions that denote same mutable memory location

Introduced through
* pointers
+ call-by-reference
« array indexing
» C unions, Fortran common, equivalence

Applications of alias analysis:

» improved side-effect analysis:
if assign to one expression,
what other expressions are modified?
« if certain modified or not modified, not a problem
« if uncertain, things can get ugly
+ eliminate redundant loads/stores & dead stores
(CSE & dead assign elim, for pointer ops)

+ automatic parallelization of code
manipulating data structures

Craig Chambers 80 CSE 501

Kinds of alias info

Points-to analysis

+ at each program point, calculate set of p—x bindings,
if p points to x

+ two variations:
* may points-to: p might point to x
» must points-to: p definitely points to x

Alias-pair analysis
« at each program point, calculate set of (expr;,expr,)
pairs, if expr, and expr, reference the same memory
* may and must alias-pair versions
+ can handle aliasing of variables, unlike pts-to analysis

— potentially infinite number of alias pairs,
so want the “minimal” set

Storage shape analysis

« at each program point, calculate an abstract description of
the structure of pointers etc., e.qg. list-like, or tree-like, or
DAG-like, or ...

Craig Chambers 81 CSE 501

A points-to analysis

At each program point, calculate set of p—x bindings,
if p points to x

Outline:
+ define may version first, then consider must version
+ develop algorithm in increasing stages of complexity
* pointers only to vars of scalar type
* add pointers to pointers
* add pointers to and from structures
« add pointers to dynamically-allocated storage
* add pointers to array elements

Craig Chambers 82 CSE 501

May-point-to scalars

Domain: Pow(Var x Var)
+ each variable may point to any number of other variables
* may-point-topp(P) = { x| P>x e Soln(MayPT,PP) }
Forward flow functions:
MayPT, ._ (x(in) =in-{P—>"} U {P>Xx}

MayPT, ._ y(in)=in-{P=>"}u{P>Y|0>Ye in}

MayPT, ._ «5(in) =in (assuming P can’t point to a ptr)

MayPT., ._ 4(in)=in (assuming P can’t point to a ptr)

Meet function: union

What about ni1?

Craig Chambers 83 CSE 501

Example

1 x :=3
2p = &x
3y :=5

6 *p =7
7z = *q
8 *q := 4
9w := *p

Craig Chambers 84 CSE 501

Must-point-to

How to define must-point-to analysis?

Option 1: analogous to may-point-to, but as must problem

* meet function: intersection

Option 2: interpretation of may-point-to results

« if P may point only to x, then P must point to x, i.e.,
must-point-topp(P) = { X | {X} = may-point-topp(P) }

» what if P may pointto ni1? P assigned an integer?

Craig Chambers 85 CSE 501

Using alias info

E.g. reaching definitions

At each program point, calculate set of x—S bindings,
if x might get its definition from stmt S

Simple flow functions:
RDg:x .- .. .(in)=in-{x—>"1 U {x>8}

RDg:+p .- .. _(in) =in — {x—* | X e must-point-to(p)}
U {x— S| X € may-point-to(p)}

Craig Chambers 86 CSE 501

Reaching “right hand sides”

A variation on reaching definitions

that skips through trivial copies

X—Sin set if X might get its definition from rhs of stmt S,

skipping through trivial variable and pointer copies where
possible

Can use reaching right-hand sides to construct def/use chains

that skip through copies, e.g. for better constant propagation

Additional flow functions:

RDg.y ..y (in)=in—{x>" U{x>S'| y>S’e in}

RDg.x .- «p(in) =in — {x—7}
U {x—8’| Y € may-point-to(P) A
v—S’€ in}

RDg: +p .= vy (in) =in—{x—"| X € must-point-to(P)}
U {x—8’| x € may-point-to(P) A
Y—S’€ in}

Craig Chambers 87 CSE 501

Another use: "scalar replacement”

If we know that a pointer expression *p aliases a variable x
(P must point to x) at some point, then can replace *P with x

» both for load & store

Adding pointers to pointers

Now allow a pointer to point to a pointer
» loads may return pointers, stores may store pointers

Revised flow functions for loads and stores:

Example: MayPT, ._ .4(in) = in - {P—7}
U {P—>X| 0>Re in AR>Xe€ in}
a =5
w = &a
b = *w
MayPT., ._ o(in) =in - {r—*| {R} =in(P) }
U{R—>X|P>ReinA 0—Xe in}
Craig Chambers 88 CSE 501 Craig Chambers 89 CSE 501
Example Adding pointers to structs/records/objects!...
int x, y, z; ‘ A variable can be a structure with a collection of named fields
int *p, *q; x 1= « a pointer can point to a field of a structure variable
int **m; y i= 6 + afield can hold a pointer
P = &X
q =&y Introduce location domain: Loc = Var u LocxField
m = &p « either a variable or a location followed by a field name
Old PT domain: sets of v;— v, pairs = Pow(Var x Var)
New PT domain: sets of 1,—1, pairs = Pow(Loc x Loc)
*moi= g *q =7
g :=p x := 8 Some new forward flow functions:
/ MayPT, ._ .y z(in) =in-{P>*} U {P—X.F}
\)) . .
o — *m MayPT, ._ x.» (in)=in-{P>"}U{P—>L|X.F>Le in}
*q 1= 9 MayPT, ._ («p).z(in) =in-{P->7} . .
U{P>L|Q0—>ReINAR.F>Le in}
z 1= *p
l MayPTy » .. o (in)=in-{X.F>"YU{X.F>L|0—>Le€ in}
MayPT (.p) r .- o(in) =in-{rR.F="|{R} =in(P)}
U{R.F—L|P—>ReinAQ0—Le in}
Craig Chambers 90 CSE 501 Craig Chambers 91 CSE 501

Adding pointers to dynamically-allocated memory

P := new 7T
» rcould be scalar, pointer, structure, ...

Issue: each execution of new creates a new location
Idea: introduce new set of possible memory locations: Mem

Extend Loc to also allow a location to be a Mem:
Loc = Varu Mem u LocxField

Flow function:
MayPT, ._ .. Ain) =in-{rP="} U {P—‘newvar’}
» newvar: return next unallocated element of Mem

Craig Chambers 92 CSE 501

Example

t := new Cons

(*p).next := t

Craig Chambers 93 CSE 501

A monotonic, finite approximation

Can'’t allocate a new memory location
each time analyze new statement
« infinite Mem = infinite Loc = infinitely tall Pow(Loc x Loc)!

* not a monotonic flow function!

One solution:
create a special summary node for each new stmt

* Loc = Varu Stmt U LocxField

Fixed flow function:
MayPTS.'P 1= new ’t(m) =in- {P%*} o {P—>S}

Summary nodes represent a set of possible locations
= cannot strongly update a summary node

MayPT.p ._ o(in) =in—{R—>*|{R} =in(P) AR ¢ Stmt}
U{R—>X|P—>Re inA 0—Xe in}

Alternative summarization strategies:
« summary node for each type 7

* k-limited summary
* maintain distinct nodes up to k links removed from root vars,
then summarize together

Craig Chambers 94 CSE 501

Adding pointers to array elements

Array index expressions can generate aliases:
a[i] aliases b[j] if:
* aaliases b and i equals j
* more generally, a and b overlap, and &a[i] = &b[j]

Can have pointers to array elements:
p = &ali]

Can have pointer arithmetic, for array addressing:
p = &al[0]; ...; p++
How to model arrays?

Option 1: reason about array index expressions
= array dependence analysis

Option 2: use a summary node to stand for all elements of the
array

Craig Chambers 95 CSE 501

