CSE 501:
Implementation of Programming Languages

Main focus: program analysis and transformation

» how to represent programs?

» how to analyze programs? what analyses to perform?

» how to transform programs? what transformations to apply?
Applications to compilers and software engineering tools
Applied to imperative, functional, and object-oriented languages
Advanced language runtime systems

Readings:
+ ~12 papers from literature
» Suggested reference books:
+ Cooper & Torczon’s “Engineering a Compiler”
» Appel's “Modern Compiler Implementation”
» “Compilers: Principles, Techniques, & Tools” a.k.a. Dragon Book

Coursework:
« periodic homework assignments (~2-4)
» course project assignments (~2-3)
* midterm(?), final

Craig Chambers 1 CSE 501

Course outline

Models of compilation/analysis

Tour of standard optimizing transformations

Basic program representations and analyses
Fancier program representations and analyses

Interprocedural representations, analyses, and transformations
« for imperative, functional, and OO languages

Run-time system issues
» garbage collection
» compiling dynamic dispatch, first-class functions, ...

Dynamic (JIT) compilation

Craig Chambers 2 CSE 501

Why study compilers?

Meeting area of programming languages, architectures
+ capabilities of compilers greatly influence their design

Program representation, analysis, and transformation
is widely useful beyond pure compilation

+ software engineering tools

» DB query optimizers, programmable graphics renderers
(domain-specific languages and optimizers)

« safety/security checking of code,
e.g. in programmable/extensible systems, networks,
databases

Increasing applicability of other domains to compilers
» Al techniques to guide optimizers through search space

Cool theoretical aspects, too
+ lattice domains, graph algorithms, computability/complexity

Craig Chambers 3 CSE 501

Goals for compilers

Be correct

Be efficient
« of: time, data space, code space
+ at: compile-time, run-time

Support expressive, safe language features
* OO method dispatching
» first-class functions
» bounds-checked arrays, exceptions, continuations
» garbage collection
« reflection, dynamic code loading
Support desirable programming environment features
« fast turnaround
+ separate compilation, shared libraries
+ source-level debugging

Be implementable, maintainable, evolvable, ...

Craig Chambers 4 CSE 501

Key questions

How are programs represented in the compiler?

How are analyses organized/structured?
« Over what region of the program are analyses performed?
* What analysis algorithms are used?

What kinds of optimizations can be performed?
» Which are profitable in practice?

» How should analyses/optimizations be sequenced/
combined?

How best to compile in face of:
* pointers, arrays
« first-class functions
* inheritance & message passing
« parallel target machines

Other issues:
+ speeding compilation
» making compilers portable, table-driven
+ supporting tools like debuggers, profilers, garbage collect'rs

Craig Chambers 5 CSE 501

Standard compiler organization

Analysis Synthesis
of input program of output program
(front-end) (back-end)

form
Lexical Analysis
_Optimization
intermediate
form

[Interpreter| [Code Generation|

target
language

Semantic Analysis

annotated
AST

| Interpreter| Intermediate

Code Generation

intermediate
form

Craig Chambers 6 CSE 501

Compilation models

Separate compilation
« compile source files independently
« ftrivial link, load, run stages
+ quick recompilation after program changes
— poor interprocedural optimization

Link-time compilation
+ delay (bulk of) compilation until link-time
+ allow interprocedural & whole-program optimizations
— quick recompilation?
— shared precompiled libraries?
— dynamic loading?
Examples: Vortex, Whirlwind (now),
some other research optimizers/parallelizers, ...

Craig Chambers 7 CSE 501

Run-time compilation (a.k.a. dynamic, just-in-time compilation)
» delay (bulk of) compilation until run-time
« can perform whole-program optimizations

can perform opts based on run-time program state,
execution environment

best optimization potential

can handle run-time changes/extensions to the program
severe pressure to limit run-time compilation overhead
Examples: Java/.NET JITs, Dynamo, FX-32, Transmeta

+ o+

Selective run-time compilation
» choose what part of compilation to delay till run-time
+ can balance compile-time/benefit trade-offs
Example: DyC

Hybrids of all the above

» spread compilation arbitrarily across stages

+ all the advantages, and none of the disadvantages!!
Example: Whirlwind (future)

Craig Chambers 8 CSE 501

Overview of optimizations

First analyze program to learn things about it
Then transform the program based on info
Repeat...

Requirement: don’t change the semantics!
« transform input program into
semantically equivalent but better output program

Analysis determines when transformations are:
* legal
« profitable

Caveat: “optimize” a misnomer
« result is almost never optimal

» sometimes slow down some programs on some inputs
(although hope to speed up most programs on most
inputs)

Craig Chambers 9 CSE 501

Semantics

Exactly what are the semantics that are to be preserved?
Subtleties:
+ evaluation order
« arithmetic properties like associativity, commutativity
* behavior in “error” cases

Some languages very precise
» programmers always know what they’re getting
Others weaker

+ allow better performance (but how much?)

Semantics selected by compiler option?

Craig Chambers 10 CSE 501

Scope of analysis

Peephole: across a small number of “adjacent” instructions
[adjacent in space or time]

« trivial analysis

Local: within a basic block
» simple, fast analysis

Intraprocedural (a.k.a. global):
across basic blocks, within a procedure

+ analysis more complex: branches, merges, loops

Interprocedural:
across procedures, within a whole program

« analysis even more complex: calls, returns
+ hard with separate compilation

Whole-program:
analysis can make closed-world assumptions

Craig Chambers 11 CSE 501

A tour of common optimizations/transformations

arithmetic simplifications:
« constant folding

x =3 +4 = x :=1
« strength reduction
X 1=y *4 = x 1=y << 2
constant propagation
x =5 = x :=5 = =5
y 1= x + 2 y : =5+ 2 y =17
integer range analysis
+ fold comparisons based on range analysis
« eliminate unreachable code
for(index = 0; index < 10; index ++) {
3 £ 1 =i 10 4+
At B e
alindex] := 0
}
» more generally, symbolic assertion analysis
Craig Chambers 12 CSE 501

common subexpression elimination (CSE)

X :=a+b = x:=a+b

y = a + b y 1= x
» can also eliminate redundant memory references,
branch tests

partial redundancy elimination (PRE)

« like CSE, but with earlier expression only available along
subset of possible paths

if ... then= if ... then
X :=a + b t :=a + b; x 1=t
end else t := a + b end
y = a + b y =t
Craig Chambers 13 CSE 501

copy propagation

X 1=y = x 1=y
W o= W + X w

w +y

dead (unused) assignment elimination

K=y ko
// no use of x
X 1= 6

« acommon clean-up after other optimizations:

X 1=y = X =y

= H—it=¥

W o= W + X W i=W+y = W :i= W + Y

// no use of x

partial dead assignment elimination

+ like DAE, except assignment only used on some later paths

dead (unreachable) code elimination

1 £ £
o S

1 4+ 1
o FOT e

goto _done

—elser

_done:

+ another common clean-up after other optimizations

Craig Chambers 14

CSE 501

pointer/alias analysis

P = &X = p = &x = p = &x
*p := 5 *p := 5 *p := 5
y =x +1 y :=5+1 y =6
x =5
*p o= 3
y =x + 1= ??7?

» augments lots of other optimizations/analyses

Craig Chambers 15 CSE 501

loop-invariant code motion

for j : =1 to N = for j :=1 to N
for i =1 to N t := b[]j]
afi] := ali] + bl3Jl] for i : =1 to N
ali] := a[i] + t
induction variable elimination
for i :=1 to N = for p := &a[l] to &a[N]
ali] := a[i] + 1 *p = *p + 1

* a[i] is several instructions, *p is one
» akind of strength reduction

Craig Chambers 16

CSE 501

loop unrolling
for i :=1 to N = for i := 1 to N by 4
ali+l] := a[i] + 1 ali+l] := al[i] + 1
a[i+2] := a[i+l1l] + 1
a[i+3] := a[i+2] + 1
a[i+4] := a[i+3] + 1
loop peeling, ...
parallelization
for i := 1 to 1000 = forall i := 1 to 1000
ali] := ali]l + 1 ali] := af[i]l + 1

loop interchange, skewing, reversal, ...

blocking/tiling: restructuring loops for better cache locality
for 1 := 1 to 1000
for j := 1 to 1000
for k := 1 to 1000
cli,jl += ali,k] * blk,]l
=
for i := 1 to 1000 by TILESIZE
for j := 1 to 1000 by TILESIZE
for k := 1 to 1000
for i’ := i to i+TILESIZE
for j’ := j to jF+TILESIZE
c[i",3"] += ali’ k] * blk,3j"]

Craig Chambers 17 CSE 501

inlining

h = ... = h = ... = h := ..
w o= 4 w o= 4 w——l
a := area(h,w) a :=h *w a := h << 2

« lots of “silly” optimizations become important after inlining

static binding of dynamic calls

» in imperative languages, for call of a function pointer:
if can compute unique target of pointer,
can replace with direct call

« in functional languages, for call of a computed function:
if can compute unique value of function expression,
can replace with direct call

» in OO languages, for dynamically dispatched message:
if can deduce class of receiver,
can replace with direct call

 other possible optimizations even if several possible callees

procedure specialization

Craig Chambers 18 CSE 501

register allocation

instruction selection

pl :=p + 4 = 1d %g3, [%gl + 4]
x = *pl
« particularly important on CISCs

instruction scheduling
1d %92, [%gl + 0] = 1d %92, [%gl + 0]

add %93, %g2, 1 1d %g5, [%gl + 4]
1d %92, [%9l + 4] add %g3, %g2, 1
add %g4, %g2, 1 add %g4, %g5, 1

+ particularly important for instructions with delayed results,
and on wide-issue machines

* less important on dynamically scheduled machines

Craig Chambers 19 CSE 501

Optimization themes

Don’t compute it if you don’t have to
» dead assignment elimination

Compute it at compile-time if you can
+ constant folding, loop unrolling, inlining

Compute it as few times as possible
» CSE, PRE, PDE, loop-invariant code motion

Compute it as cheaply as possible

« strength reduction, induction var. elimination,
parallelization, register allocation, scheduling

Enable other optimizations
« constant & copy propagation, pointer analysis

Compute it with as little code space as possible
» dead code elimination

Craig Chambers 20 CSE 501

The phase ordering problem

Typically, want to perform a number of optimizations;
in what order should the transformations be performed?

some optimizations create opportunities for other optimizations
= order optimizations using this dependence

+ some optimizations simplified
if can assume another opt will run later & “clean up”

but what about cyclic dependences?
+ e.g. constant folding < constant propagation

what about adverse interactions?

. eg.
common subexpression elimination <> register allocation

+ eg.
register allocation < instruction scheduling

Craig Chambers 21 CSE 501

Engineering

Building a compiler is an engineering activity
» balance
complexity of implementation,
speed-up of “typical” programs,
compilation speed,

Near infinite number of speial cases for optimization
can be identified

» can’timplement them all

Good compiler design, like good language design, seeks
small set of powerful, general analyses and transformations,
to minimize implementation complexity while
maximizing effectiveness

« reality isn’t always this pure...

Craig Chambers 22 CSE 501

Representation of programs

Primary goals:
+ analysis is easy & effective
+ just a few cases to handle
« directly link related things
« transformations are easy to perform
+ transformed programs are easy to express
» general, across input languages & target machines

Additional goals:
+ compact in memory
+ easy to translate to and from
« tracks info for source-level debugging, profiling, etc.
+ extensible (new optimizations, targets, language features)
« displayable

Craig Chambers 23 CSE 501

Option 1: high-level syntax-based representation

Represent source-level control structures & expressions directly

Examples
+ (Attributed) AST
+ Lisp S-expressions
» extended lambda calculus

Source:

for i := 1 to 10 do
ali] := b[i] * 5;

end

AST:

for

i//w/ \::

L
1 /*\
a i [1] 5
b i
Craig Chambers 24 CSE 501

Option 2: low-level representation

Translate input programs into low-level primitive chunks,
often close to the target machine

Examples
» assembly code, virtual machine code (e.g. stack machine)

+ three address code, register transfer language (RTLs)

Standard RTL operators:

assignment X 1= Yy;

unary op X 1= op Vi
binary op X 1=y op z;
address-of P = &y;

load x 1= *(p + 0);
store *(p + 0) 1= X;
call x 1= f(...);
unary compare |op x ?

binary compare | x op y 2

Craig Chambers 25 CSE 501

Source:

for i := 1 to 10 do
ali] := b[i] * 5;
end

Control flow graph containing RTL instructions:

tl i * 4
t2 := & b
t3 1= *(t2 + tl)

td := t3 * 5

th =1 * 4

te = & a

*(t6 + t5) := t4

i=1i4+1

Craig Chambers 26 CSE 501

Comparison

Advantages of high-level rep:
« analysis can exploit high-level knowledge of constructs
» probably faster to analyze
+ easy to map to source code terms for debugging, profiling
* (may be) more compact

Advantages of low-level rep:

+ can do low-level, machine-specific optimizations
(if target-based representation)

« high-level rep may not be able to express some transformations
+ can have relatively few kinds of instructions to analyze
» can be language-independent

High-level rep suitable for a source-to-source or special-purpose
optimizer, e.g. inliner, parallelizer

Can mix multiple representations in single compiler
Can sequence compilers using different reps

Q: what about Java bytecodes?

Craig Chambers 27 CSE 501

Components of representation

Operations

Dependences between operations
«+ control dependences: sequencing of operations
+ evaluation of then & else arms depends on result of test
« side-effects of statements occur in right order
» data dependences: flow of values from definitions to uses
» operands computed before operation

Ideal: represent just those dependences that matter
» dependences constrain transformations
» fewest dependences = most flexibility in implementation

Craig Chambers 28 CSE 501

Representing control dependences

Option 1: high-level representation
« control flow implicit in semantics of AST nodes

Option 2: control flow graph (CFG)
* nodes are basic blocks
« instructions in basic block sequence side-effects

» edges represent branches
(control flow between basic blocks)

Option 2b: CFG whose nodes are individual instructions

Some fancier options:
« control dependence graph,
part of program dependence graph (PDG)
[Ferrante et al. 87]
» convert into data dependences on a memory state,
in value dependence graph (VDG) [Weise et al. 94]

Craig Chambers 29 CSE 501

Representing data dependences

Option 1: implicitly through variable defs/uses in CFG
+ simple, source-like
— may overconstrain order of operations

— analysis wants important things explicit =
analysis can be slow

Option 2: def/use chains, linking each def to each use
+ akind of data flow graph (DFG)
+ explicit = analysis can be fast
— must be computed, maintained after transformations
— may be space-consuming

Some fancier options:
« static single assignment (SSA) form [Alpern et al. 88]
« value dependence graphs (VDGs)

Craig Chambers 30 CSE 501

Example

1 x :=
1
2 . X ...
AN ’
3 .oX . 3
5 X . 5
4 x :=
4
6
6 ... x
7 8
PN
7 o0 X ... 8 . x

Craig Chambers 31 CSE 501

